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1.Griffiths 9.1
Hydrogen atom is placed in a time dependent electric field E = E(t)k̂. The
perturbation is given by H = eE(t)z.

ψ100 =

√
1

πa3
exp

(−r
a

)
,

ψ200 =

√
1

2πa

1

2a

(
1− r

2a

)
exp

(−r
2a

)
,

ψ211 = −
√

1

πa

1

8a2
r exp

(−r
2a

)
sin θeiφ,

ψ210 =

√
1

2πa

1

4a2
r exp

(−r
2a

)
cos θ,

ψ21−1 =

√
1

πa

1

8a2
r exp

(−r
2a

)
sin θe−iφ.

By inspection or calculation, you will find that all the matrix elements are
zero except

〈100|H|210〉 = −
(

28

√
235

)
eEa.

2. Griffiths 9.11
We shall find the decay rates from the A coefficients which are

A =
ω3

3πε0h̄c3
|P|2.

Refer to the previous problem for explicit representation of the hydrogenic
wavefunctions. Using that x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, you
can convince yourself that all the matrix elements between ψ100 and ψ200 are
zero. Therefore the state ψ200 has an infinite lifetime. For the state ψ210 we
have that the x and y matrix elements are zero (think selection rules!) while
(see previous problem)

〈100|z|210〉 =
28a√
235

,

from which we can calculate the A coefficient as

A =
ω3

3πε0h̄c3
215

310
(qa)2.
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We now consider the case of ψ211 and ψ21−1, where the z matrix element
is zero, and up to a phase, the x and y components are equal. We have that
|P|2 = 2(qa)22143−10. Notice that this is the same as what we calculated for
the ψ210 state. Using that h̄ω = E2 −E1 = 0.75E1, we have that τ = 1/A =
1.6 x 10−9 sec.

3.Griffiths 9.14
The allowed decay routes are

|300〉 −→ |210〉 −→ |100〉
|300〉 −→ |211〉 −→ |100〉

|300〉 −→ |21− 1〉 −→ |100〉

Recall the selection rules that ∆m = ±1, 0 and ∆l = ±1. Also note that
on pg. 360 Griffiths derives the m-selection rules. We have if ∆m = ±1
then the z matrix element is zero, while the x and y terms are equal up
to a phase. While if ∆m = 0 then the x and y matrix elements are zero.
Using these rules, notice that |〈210|r|300〉|2 = |〈210|z|300〉|2, and |〈21 ±
1|r|300〉|2 = 2|〈21± 1|x|300〉|2. Comparing the integrals, you can notice that
the ratio between 〈210|z|300〉 and 〈21 ± 1|x|300〉 is

√
2. We therefore have

that |〈210|r|300〉|2 = |〈21 ± 1|r|300〉|2. This means that all three transition
rates are equal, and that each route has an equal probability of 1/3. To
calculate the lifetime, we add the A coefficients to get that

A = 3

(
ω3e2|〈r〉|2

3πε0h̄c3

)

|〈r〉|2 =
21537

512
a2

h̄ω = E3 − E2 = − 5

36
E1.

τ =
1

A
= 1.58 x 10−7 sec.

4. Griffiths 9.20

(a) Manipulations with the Pauli matrices give that

H = −~µ · ~B = −γh̄
2

(
B0 Brfe

iωt

Brfe
−iωt −B0

)
= − h̄

2

(
ω0 Ωeiωt

Ωe−iωt −ω0

)
.
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(b) Using the time dependent Schrodinger equation for a spinor χ(t) =
(a(t), b(t)), we can write:

− h̄
2

(
ω0 Ωeiωt

Ωe−iωt −ω0

)(
a
b

)
= ih̄

∂

∂t

(
a
b

)
(
ȧ(t)

ḃ(t)

)
=
i

2

(
a(t)ω0 + b(t)Ωeiωt

a(t)Ωe−iωt − b(t)ω0

)
.

(c) Solving these coupled differential equations is done by first differenti-
ating the ḃ(t) equation,

b̈ =
i

2

[
(ȧ− iωa)Ωe−iωt − ḃω0

]
then substituting in for ȧ(t). We have

b̈ =
i

2

[
(
i

2
(aω0 + bΩeiωt)− iωa)Ωe−iωt − ḃω0

]
and

b̈ =
i

2

[
(iaΩe−iωt(

ω0

2
− ω) + i

b

2
Ω2 − ḃω0

]
Then substitute the expression for a(t) from the original equation

a(t)Ωe−iωt = −2iḃ(t) + b(t)ω0.

and we get

b̈ =
i

2

[
(i
(
(−2iḃ+ bω0)e

iωt/Ω
)

Ωe−iωt(
ω0

2
− ω) + i

b

2
Ω2 − ḃω0

]

b̈ =
i

2

[
(i
(
−2iḃ+ bω0

)
(
ω0

2
− ω) + i

b

2
Ω2 − ḃω0

]

b̈ =
i

2

[
(−2ḃω + i

b

2

(
ω2

0 − 2ω0ω + Ω2
)]

b̈ = −iḃω − b

4

(
ω2

0 − 2ω0ω + Ω2
)

b̈ = −iḃω − b

4

(
ω′

2 − ω2
)
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Define γ = iω, and α = b
4
(ω′2 − ω2). Now our dcoupled second order

differential equation looks like the equation of motion for a damped
harmonic oscillator.

b̈ = −γḃ− αb

The general solution has the form

b = Aeiθt

Substitution into the differential equation gives

−θ2 = −iθγ − α

and

θ =
1

2

(
iγ ±

√
−γ2 + 4α

)
=

1

2

(
−ω ±

√
ω2 + (ω′2 − ω2)

)
= −ω

2
± ω′2

2

so

b =
[
Cei

ω′
2
t +De−i

ω′
2
t
]
e−i

ω
2
t

or even better

b = [A cos(ω′t/2) +B sin(ω′t/2)] e−i
ω
2
t

The boundary conditions give us

b(0) = A = b0

and

ḃ(0) = (−iω/2)A+ (ω′/2)B =
i

2
(Ωa0 − ω0b0)

→ ωb0 + iω′B = (ω0b0 − Ωa0)

→ B =
i

ω′
[(ω − ω0)b0 + Ωa0]

Then

b =
[
b0 cos(ω′t/2) +

i

ω′
[(ω − ω0)b0 + Ωa0] sin(ω′t/2)

]
e−i

ω
2
t
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Figure 1: Transition probability as a function of driving frequency
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(d) If a0 = 1 and b0 = 0 then

P (t) = |b(t)|2 = |Ω
ω′
|2 sin2(ω′t/2) =

ω2

(ω − ω0)2 + Ω2
sin2(ω′/2)t

(e) The full width at half maximum ∆ω = 2Ω.

(f)

ω0 = γB0 =
ge

2mp

B0 =
(5.59)(1.6× 10−19)C)

2(1.67× 10−27kg)
(1T ) = 2.68× 108Hz

Ω = γBrf =
Brf

B0

ω0 = 10−6ω0 = 2.68× 102Hz

5. Griffiths 9.21

(a) The interaction hamiltonian

H ′ = −qE(r, t) · r
= −qE0(cosωt+ (k · r) sinωt) · r
= −qε̂E0(cosωt+ (k · r) sinωt) · r

The first term on the right gives us the dipole approximation and the
corresponding spontaneous decay rate is

R =
ω3|q 〈ψf | ε̂ · r | ψi〉 |2

πε0h̄c

The second term on the right gives the magnetic dipole or electric
quadrupole and the decay rate

R =
ω3|q 〈ψf | (ε̂ · r)(k · r) | ψi〉 |2

πε0h̄c

=
ω3|q|k|

〈
ψf | (ε̂ · r)(k̂ · r) | ψi

〉
|2

πε0h̄c

=
ω5|q

〈
ψf | (ε̂ · r)(k̂ · r) | ψi

〉
|2

πε0h̄c3

where we use |k| = ω/c
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(b) For the 1-dimensional oscillator, we can choose r to be in the z-direction.
The photon that is emitted can go in any direction k and with any po-
larization ε̂. Suppose that k is in the x-y plane at an angle θ with
respect to r. k̂ · r = r cos θ. The polarization is perpendicular to k. If
the polarization is in the x-y plane then ε̂ · r = r sin θ. If it is at an
angle φ with respect to the x-y plane then its projection into the plane
is cosφ. So in general ε̂ · r = r sin θ cosφ and putting it all together

(ε̂ · r)(k̂ · r) = r2 cos θ sin θ cosφ

and

R =
q2ω5

πεh̄c5
|
〈
f | r2 cos θ sin θ cosφ | i

〉
|2

=
q2ω5

πεh̄c5
|
〈
f | r2 | i

〉
|2(cos θ sin θ cosφ)2

The calculation of the expectation value does not depend on the angles
since it is a 1-dimensional oscillator. And since it is 1-dimensional we
might as let r = x. Then

R =
q2ω5

πεh̄c5
|
〈
f | x2 | i

〉
|2(cos θ sin θ cosφ)2

〈
f | x2 | i

〉
=

√ h̄

2mω0

2 〈
f | (a+ + a−)2 | i

〉

=

(
h̄

2mω0

)〈
f | (a2

+ − a+a− − a−a+ + a2
−)2 | i

〉
ω0 is the natural frequency of the oscillator. Since the final state has
less energy then the initial state, the only non-zero contribution comes

from a2
−. If the initial state is | n〉, then a2

−| n〉 =
√
n(n− 1)| n− 2〉

and

R =
q2ω5

πεh̄c5
|
(

h̄

2mω0

)〈
n− 2 | a2

− | n
〉
|2(cos θ sin θ cosφ)2

=
q2ω5

πεh̄c5
|
(

h̄

2mω0

)√
n(n− 1)|2(cos θ sin θ cosφ)2

=
q2ω3h̄

πεm2c5
n(n− 1)(cos θ sin θ cosφ)2
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where we use the fact that ω0 = ω/2. Finally, average over all angles
for photon direction and polarization.

1

4π

∫ ∫
(cos θ sin θ cosφ)2 sin θdθdφ =

1

15

so

R =
q2ω3h̄n(n− 1)

15πεm2c5

(c) To compute the rate for 2S → 1S in hydrogen〈
1S | r2 cos θ sin θ cosφ | 2S

〉
=
〈
R(r)1S | r2 | R(r)2S

〉 ∫ ∫
cos θ sin θ cosφ sin θdθdφ

The angular integral is zero. Note that the 1-dimensional harmonic
oscillator has a preferred direction in space. The 1S and 2S states in
hydrogen are spherically symmetric.
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