P443 HW #2 (problem 8 corrected 2/5) Due February 6, 2008

- 1. Griffiths, 2.12. Find $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, and $\langle T \rangle$, for the n^{th} stationary state of the harmonics oscillator, using the method of Example 2.5, (namely in terms of $\langle a_- \rangle$, $\langle a_+ \rangle$, $\langle a_- a_+ \rangle$, etc.)
- 2. Griffiths 2.14. A particle is in the ground state of the harmonic oscillator with classical frequency ω , when suddenly the spring constant quadrupoles, so $\omega' = 2\omega$, without initially changing the wave function (of course, Ψ will now *evolve* differently, because the Hamiltonian has changed). What is the probability that a measurement of the energy would still return the value $\hbar\omega/2$? What is the probability of getting $\hbar\omega$? [Answer: 0.943.]
- 3. Griffiths 2.26. What is the Fourier transform of $\delta(x)$? Using Plancherel's theorem, show that

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk$$

4. Griffiths 2.38. A particle of mass m is in the ground state of the infinite square well

$$V(x) = \begin{cases} 0, & \text{if } 0 \le x \le a, \\ \infty, & \text{otherwise.} \end{cases}$$
(1)

Suddenly the well expands to twice its original size-the right wall moving from a to 2a-leaving the wave function (momentarily) undisturbed. The energy of the particle is now measured.

- (a) What is the most probable result? What is the probability of getting that result?
- (b) What is the *next* most probable result, and what is its probability?
- (c) What is the *expectation value* of the energy? *Hint* : If you find yourself confronted with an infinite series, try another method.
- 5. Griffiths 3.23. The Hamiltonian for a certain two-level system is

$$\hat{H} = \epsilon(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|),$$

where $|1\rangle$, $|2\rangle$ is an orthonormal basis and ϵ is a number with the dimensions of energy. Find its eigenvalues and eigenvectors (as linear combinations of $|1\rangle$ and $|2\rangle$). What is the matrix **H** representing \hat{H} with respect to this basis? 6. Griffiths 3.24. Let \hat{Q} be an operator with a complete set of orthonormal eigenvectors:

$$\hat{Q}| e_n \rangle = q_n | e_n \rangle \ (n = 1, 2, 3, ...)$$

Show that \hat{Q} can be written in terms of its **spectral decomposition**:

$$\hat{Q} = \sum_{n} q_n | e_n \rangle \langle e_n |.$$

Hint: An operator is characterized by its action on all possible vectors, what you must show is that

$$\hat{Q}|\alpha\rangle = \left\{\sum_{n} q_{n}|e_{n}\rangle\langle e_{n}|\right\}|\alpha\rangle,$$

for any vector $|\alpha\rangle$.

7. Time dependence

Show that if \hat{Q} is an operator that does not involve time explicitly, and if ψ is any eigenfunction of \hat{H} , that the expectation value of \hat{Q} in the state of ψ is independent of time.

8. Collapse of the wave function

Consider a particle in the infinite square well potential from problem 4.

- (a) Show that the stationary states are $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$ and the energy spectrum is $E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$ where the width of the box is a.
- (b) Suppose we now make a measurement that locates a particle initially in state $\psi_n(x)$ so that it is now in the position $a/2 \epsilon/2 \leq x \leq a/2 + \epsilon/2$ and described by the state α . In the limit where $\epsilon \ll a$, the result of the measurement projects the system onto a superposition of eigenstates of energy. The probability of finding the particle in any eigenstate is $P(E_n) = |\langle \psi_n \mid \alpha \rangle|^2$. A reasonable estimate of the state $|\alpha\rangle$ is $\psi_\alpha(x) = \sqrt{\epsilon}\delta^{\epsilon}(x-a/2)$ where $\delta^{(\epsilon)}(x-a/2) = 1/\epsilon$ for $a/2 \epsilon/2 \leq x \leq a/2 + \epsilon/2$ and $\delta^{\epsilon}(x-\frac{a}{2}) = 0$ everywhere else. Calculate the probability $P(E_n)$.