P443 HW \#13

Due May 5, 2008

1. Griffiths 11.12. Calculate the total cross-section for scattering from a Yukawa potential, in the Born Approximation. Express your answer as a function of E.
2. Scattering from a square well. Evaluate the Born approximation to scattering of particles by the spherical square-well potential.
V(r)

Figure 1: Square well potential

Show that

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{2 m V_{0} a^{3}}{\hbar^{2}}\right)^{2}\left(\frac{\sin K a-K a \cos K a}{K^{3} a^{3}}\right)^{2}
$$

and that the low energy limit of this is

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{2 m V_{0} a^{3}}{3 \hbar^{2}}\right)^{2}\left(1-\frac{1}{5} K^{2} a^{2}+\ldots\right)
$$

where

$$
K=2 k \sin \frac{\theta}{2}
$$

Evaluate the total cross section in the limits of low and high energies; the answers are

$$
\sigma=\pi\left(\frac{4 m}{3 \hbar^{2}}\right)^{2}\left(V_{0} a^{3}\right)^{2}\left(1-\frac{2}{5} k^{2} a^{2}+\ldots\right) \quad \text { low energy }
$$

and

$$
\sigma=2 \pi\left(\frac{m}{\hbar^{2}}\right)^{2}\left(\frac{V_{0} a^{3}}{k a}\right)^{2} \text { high energy }
$$

By the way:

$$
\int \frac{(\sin x-x \cos x)^{2}}{x^{5}} d x=-\frac{1}{4}\left[\frac{(\sin x-x \cos x)^{2}}{x^{4}}+\frac{\sin ^{2} x}{x^{2}}\right]
$$

3. Dirac Equation

The Dirac equation is

$$
i \hbar \frac{\partial \psi}{\partial t}=\left[c \alpha \cdot \mathbf{p}+\beta m c^{2}\right] \psi
$$

where

$$
\alpha=\left(\begin{array}{cc}
0 & \sigma \\
\sigma & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

and

$$
\psi(\mathbf{r}, t)=\binom{\psi_{1}(\mathbf{r}, t)}{\psi_{2}(\mathbf{r}, t)}
$$

and ψ_{1} and ψ_{2} are each two component spinors. If we assume a time dependence $\psi(\mathbf{r}, t)=\psi(\mathbf{r}) e^{-i E t / \hbar}$, then the Dirac equation becomes

$$
\begin{equation*}
E \psi=\left[c \alpha \cdot \mathbf{p}+\beta m c^{2}\right] \psi \tag{1}
\end{equation*}
$$

In order to include a magnetic field we replace $\mathbf{p} \rightarrow \mathbf{p}-q \mathbf{A}$.
(a) Show that in the nonrelativistic limit

$$
\begin{equation*}
E_{S} \psi_{1}=\frac{[\sigma \cdot(\mathbf{p}-q \mathbf{A})][\sigma \cdot(\mathbf{p}-q \mathbf{A})]}{2 m} \psi_{1} \tag{2}
\end{equation*}
$$

where $E_{S}=E-m c^{2}$.
(b) Prove the identity

$$
\sigma \cdot \mathbf{A} \sigma \cdot \mathbf{B}=\mathbf{A} \cdot \mathbf{B}+i \sigma \cdot \mathbf{A} \times \mathbf{B}
$$

for any vectors \mathbf{A} and \mathbf{B}.
(c) Show that

$$
(\mathbf{p}-q \mathbf{A}) \times(\mathbf{p}-q \mathbf{A})=i q \hbar \mathbf{B}
$$

(d) And that Equation 2 becomes

$$
\left[\frac{(\mathbf{p}-q \mathbf{A})^{2}}{2 m}-\mu \cdot \mathbf{B}\right] \psi_{1}=E_{S} \psi_{1}
$$

where $\mu=\frac{q}{m} \mathbf{s}$ and $\mathbf{s}=\frac{\hbar}{2} \sigma$.

