P443 Prelim II

Name: April 11, 2008
1. Spin 1/2
Consider a spin 1/2 particle with magnetic moment ji = %5 in a mag-

netic field B = Byz. The hamiltonian
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where S = %6. For convenience we define the constant v = %

(a) Find the eigenvectors (wave functions) and the eigenvalues (energy
levels) of the hamiltonian.
[The hamiltonian is
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The eigenvectors are y, = ((1)) . X. = (?) with eigenvalues

Now suppose we add a magnetic field in the x-direction such that
B = Byz+ B,z and B, < By.

(b) Use perturbation theory to calculate the first order shift in the
energy of each of the eigenstates due to H' = —[i - B, 2.

[The perturbation is
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Use perturbation theory to compute the second order shift in the
energy of each of the eigenstates.

[The second order energy shift
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Use perturbation theory to compute the first order shift in the
wave function of each of the eigenstates

[The first order shift in the wave functions is
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Compute the exact energy levels of the system, expand to second
order and compare with the result from perturbation theory.

By B,
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levels are the eigenvalues of the hamiltonian, namely
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The exact and perturbative solutions are in agreement to second
order.]

[The exact hamiltonian is H = v < ) The exact energy

Compute the exact wave functions, expand to second order and
compare with the result from perturbation theory. (You do not
need to normalize.)

[The exact wave functions are the eigenvectors of the exact hamil-
tonian.
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Then the eigenvector is
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in agreement with the perturbation theory result in part (d). Sim-
ilarly, to get the other eigenvector

BO Bz a _ 5 2(@)
V(e Z5) (V) = /(S
CLBQ"‘BI _ 2 2(@)
—><an—30) = VBB
—\/Bg+B§_&

T B, B,
1 B? By
~ ——(By(l+ %)+ =2
B,
2By

Then the other eigenvector is
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2. Fermi Energy

(a) Calculate the Fermi energy for electrons in a two-dimensional in-
finite square well of area A. Give your answer in terms of the
density of electrons, (the number of electrons per unit area).

[In a 2-d well, the energy
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(b) Calculate the total energy of the electrons
[The total energy is
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(c) Compute the pressure on the walls, P = %. The pressure is
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3. Three Identical Particles
Imagine a situation in which there are three particles and only three
states a, b, and ¢ available to them. If the particles are distinguishable,
there are a total of 27 distinct configurations of this system.

What is the total number of allowed distinct configurations for this

system

(a) if the particles are bosons?
[If the particles are bosons there are 10 states:

$a(1)¢a(2)0a(3), p(1)(2)15(3), ¢e(1)e(2)1e(3),
$a(1)¢a(2)96(3), ¢a(1)8a(2)1e(3), ¥5(1)¢5(2)1a(3),
Do(D)Y6(2)0e(3), Ye(1)1e(2)10a(3), ve(1)1e(2)15(3),
ba(1)96(2)1c(3)]

(b) if the particles are fermions? If the particles are fermions, there is

only one state 1, (1)15(2)1(3).]
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e Time independent perturbation theory
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