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1. Griffiths 7.13
Normalize so that
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The energy
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Then take the derivative with respect to b and set equal to zero to get b.
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Substitution back into the expression for the energy gives
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2. Griffiths 7.14 The goal is to use the variational principle for the Yukawa
potential. We use the ground state of Hydrogen
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We need to calculate 〈H〉 = 〈T 〉 + 〈V 〉, where 〈T 〉 = h̄2
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found after performing an integral. We can write the result as
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where E1 is the ground state energy of Hydrogen, and a0 is the Bohr radius.
In this form, it is clear that if µ → 0, and a → a0, we reproduce the results
for Hydrogen. Our Variational principle is to set ∂a〈H〉 = 0. A little bit of
algebra gives
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Substituting back, we find that
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3. Griffiths 7.15

(a) We have the Hamiltonian
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which can be easily solved to give
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To compare with other approximations, we can expand this exact result
to the case if h is small
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(b) We see that first order perturbation theory gives 0, because our per-
turbation has no diagonal terms. And we can immediately write down
the second order result
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(c) We use the trial wavefunction (cosφ, sinφ) to find that 〈H(φ)〉 =
Ea cos2(φ) +Eb sin2(φ) + h sin(2φ). We need that ∂φ〈H(φ)〉 = 0, which
gives us the condition that
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Plugging back in, we have

〈H〉 =
Ea
2

+
Eb
2

+
Ea − Eb

2
cos(2φ) + h sin(2φ),

=
Ea + Eb

2
− 1

2

 (Ea − Eb)2 + 4h2√
(Ea − Eb)2 + 4h2

 ,
=

Ea + Eb
2

− 1

2

√
(Ea − Eb)2 + 4h2.

(d) If we expand the exact result to second order in h, it agrees with the
result from second order perturbation theory. The variational method
yields the exact energy since the trial wave function had the form of
the exact solution.
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