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1. Spin 1/2

Consider a spin 1/2 particle with magnetic moment ~µ = e
m
~S in a mag-

netic field ~B = B0ẑ. The hamiltonian

H = −~µ · ~B =
e

m
~S · ~B

where ~S = h̄
2
~σ. For convenience we define the constant γ = eh̄

2m
.

(a) Find the eigenvectors (wave functions) and the eigenvalues (energy
levels) of the hamiltonian.

[The hamiltonian is

H =
e

m
SzB0 = γ

(
B0 0
0 −B0

)
.

The eigenvectors are χ+ =
(

1
0

)
, χ− =

(
0
1

)
with eigenvalues

±γB0.]

Now suppose we add a magnetic field in the x-direction such that
~B = B0ẑ +Bxx̂ and Bx � B0.

(b) Use perturbation theory to calculate the first order shift in the
energy of each of the eigenstates due to H ′ = −~µ ·Bxx̂.

[The perturbation is

H ′ =
e

m
SxBx = γ

(
0 Bx

Bx 0

)
The first order shifts are

E1
+ = 〈χ+ | H ′ | χ+〉 = ( 1 0 ) γ

(
0 Bx

Bx 0

)(
1
0

)
= 0

E1
− = 〈χ− | H ′ | χ−〉 = ( 0 1 ) γ

(
0 Bx

Bx 0

)(
0
1

)
= 0]
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(c) Use perturbation theory to compute the second order shift in the
energy of each of the eigenstates.

[The second order energy shift

E2
+ =

| 〈χ− | H ′ | χ+〉 |2

E0
+ − E0

−
=

1

2γB0

| ( 0 1 ) γ
(

0 Bx

Bx 0

)(
1
0

)
|2 =

γB2
x

2B0

E2
− =

| 〈χ+ | H ′ | χ−〉 |2

E− − E+

=
1

−2γB0

| ( 1 0 ) γ
(

0 Bx

Bx 0

)(
0
1

)
|2 = −γB

2
x

2B0

]

(d) Use perturbation theory to compute the first order shift in the
wave function of each of the eigenstates

[The first order shift in the wave functions is

χ2
+ =

〈χ− | H ′ | χ+〉
E0

+ − E0
−

χ− =
1

2γB0

( 0 1 ) γ
(

0 Bx

Bx 0

)(
1
0

)
χ− =

Bx

2B0

χ−

χ2
− =

〈χ+ | H ′ | χ−〉
E0
− − E0

+

χ+ = − 1

2γB0

( 1 0 ) γ
(

0 Bx

Bx 0

)(
0
1

)
χ+ = − Bx

2B0

χ+]

(e) Compute the exact energy levels of the system, expand to second
order and compare with the result from perturbation theory.

[The exact hamiltonian is H = γ
(
B0 Bx

Bx −B0

)
. The exact energy

levels are the eigenvalues of the hamiltonian, namely

E± = ±γ
√
B2

0 +B2
x ∼ ±B0

(
1 +

1

2

B2
z

B2
0

)
.

The exact and perturbative solutions are in agreement to second
order.]

(f) Compute the exact wave functions, expand to second order and
compare with the result from perturbation theory. (You do not
need to normalize.)

[The exact wave functions are the eigenvectors of the exact hamil-
tonian.

γ
(
B0 Bx

Bx −B0

)(
1
a

)
= γ

√
B2

0 +B2
x

(
1
a

)
→
(
B0 + aBx

Bx − aB0

)
=

√
B2

0 +B2
x

(
1
a

)
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→ a =

√
B2

0 +B2
x

Bx

− B0

Bx

∼ 1

Bx

(B0(1 +
B2
x

2B2
0

)− B0

Bx

∼ Bx

2B0

Then the eigenvector is(
1
Bx

2B0

)
= χ0

+ +
Bx

2B0

χ0
−

in agreement with the perturbation theory result in part (d). Sim-
ilarly, to get the other eigenvector

γ
(
B0 Bx

Bx −B0

)(
a
1

)
= −γ

√
B2

0 +B2
x

(
a
1

)
→
(
aB0 +Bx

aBx −B0

)
= −

√
B2

0 +B2
x

(
a
1

)

→ a =
−
√
B2

0 +B2
x

Bx

=
B0

Bx

∼ − 1

Bx

(B0(1 +
B2
x

2B2
0

) +
B0

Bx

∼ − Bx

2B0

Then the other eigenvector is(− Bx

2B0

1

)
= χ0

− −
Bx

2B0

χ0
+]
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2. Fermi Energy

(a) Calculate the Fermi energy for electrons in a two-dimensional in-
finite square well of area A. Give your answer in terms of the
density of electrons, (the number of electrons per unit area).

[In a 2-d well, the energy

EF =
h̄2

2m

π2

l2
(n2

x + n2
y)

The number of states with energy less than EF is

Nstates =
1

4
π(n2

x + n2
y) =

1

4
π
EF2ml2

h̄2π2

There are 2 electrons per state so the total number of electrons is

Nele =
1

2
π
EF2ml2

h̄2π2

The density of electrons (number/area) is

Nele

l2
= σ =

1

2
π
EF2m

h̄2π2

Then

EF =
σh̄2π

m
]

(b) Calculate the total energy of the electrons

[The total energy is

E =
∫ EF

0
E
dN

dE
dE =

∫ EF

0
E
ml2

h̄2π
dE

=
1

2
E2
F

ml2

h̄2π
=

1

2

(
σh̄2π

m

)2
mA

h̄2π
=

1

2

(Nele/A)2h̄2πA

m

=
1

2

N2
eleh̄

2π

mA

(c) Compute the pressure on the walls, P = dEtot

dA
. The pressure is

P =
dEtot
dA

= −1

2

N2
eleh̄

2π

mA2
= −Etot

A
= −1

2

σ2h̄2π

m
]
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3. Three Identical Particles
Imagine a situation in which there are three particles and only three
states a, b, and c available to them. If the particles are distinguishable,
there are a total of 27 distinct configurations of this system.

What is the total number of allowed distinct configurations for this
system

(a) if the particles are bosons?

[If the particles are bosons there are 10 states:

ψa(1)ψa(2)ψa(3), ψb(1)ψb(2)ψb(3), ψc(1)ψc(2)ψc(3),

ψa(1)ψa(2)ψb(3), ψa(1)ψa(2)ψc(3), ψb(1)ψb(2)ψa(3),

ψb(1)ψb(2)ψc(3), ψc(1)ψc(2)ψa(3), ψc(1)ψc(2)ψb(3),

ψa(1)ψb(2)ψc(3)]

(b) if the particles are fermions? If the particles are fermions, there is
only one state ψa(1)ψb(2)ψc(3).]
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Formulae

− h̄2

2m

∂2Ψ

∂x2
+ VΨ = ih̄

∂Ψ

∂t

HΨ = ih̄
∂Ψ

∂t

p̂ = −ih̄ ∂
∂x

[x, p] = ih̄

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
.

• Time independent perturbation theory

E1
n =

〈
ψ0
n | H ′ | ψ0

n

〉
ψ1
n =

∑
m6=n

〈ψ0
m | H ′ | ψ0

n〉
(E0

n − E0
m)

ψ0
m

E2
n =

∑
m6=n

| 〈ψ0
m | H ′ | ψ0

n〉 |2

(E0
n − E0

m)

• One dimensional infinite square well

ψn(x) =
(

2

a

)1/2

sin
(
nπ

a
x
)

En =
π2h̄2

2ma2
(n2)

• Virial Theorem
2〈T 〉 = 〈r · ∇V 〉

• Generators
ei(σ·n̂)φ/2 = cos(φ/2) + i(n̂ · σ) sin(φ/2)

• Integral ∫ a

0
sin2 nπx

a
dx =

a

2
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