
Physics 443, Solutions to PS 31

1. Griffiths 3.23. It is easiest to first write the hamiltonian matrix. By
inspection

H = ε
(

1 1
1 −1

)
We find the eigenvalues λ by setting

det(H − λI) = 0

Then λ± = ±ε
√

2. Let

~v =
(
a
b

)
be an eigenvector. Then

H~v± = λ±~v±

= ε
(

1 1
1 −1

)(
a
b

)
= λ±

(
a
b

)
⇒ ~v± =

(
1

−1±
√

2

)
Or in the | 〉 representation

| v±〉 = | 1〉+ (−1±
√

2)| 2〉

2. Griffiths 3.24.

Since the set of orthonormal vectors | en〉 is complete, any state can be
written as a linear combination of those vectors. In paricular, the state
| α〉 can be written as

| α〉 =
∑
m

am| em〉 (1)

Then
〈en | α〉 =

∑
m

am〈en | em〉 =
∑
m

amδmn = an (2)

where we have used the orhthonormality of the eigenvectors. Finally
substitute 〈en | α〉 = an from Equation 3 into Equation 2.

| α〉 =
∑
n

| en〉〈en | α〉 (3)
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So

Q̂| α〉 =
∑
n

Q̂| en〉〈en | α〉

=
∑
n

qn| en〉〈en | α〉

=

(∑
n

qn| en〉〈en |
)
| α〉

3. Griffiths 3.3. We are given that
〈
h | Q̂ | h

〉
=
〈
Q̂h | h

〉
for all states

| h〉. If we define | h〉 = | f〉+ | g〉 then〈
f | Q̂ | f

〉
+
〈
f | Q̂ | g

〉
+
〈
g | Q̂ | f

〉
+
〈
g | Q̂ | g

〉
=
〈
Q̂f | f

〉
+
〈
Q̂f | g

〉
+
〈
Q̂g | f

〉
+
〈
Q̂g | g

〉
(4)

By hypothesis
〈
f | Q̂ | f

〉
=
〈
Q̂f | f

〉
and similarly for | g〉 so Equation

3 reduces to〈
f | Q̂ | g

〉
+
〈
g | Q̂ | f

〉
=
〈
Q̂f | g

〉
+
〈
Q̂g | f

〉
(5)

Alternatively, if we let | h〉 = | f〉+ i| g〉 we find that

i
〈
f | Q̂ | g

〉
− i

〈
g | Q̂ | f

〉
= i

〈
Q̂f | g

〉
− i

〈
Q̂g | f

〉
(6)

or 〈
f | Q̂ | g

〉
−
〈
g | Q̂ | f

〉
=
〈
Q̂f | g

〉
−
〈
Q̂g | f

〉
(7)

The sum of equations (4) and (6) gives
〈
f | Q̂ | g

〉
=
〈
Q̂g | f

〉
and the

difference gives
〈
g | Q̂ | f

〉
=
〈
Q̂g | f

〉
4. Griffiths 3.31. We have:

d

dt
〈xp〉 =

i

h̄
〈[ p

2

2m
+ V (x), xp]〉,

=
i

h̄
〈[ p

2

2m
,xp] + [V (x), xp]+〉,

=
i

h̄
〈[ pp

2m
,x]p+ x[V (x), p]+〉,

=
i

h̄
〈−2ih̄

p2

2m
+ x(h̄i

∂V

∂x
)〉,

= 2〈T 〉 − 〈x∂V
∂x
〉. (8)
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For a stationary state, we see that 2〈T 〉 = 〈x∂xV 〉, which is the Virial
Theorem. For the Harmonic Oscillator V (x) = mω2x2/2, using the
Virial Theorem, we see that 〈T 〉 = 〈mω2x2/2〉 = 〈V (x)〉.

5. Griffiths 3.33. We begin by using that

a± =
1√
2m

(P ± imωx),

P =

√
m

2
(a+ + a−),

x =
−i√
2mω

(a+ − a−),

a+|n− 1〉 = i
√
nh̄ω|n〉,

a−|n〉 = −i
√
nh̄ω|n− 1〉,

〈n|x|n′〉 =
−i√
2mω

(〈n|a+ − a−|n′〉),

=
−i√
2mω

(δn′,n−1i
√
nh̄ω − δn,n′−1(−i

√
n′h̄ω)),

=

√
h̄

2mω
(δn′,n−1

√
n+ δn,n′−1

√
n′),

〈n|p|n′〉 =

√
m

2
(〈n|a+ + a−|n′〉),

= i

√
h̄mω

2
(δn′,n−1

√
n− δn,n′−1

√
n′).

We can then write these out in matrix notation as

x =

√
h̄

2mω



0
√

2 0 0 ...√
2 0

√
3 0 ...

0
√

3 0
√

4 ...

0 0
√

4 0 ...
...

...
...

...

 ,

p = i

√
h̄mω
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0 −
√

2 0 0 ...√
2 0 −

√
3 0 ...

0
√

3 0 −
√

4 ...

0 0
√

4 0 ...
...

...
...

...

 . (9)
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And you can verify that p2/2m+(mω2/2)x2 is diagonal with the matrix
element given by h̄ω(n+ 1/2).

6. Griffiths 3.38.

(a) By inspection the eignenvalues of H are E1 = h̄ω, E2 = E3 = 2h̄ω
and the eigenvectors are

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1


To find the eigenvalues,γ, we set

det(A− γI) =

∣∣∣∣∣∣∣
γ λ 0
λ γ 0
0 0 2λ− γ

∣∣∣∣∣∣∣ = 0

⇒ γ2(2λ− γ)− λ2(2λ− γ) = 0

Then the normalized eigenvalues of A are A1 = λ, A2 = −λ, A3 =
2λ and the eigenvectors are

a1 =
1√
2

 1
1
0

 , a2 =
1√
2

 1
−1
0

 , a3 =

 0
0
1


The same strategy gives the eigenvalues B are B1 = 2µ, B2 =
µ, B3 = −µ and the eigenvectors are

b3 =

 1
0
0

 , b2 =
1√
2

 0
1
1

 , b3 =
1√
2

 0
1
−1


(b)

〈H〉 = 〈S | H | S 〉

= h̄ω ( c1 c2 c3 )

 1 0 0
0 2 0
0 0 2


 c1

c2

c3


= h̄ω(|c1|2 + 2(|c2|2 + |c3|2))

= h̄ω(2− |c1|2)
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〈A〉 = λ ( c1 c2 c3 )

 0 1 0
1 0 0
0 0 2


 c1

c2

c3


= λ(c∗1c2 + c∗2c1 + 2|c3|2)

〈B〉 = µ ( c1 c2 c3 )

 2 0 0
0 0 1
0 1 0


 c1

c2

c3


= µ(2|c1|2 + c∗2c3 + c∗3c2)

(c)
| S(t)〉 = c1e

−iωt + c2e
−2iωt + c3e

−2iωt

The probability of measuring energies E1, E2 and E3 is |c1|2, |c2|2,
and |c3|2 respectively independent of time. The probability of
measuring Ai is |〈ai | S(t)〉|2

|〈a1 | S(t)〉|2 = | 1√
2

( 1 1 0 )

 c1

c2

c3

 |2 =
1

2
|c1e

−iωt + c2e
−2iωt|2

|〈a2 | S(t)〉|2 = | 1√
2

( 1 −1 0 )

 c1

c2

c3

 |2 =
1

2
|c1e

−iωt − c2e
−2iωt|2

|〈a3 | S(t)〉|2 = | ( 0 0 1 )

 c1

c2

c3

 |2 = |c3|2

The probability of measuring Bi is |〈bi | S(t)〉|2

|〈b1 | S(t)〉|2 = | ( 1 0 0 )

 c1

c2

c3

 |2 =
1

2
|c1|2

|〈b2 | S(t)〉|2 = | 1√
2

( 0 1 1 )

 c1

c2

c3

 |2 =
1

2
|c2e

−2iωt + c3e
−2iωt|2 =

1

2
|c2 + c3|2

|〈b3 | S(t)〉|2 = | 1√
2

( 0 1 −1 )

 c1

c2

c3

 |2 =
1

2
|c2e

−2iωt − c3e
−2iωt|2 =

1

2
|c2 − c3|2

5



7. Charmonium. The Schrodinger equation for charmonium is

− h̄2

2m
∇2ψ + αrψ = Eψ

Define u(r) = rψ and for spherically syymetric wave functions, the
Schrodinger equation reduces to

− h̄2

2m

d2u

dr2
+ αru = Eu

Let r = l0z and E = εE0 where z and ε are dimensionless and the
Schrodinger equation becomes

− h̄2

2ml20

d2u

dz2
+ αl0zu = εE0u

or

−d
2u

dz2
+ α

2ml20
h̄2 l0zu = ε

2ml20E0

h̄2 u

Set l0 =
(

h̄2

2mα

)1/3
and E0 = h̄2

2ml20
=
(
h̄2α2

2m

)1/3
and our differential

equation looks like

−d
2u

dz2
+ zu = εu

Now let y = z − ε and we have Airy’s equation

−d
2u

dy2
+ yu = 0

Since u(r) = ψ(r)/r,then it must be that u(0) = 0 so that ψ(0) is
finite. Therefore u(z − ε) = u(−ε) = 0. The energy eigenvalues, ε are
the zeros of the Airy function ai. The first two zeros are 2.3 and 4.1 so
E1 = 2.3E0 and E2 = 4.1E0.

We have that

m1sc
2 = 2mcc

2 + E1

m2sc
2 = 2mcc

2 + E2 (10)

where mc is the charmed quark mass and E1 and E2 are the bind-
ing energies. The difference of the two equations yields E0 = (m2s −
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m1s)c
2/1.8 = 0.325GeV . We find mcc

2 = 1.176GeV . Finally the re-
duced mass m = mc/2. Meanwhile,

E0 =

(
h̄2α2

2m

)1/3

⇒ α =
2mE3

0

h̄2 =
mcc

2E3
0

h̄2c2
=

(1.176GeV )(0.325GeV )3

(.197GeV − fm)2
= 1.02GeV/fm

And

l0 =

(
h̄2c2

mcc2α

)1/3

=

(
(0.197GeV − fm)2

(1.176GeV )(1.02GeV/fm)

)1/3

= 0.318fm.

8. Rotations. We define x = iLyθ/h̄. Notice that

x =
θ

2

(
0 1
−1 0

)
,

x2 = −
(
θ

2

)2 (
1 0
0 1

)
,

x3 = −
(
θ

2

)3 (
0 1
−1 0

)
,

x2 =

(
θ

2

)4 (
1 0
0 1

)
,

In particular

R(θ) = ex = 1 + x+
x2

2
+
x3

3!
+ ...,

=

(
1 0
0 1

)1− 1

2!

(
θ

2

)2

+ ...

+

(
0 1
−1 0

)(θ
2

)
− 1

3!

(
θ

2

)3

+ ...

 ,
=

(
1 0
0 1

)
cos(

θ

2
) +

(
0 1
−1 0

)
sin(

θ

2
),

=

(
cos( θ

2
) sin( θ

2
)

− sin( θ
2
) cos( θ

2
)

)
.

You can see that L†y = Ly and R(θ)TR(θ) = 1, making Ly Hermitian
and R(θ) unitary.
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