Physics 443, Solutions to PS 3^{1}

1. Griffiths 3.23. It is easiest to first write the hamiltonian matrix. By inspection

$$
H=\epsilon\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

We find the eigenvalues λ by setting

$$
\operatorname{det}(H-\lambda I)=0
$$

Then $\lambda_{ \pm}= \pm \epsilon \sqrt{2}$. Let

$$
\vec{v}=\binom{a}{b}
$$

be an eigenvector. Then

$$
\begin{aligned}
H \vec{v}_{ \pm} & =\lambda_{ \pm} \vec{v}_{ \pm} \\
& =\epsilon\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{a}{b} \\
& =\lambda_{ \pm}\binom{a}{b} \\
& \Rightarrow \vec{v}_{ \pm}=\binom{1}{-1 \pm \sqrt{2}}
\end{aligned}
$$

Or in the \rangle representation

$$
\left|v_{ \pm}\right\rangle=|1\rangle+(-1 \pm \sqrt{2})|2\rangle
$$

2. Griffiths 3.24.

Since the set of orthonormal vectors $\left|e_{n}\right\rangle$ is complete, any state can be written as a linear combination of those vectors. In paricular, the state $|\alpha\rangle$ can be written as

$$
\begin{equation*}
|\alpha\rangle=\sum_{m} a_{m}\left|e_{m}\right\rangle \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\langle e_{n} \mid \alpha\right\rangle=\sum_{m} a_{m}\left\langle e_{n} \mid e_{m}\right\rangle=\sum_{m} a_{m} \delta_{m n}=a_{n} \tag{2}
\end{equation*}
$$

where we have used the orhthonormality of the eigenvectors. Finally substitute $\left\langle e_{n} \mid \alpha\right\rangle=a_{n}$ from Equation 3 into Equation 2.

$$
\begin{equation*}
|\alpha\rangle=\sum_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle \tag{3}
\end{equation*}
$$

[^0]So

$$
\begin{aligned}
\hat{Q}|\alpha\rangle & =\sum_{n} \hat{Q}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle \\
& =\sum_{n} q_{n}\left|e_{n}\right\rangle\left\langle e_{n} \mid \alpha\right\rangle \\
& =\left(\sum_{n} q_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|\right)|\alpha\rangle
\end{aligned}
$$

3. Griffiths 3.3. We are given that $\langle h| \hat{Q}|h\rangle=\langle\hat{Q} h \mid h\rangle$ for all states $|h\rangle$. If we define $|h\rangle=|f\rangle+|g\rangle$ then

$$
\begin{array}{r}
\langle f| \hat{Q}|f\rangle+\langle f| \hat{Q}|g\rangle+\langle g| \hat{Q}|f\rangle+\langle g| \hat{Q}|g\rangle \\
=\langle\hat{Q} f \mid f\rangle+\langle\hat{Q} f \mid g\rangle+\langle\hat{Q} g \mid f\rangle+\langle\hat{Q} g \mid g\rangle \tag{4}
\end{array}
$$

By hypothesis $\langle f| \hat{Q}|f\rangle=\langle\hat{Q} f \mid f\rangle$ and similarly for $|g\rangle$ so Equation 3 reduces to

$$
\begin{equation*}
\langle f| \hat{Q}|g\rangle+\langle g| \hat{Q}|f\rangle=\langle\hat{Q} f \mid g\rangle+\langle\hat{Q} g \mid f\rangle \tag{5}
\end{equation*}
$$

Alternatively, if we let $|h\rangle=|f\rangle+i|g\rangle$ we find that

$$
\begin{equation*}
i\langle f| \hat{Q}|g\rangle-i\langle g| \hat{Q}|f\rangle=i\langle\hat{Q} f \mid g\rangle-i\langle\hat{Q} g \mid f\rangle \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\langle f| \hat{Q}|g\rangle-\langle g| \hat{Q}|f\rangle=\langle\hat{Q} f \mid g\rangle-\langle\hat{Q} g \mid f\rangle \tag{7}
\end{equation*}
$$

The sum of equations (4) and (6) gives $\langle f| \hat{Q}|g\rangle=\langle\hat{Q} g \mid f\rangle$ and the difference gives $\langle g| \hat{Q}|f\rangle=\langle\hat{Q} g \mid f\rangle$
4. Griffiths 3.31. We have:

$$
\begin{align*}
\frac{d}{d t}\langle x p\rangle & =\frac{i}{\hbar}\left\langle\left[\frac{p^{2}}{2 m}+V(x), x p\right]\right\rangle \\
& =\frac{i}{\hbar}\left\langle\left[\frac{p^{2}}{2 m}, x p\right]+[V(x), x p]+\right\rangle \\
& =\frac{i}{\hbar}\left\langle\left[\frac{p p}{2 m}, x\right] p+x[V(x), p]+\right\rangle \\
& =\frac{i}{\hbar}\left\langle-2 i \hbar \frac{p^{2}}{2 m}+x\left(\hbar i \frac{\partial V}{\partial x}\right)\right\rangle \\
& =2\langle T\rangle-\left\langle x \frac{\partial V}{\partial x}\right\rangle \tag{8}
\end{align*}
$$

For a stationary state, we see that $2\langle T\rangle=\left\langle x \partial_{x} V\right\rangle$, which is the Virial Theorem. For the Harmonic Oscillator $V(x)=m \omega^{2} x^{2} / 2$, using the Virial Theorem, we see that $\langle T\rangle=\left\langle m \omega^{2} x^{2} / 2\right\rangle=\langle V(x)\rangle$.
5. Griffiths 3.33. We begin by using that

$$
\begin{aligned}
a_{ \pm} & =\frac{1}{\sqrt{2 m}}(P \pm i m \omega x), \\
P & =\sqrt{\frac{m}{2}}\left(a_{+}+a_{-}\right), \\
x & =\frac{-i}{\sqrt{2 m} \omega}\left(a_{+}-a_{-}\right), \\
a_{+}|n-1\rangle & =i \sqrt{n \hbar \omega}|n\rangle, \\
a_{-}|n\rangle & =-i \sqrt{n \hbar \omega}|n-1\rangle, \\
\langle n| x\left|n^{\prime}\right\rangle & =\frac{-i}{\sqrt{2 m \omega}}\left(\langle n| a_{+}-a_{-}\left|n^{\prime}\right\rangle\right), \\
& =\frac{-i}{\sqrt{2 m \omega}}\left(\delta_{n^{\prime}, n-1} i \sqrt{n \hbar \omega}-\delta_{n, n^{\prime}-1}\left(-i \sqrt{n^{\prime} \hbar \omega}\right)\right), \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left(\delta_{n^{\prime}, n-1} \sqrt{n}+\delta_{n, n^{\prime}-1} \sqrt{n^{\prime}}\right), \\
\langle n| p\left|n^{\prime}\right\rangle & =\sqrt{\frac{m}{2}}\left(\langle n| a_{+}+a_{-}\left|n^{\prime}\right\rangle\right), \\
& =i \sqrt{\frac{\hbar m \omega}{2}}\left(\delta_{n^{\prime}, n-1} \sqrt{n}-\delta_{n, n^{\prime}-1} \sqrt{n^{\prime}}\right) .
\end{aligned}
$$

We can then write these out in matrix notation as

$$
\begin{align*}
x & =\sqrt{\frac{\hbar}{2 m \omega}}\left(\begin{array}{ccccc}
0 & \sqrt{2} & 0 & 0 & \cdots \\
\sqrt{2} & 0 & \sqrt{3} & 0 & \cdots \\
0 & \sqrt{3} & 0 & \sqrt{4} & \cdots \\
0 & 0 & \sqrt{4} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right), \\
p & =i \sqrt{\frac{\hbar m \omega}{2}}\left(\begin{array}{ccccc}
0 & -\sqrt{2} & 0 & 0 & \cdots \\
\sqrt{2} & 0 & -\sqrt{3} & 0 & \cdots \\
0 & \sqrt{3} & 0 & -\sqrt{4} & \cdots \\
0 & 0 & \sqrt{4} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right) . \tag{9}
\end{align*}
$$

And you can verify that $p^{2} / 2 m+\left(m \omega^{2} / 2\right) x^{2}$ is diagonal with the matrix element given by $\hbar \omega(n+1 / 2)$.
6. Griffiths 3.38 .
(a) By inspection the eignenvalues of \mathbf{H} are $E_{1}=\hbar \omega, E_{2}=E_{3}=2 \hbar \omega$ and the eigenvectors are

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

To find the eigenvalues, γ, we set

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}-\gamma \mathbf{I}) & =\left|\begin{array}{ccc}
\gamma & \lambda & 0 \\
\lambda & \gamma & 0 \\
0 & 0 & 2 \lambda-\gamma
\end{array}\right|=0 \\
& \Rightarrow \gamma^{2}(2 \lambda-\gamma)-\lambda^{2}(2 \lambda-\gamma)=0
\end{aligned}
$$

Then the normalized eigenvalues of \mathbf{A} are $A_{1}=\lambda, A_{2}=-\lambda, A_{3}=$ 2λ and the eigenvectors are

$$
a_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad a_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad a_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The same strategy gives the eigenvalues \mathbf{B} are $B_{1}=2 \mu, B_{2}=$ $\mu, B_{3}=-\mu$ and the eigenvectors are

$$
b_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad b_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad b_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

(b)

$$
\begin{aligned}
\langle H\rangle & =\langle S| \mathbf{H}|S\rangle \\
& =\hbar \omega\left(\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\hbar \omega\left(\left|c_{1}\right|^{2}+2\left(\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}\right)\right) \\
& =\hbar \omega\left(2-\left|c_{1}\right|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle A\rangle & =\lambda\left(\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\lambda\left(c_{1}^{*} c_{2}+c_{2}^{*} c_{1}+2\left|c_{3}\right|^{2}\right) \\
\langle B\rangle & =\mu\left(\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =\mu\left(2\left|c_{1}\right|^{2}+c_{2}^{*} c_{3}+c_{3}^{*} c_{2}\right)
\end{aligned}
$$

(c)

$$
|S(t)\rangle=c_{1} e^{-i \omega t}+c_{2} e^{-2 i \omega t}+c_{3} e^{-2 i \omega t}
$$

The probability of measuring energies E_{1}, E_{2} and E_{3} is $\left|c_{1}\right|^{2},\left|c_{2}\right|^{2}$, and $\left|c_{3}\right|^{2}$ respectively independent of time. The probability of measuring A_{i} is $\left|\left\langle a_{i} \mid S(t)\right\rangle\right|^{2}$

$$
\begin{aligned}
& \left|\left\langle a_{1} \mid S(t)\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)\right|^{2}=\frac{1}{2}\left|c_{1} e^{-i \omega t}+c_{2} e^{-2 i \omega t}\right|^{2} \\
& \left|\left\langle a_{2} \mid S(t)\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)\right|^{2}=\frac{1}{2}\left|c_{1} e^{-i \omega t}-c_{2} e^{-2 i \omega t}\right|^{2} \\
& \left.\left|\left\langle a_{3} \mid S(t)\right\rangle\right|^{2}=\left\lvert\, \begin{array}{lll}
0 & 0 & 1
\end{array}\right.\right)\left.\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)\right|^{2}=\left|c_{3}\right|^{2}
\end{aligned}
$$

The probability of measuring B_{i} is $\left|\left\langle b_{i} \mid S(t)\right\rangle\right|^{2}$

$$
\begin{aligned}
& \left|\left\langle b_{1} \mid S(t)\right\rangle\right|^{2}=\left|\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)\right|^{2}=\frac{1}{2}\left|c_{1}\right|^{2} \\
& \left|\left\langle b_{2} \mid S(t)\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)\right|^{2}=\frac{1}{2}\left|c_{2} e^{-2 i \omega t}+c_{3} e^{-2 i \omega t}\right|^{2}=\frac{1}{2}\left|c_{2}+c_{3}\right|^{2} \\
& \left|\left\langle b_{3} \mid S(t)\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)\right|^{2}=\frac{1}{2}\left|c_{2} e^{-2 i \omega t}-c_{3} e^{-2 i \omega t}\right|^{2}=\frac{1}{2}\left|c_{2}-c_{3}\right|^{2}
\end{aligned}
$$

7. Charmonium. The Schrodinger equation for charmonium is

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+\alpha r \psi=E \psi
$$

Define $u(r)=r \psi$ and for spherically syymetric wave functions, the Schrodinger equation reduces to

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\alpha r u=E u
$$

Let $r=l_{0} z$ and $E=\epsilon E_{0}$ where z and ϵ are dimensionless and the Schrodinger equation becomes

$$
-\frac{\hbar^{2}}{2 m l_{0}^{2}} \frac{d^{2} u}{d z^{2}}+\alpha l_{0} z u=\epsilon E_{0} u
$$

or

$$
-\frac{d^{2} u}{d z^{2}}+\alpha \frac{2 m l_{0}^{2}}{\hbar^{2}} l_{0} z u=\epsilon \frac{2 m l_{0}^{2} E_{0}}{\hbar^{2}} u
$$

Set $l_{0}=\left(\frac{\hbar^{2}}{2 m \alpha}\right)^{1 / 3}$ and $E_{0}=\frac{\hbar^{2}}{2 m l_{0}^{2}}=\left(\frac{\hbar^{2} \alpha^{2}}{2 m}\right)^{1 / 3}$ and our differential equation looks like

$$
-\frac{d^{2} u}{d z^{2}}+z u=\epsilon u
$$

Now let $y=z-\epsilon$ and we have Airy's equation

$$
-\frac{d^{2} u}{d y^{2}}+y u=0
$$

Since $u(r)=\psi(r) / r$, then it must be that $u(0)=0$ so that $\psi(0)$ is finite. Therefore $u(z-\epsilon)=u(-\epsilon)=0$. The energy eigenvalues, ϵ are the zeros of the Airy function a_{i}. The first two zeros are 2.3 and 4.1 so $E_{1}=2.3 E_{0}$ and $E_{2}=4.1 E_{0}$.

We have that

$$
\begin{align*}
& m_{1 s} c^{2}=2 m_{c} c^{2}+E_{1} \\
& m_{2 s} c^{2}=2 m_{c} c^{2}+E_{2} \tag{10}
\end{align*}
$$

where m_{c} is the charmed quark mass and E_{1} and E_{2} are the binding energies. The difference of the two equations yields $E_{0}=\left(m_{2 s}-\right.$
$\left.m_{1 s}\right) c^{2} / 1.8=0.325 \mathrm{GeV}$. We find $m_{c} c^{2}=1.176 \mathrm{GeV}$. Finally the reduced mass $m=m_{c} / 2$. Meanwhile,

$$
\begin{gathered}
E_{0}=\left(\frac{\hbar^{2} \alpha^{2}}{2 m}\right)^{1 / 3} \\
\Rightarrow \alpha=\frac{2 m E_{0}^{3}}{\hbar^{2}}=\frac{m_{c} c^{2} E_{0}^{3}}{\hbar^{2} c^{2}}=\frac{(1.176 G e V)(0.325 G e V)^{3}}{(.197 G e V-f m)^{2}}=1.02 \mathrm{GeV} / \mathrm{fm}
\end{gathered}
$$

And

$$
l_{0}=\left(\frac{\hbar^{2} c^{2}}{m_{c} c^{2} \alpha}\right)^{1 / 3}=\left(\frac{(0.197 G e V-f m)^{2}}{(1.176 G e V)(1.02 G e V / f m)}\right)^{1 / 3}=0.318 \mathrm{fm}
$$

8. Rotations. We define $x=i L_{y} \theta / \hbar$. Notice that

$$
\begin{aligned}
x & =\frac{\theta}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
x^{2} & =-\left(\frac{\theta}{2}\right)^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
x^{3} & =-\left(\frac{\theta}{2}\right)^{3}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \\
x^{2} & =\left(\frac{\theta}{2}\right)^{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

In particular

$$
\begin{aligned}
R(\theta)=e^{x} & =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(1-\frac{1}{2!}\left(\frac{\theta}{2}\right)^{2}+\ldots\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\left(\frac{\theta}{2}\right)-\frac{1}{3!}\left(\frac{\theta}{2}\right)^{3}+\ldots\right), \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos \left(\frac{\theta}{2}\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \sin \left(\frac{\theta}{2}\right), \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\theta}{2}\right) & \sin \left(\frac{\theta}{2}\right) \\
-\sin \left(\frac{\theta}{2}\right) & \cos \left(\frac{\theta}{2}\right)
\end{array}\right) .
\end{aligned}
$$

You can see that $L_{y}^{\dagger}=L_{y}$ and $R(\theta)^{T} R(\theta)=1$, making L_{y} Hermitian and $R(\theta)$ unitary.

[^0]: ${ }^{1}$ Courtesy Shaffique Adam

