
Physics 443 HW #4
Due February 20, 2008

1. Neutrino Oscillations
Electron and muon neutrinos (νe and νµ) are produced in weak inter-
actions, like neutron decay or π decay. Recent measurements indicate
that there is some amplitude for an electron neutrino to turn into a
muon neutrino and vice versa. (νe ↔ νµ) We can represent the general
state as a linear combination

| ψ〉 = a| νe〉+ b| νµ〉

where

〈νe | νe〉 = 〈νµ | νµ〉 = 1
〈νe | νµ〉 = 〈νµ | νe〉 = 0

Then we can write

| νe〉 =
(

1
0

)
and | νµ〉 =

(
0
1

)
The Hamiltonian matrix is

H =
( 〈νe | H | νe〉 〈νe | H | νµ〉
〈νµ | H | νe〉 〈νµ | H | νµ〉

)
=
(
E0 A
A E0

)
(Note that the Hamiltonian matrix elements are all real and it is her-
mitian. Unlike in the K0 system the total number of neutrinos is con-
served.)

(a) Find the energy eigenvalues and eigenvectors. Normalize the eigen-
vectors and show that they are orthogonal. (We usually label the
eigenstates | ν1〉 and | ν2〉.)

(b) Write the matrix S that transforms from the | νe〉, | νµ〉 basis to
the basis in which the Hamiltonian is diagonal. Transform both
pairs of basis vectors to the diagonal basis.

(c) Determine | ψ(t)〉
(d) Electron neutrinos are produced in nuclear reactions in the sun.

Muon neutrinos are not. If at t = 0 we have a state of pure
electron neutrinos,

| ψ(t)〉 = | νe〉
what is the probability that at time t it would have transformed
into a muon neutrino? What is the probability that it would be
an electron neutrino? What energy would we measure and with
what probability?

1



WKB approximation

2. Griffiths 8.1.

Use the WKB approximation to find the allowed energies (En) of an in-
ginite square well with a ”self”, of height V0 extending half-way across.

V (x) =


V0, if 0 < x < a/2,
0, if a/2 < x < a,
∞, otherwise

(1)

Express your answer in terms of V0 and E0
n ≡ (nπh̄)2/2ma2 (the nth

allowed energy for the infinite square well with no shelf). Assume
that E0

1 > V0, but do not assume that En � V0. (Never mind the
comparison with Example 6.1)

3. Griffiths 8.6.

Analyze the bouncing ball (gravitational potential) problem using the
WKB approximation.

(a) Find the allowed energies, En, in therms of m, g, and h.

(b) Compare the WKB approximation to the first four energies with
the ”exact” results that we found in class.

(c) About how large would the quantum number n have to be to give
the ball an average height of, say, 1 meter above the ground?

4. Griffiths 8.8. Consider a particle of mass m in the nth stationary
state of the harmonic oscillator (angular frequency ω).

(a) Find the turning point, x2 (upward sloping turning point).

(b) How far (d) could you go above the turning point before the error
in the linearized potential, (V (x2) ≈ E + V ′(x2)x ) reaches 1%?
That is, if

V (x2 + d)− Vlin(x2 + d)

V (x2)
= 0.01,

what is d?
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(c) The asymptotic form of Ai(z) is accurate to 1% as long as z ≤ 5.
For the d in part (b), determine the smallest n such that αd ≥ 5.
(For any n larger than this there exists an overlap region in which
the linearized potential is good to 1% and the large-z form of the
Airy function is good to 1%.

5. Griffiths 8.15.

Consider the case of the symmetrical double well such as the one pic-
tured in Figure 8.13. We are interested in bound states with E < V (0).

(a) Write down the WKB wave functions in regions (i) x < x2, (ii)
x1 < x < x2, and (iii) 0 < x < x1. Impose the appropriate
connection formulats at x1andx2 (this has already been done, in
Equation 8.46, for x2; you will have to work out x1 for yourself),
to show that

ψ(x) ≈



D√
|p(x)|

exp
[
− 1
h̄

∫ x
x2
|p(x′)|dx′

]
(i)

2D√
|p(x)|

sin
[

1
h̄

∫ x2
x p(x′)dx′ + π

4
,
]
, (ii)

D√
|p(x)|

[
2 cos θe

1
h̄

∫ x1
x
|p(x′)|dx′

+ sin θe−
1
h̄

∫ x1
x
|p(x′)|dx′

]
, (iii)

where

θ ≡ 1

h̄

∫ x2

x1

p(x)dx. (2)

(b) Because V (x) is symmetric, we need only consider even (+) and
odd (-) wave functions. In the former case ψ′(0) = 0, and in
the latter case ψ(0) = 0. Show that this leads to the following
quantization condition:

tan θ = ±2eφ, (3)

where

φ ≡ 1

h̄

∫ x1

−x1

|p(x′)|dx′. (4)

Equation 3 determines the (approximate) allowed energies (note
that E comes into x1 and x2, so θ and φ are both functions of E).
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(c) We are particularly interested in a high and/or broad central bar-
rier, in which case φ is large, and eφ is huge. Equation 3 then
tells us that θ must be very close to a half-integer multiple of π.
With this in mind, write θ = (n + 1/2)π + ε, where |ε| � 1, and
show that the quantization condition becomes

θ ≈
(
n+

1

2

)
π ∓ 1

2
e−φ. (5)

(d) Suppose each well is a parabola

V (x) =


1
2
mω2(x+ a)2, if x < 0,

1
2
mω2(x− a)2, if x > 0.

(6)

Sketch this potential, find θ (Equation 2), and show that

E±n ≈
(
n+

1

2

)
h̄ω ∓ h̄ω

2π
e−φ (7)

Comment : If the central barrier were impenetrable (φ → ∞),
we would simply have two detached harmonic oscillators, and the
energies, En = (n + 1

2
)h̄ω, would be doubly degenerate, since the

particle could be in the left well or in the the right one. When the
barrier becomes finite (putting the two wells into ”communica-
tion:) the degeneracy is lifted. The even states (ψ+

n ) have slightly
lower energy, and the odd ones (ψ−n ) have slightly higher energy.

(e) Suppose the particle starts out in the right well - or, more precisely
in a state of the form

Ψ(x, 0) =
1√
2

(ψ+
n + ψ−n ),

which, assuming the phases are picked in the ”natural” way, will
be concentrated in the right well. Show that it oscillates back and
forth between the wells, with a period

τ =
2π2

ω
eφ. (8)

(f) Calculate φ, for the specific potential in part (d), and show that
for V (0)� E, φ ∼ mωa2/h̄.
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