
P443 HW #11
Due April 21, 2008

1. Griffiths 9.1. A hydrogen atom is placed in a (time-dependent) elec-
tric field E = E(t)k̂. Calculate all four matrix elements H ′ij of the
perturbation H ′ = eEz between the ground state (n = 1) and the
(quadruply degenerate) first excited states (n = 2). Also show that
H ′ii = 0 for all five states. Note : There is only one integral to be done
here, if you exploit oddness with respect to z; only one of the n = 2
states is ”accessible” from the ground state by a perturbation of this
form, and therefore the system functions as a two-state configuration-
assuming transitions to higher excited states can be ignored.

2. Griffiths 9.11. Calculate the lifetime in (in seconds) for each of the
four n = 2 states of hydrogen. Hint : you ill need to evaluate matrix
elements of the form 〈ψ100 | x | ψ200〉, 〈ψ100 | y | ψ211〉, and so on. Re-
member that x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ. Most
of these integrals are zero, so scan them before you start calculating.
Answer : 2.6× 10−9 seconds for all except ψ200, which is infinite.

3. Griffiths 9.14. An electron in the n = 3, l = 0,m = 0 state of
hydrogen decays by a sequence of (electric dipole) transitions to the
ground state.

(a) What decay routes are open to it? Specify them in the following
way:

| 300〉 → | nlm〉 → | n′l′m′〉 → ...→ | 100〉

(b) If you had a bottle full of atoms in this state, what fraction of
them would decay via each route?

(c) What is the lifetime of this state? Hint : once it’s made the first
transition, it’s no longer in the state | 300〉, so only the first step in
each sequence is relevant in computing the lifetime. When there
is more than one decay route open, the transition rates add.

4. Griffiths 9.20. A spin-1/2 particle with gyromagnetic ratio γ, at
rest in a static magnetic field B0k̂, precesses at the Larmor frequency
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ω0 = γB0. Now we turn on a small transverse radiofrequency (rf) field,
Brf [cos(ωt)̂i− sin(ωt)ĵ], so that the total field is

B(t) = Brf cos(ωt)̂i−Brf sin(ωt)ĵ +B0k̂.

(a) Construct the 2× 2 Hamiltonian matrix for this system.

(b) If χ(t) =
(
a(t)
b(t)

)
is the spin state at time t, show that

ȧ =
i

2

(
Ωeiωtb+ ω0a

)
; ḃ =

i

2

(
Ωe−iωta− ω0b

)
,

where Ω = γBrf is related to the strength of the rf field.

(c) Check that the general solution for a(t) and b(t), in terms of their
initial values a0 and b0, is

a(t) =
{
a0 cos(ω′t/2) +

i

ω′
[a0(ω0 − ω) + b0Ω] sin(ω′t/2)

}
eiωt/2

b(t) =
{
b0 cos(ω′t/2) +

i

ω′
[b0(ω − ω0) + a0Ω] sin(ω′t/2)

}
e−iωt/2

where
ω′ ≡

√
ω − ω0)2 + Ω2.

(d) If the particle starts out with spin up (i.e., a0 = 1, b0 = 0), find
the probability of a transition to spin down, as a function of time.
Answer : P (t) = {Ω2/[(ω − ω0)

2 + Ω2]} sin2(ω′t/2).

(e) Sketch the resonance curve,

P (ω) =
Ω2

(ω − ω0)2 + Ω2
,

as a function of the driving frequency ω (for fixed ω0 and Ω). Note
that the maximum occurs at ω = ω0. Find the ”full width at half
maximum,” ∆ω.

(f) Since ω0 = γ, we can use the experimentally observed resonance
to determine the magnetic dipole moment of the particle. In a
nuclear magnetic resonance (nmr) experiment the g-factor of
the proton is to be measured, using a static field of 10,000 gauss
and an rf field of amplitude 0.01 gauss. What will the resonant
frequency be? (See Griffiths Section 6.5 for the magnetic moment
of the proton.) Find the width of the reonance curve. (Give your
answers in Hz).
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5. Griffiths 9.21. The true electric field of the light that is emitted or
absorbed in an atomic transition would be

E(r, t) = E0 cos(k · r− ωt).

If the atom is centered at the origin, then k · r � 1 over he relevant
volume (|k| = 2π/λ, so k · r ∼ r/λ � 1), and that’s why we could
afford to drop this term. Suppose we keep the first order correction:

E(r, t) = E0[cos(ωt) + (k · r) sin(ωt)].

The first term gives rise to the allowed (electric dipole) transitions
considered in the text; the second gives rise to the so-called forbid-
den (magnetic dipole and electric quadrupole) transitions (higher
powers of k · r lead to even more forbidden transitions, associated with
higher multipole moments).

(a) Obtain the spontaneous emission rate for forbidden transitions
(don’t bother to average over polarization and propagation direc-
tions, though this should really be done to coplete the calculation).
Answer :

Rb→a =
q2ω5

πε0h̄c5
|
〈
a | (n̂ · r)(k̂ · r) | b

〉
|2

(b) Show that for a one-dimensional oscillator, the forbidden transi-
tions go from level n to level n−2 and the transition rate (suitably
averaged over n̂ and k̂) is

R =
h̄q2ω3n(n− 1)

15πε0m2c5
.

Find the ratio of the ”forbidden” rate to the ”allowed” rate and
comment on the terminology. (Note : ω is the frequency of the
photon, not the oscillator.)

(c) Show that the 2S → 1S transition in hydrogen is not possible
even by a ”forbidden” transition. (As it turns out, this is true
for all the higher multipoles as well; the dominant decay is in fact
by a two-photon emission, and the lifetime is about a tenth of a
second.)
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