Sample P443 Prelim Questions

March 6, 2008

1. Harmonic Oscillator

A harmonic oscillator is in a state such that the measurement of the energy would yield either $\frac{1}{2} \hbar \omega$ or $\frac{3}{2} \hbar \omega$ with equal probability.
(a) What is the expectation value of the energy?
(b) What is the largest possible value of $\langle x\rangle$ in such a state?
(c) If it assumes this maximal value at $t=0$, what is $\Psi(x, t)$? (Give the answer in terms of $\psi_{0}(x)$ and $\psi_{1}(x)$.)
(d) What is the smallest possible value of $\langle x\rangle$ in such a state?

The raising and lowering operators are

$$
a_{ \pm}=\frac{\hat{p}}{\sqrt{2 m}} \pm i \sqrt{\frac{m}{2}} \omega \hat{x}
$$

and the hamiltonian is

$$
H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}=a_{+} a_{-}+\frac{1}{2} \hbar \omega
$$

And

$$
\begin{aligned}
& a_{+}|n\rangle=i \sqrt{(n+1) \hbar \omega}|n+1\rangle \\
& a_{-}|n\rangle=-i \sqrt{n \hbar \omega}|n-1\rangle \\
& H|n\rangle=E_{n}|n\rangle=\left(n+\frac{1}{2}\right) \hbar \omega|n\rangle
\end{aligned}
$$

2. Reflection

A particle of mass m and kinetic energy $E>0$ is traveling in the positive x -direction when at $x=0$ there is a delta-function potential

$$
V(x)=\alpha \delta(x)
$$

(a) What is the probability that it will reflect back?
(b) What is the probability that it will be transmitted.

3. Spin $1 / 2$

Consider a spin $1 / 2$ particle with magnetic moment $\vec{\mu}=\frac{e}{m} \vec{S}$ in a magnetic field $\vec{B}=B_{0} \hat{z}$. The hamiltonian

$$
H=-\vec{\mu} \cdot \vec{B}=\frac{e}{m} \vec{S} \cdot \vec{B}
$$

where $\vec{S}=\frac{\hbar}{2} \vec{\sigma}$.
Find the eigenvectors (wave functions) and the eigenvalues (energy levels) of the hamiltonian.

4. Free Particle

Suppose a free particle, which is initially localized in the range $-a<$ $x<a$ is released at $t=0$.

$$
\Psi(x, 0)= \begin{cases}A, & \text { if }-a<x<a \\ 0, & \text { otherwise }\end{cases}
$$

where A and a are real constants.
(a) Determine A, by normalizing Ψ.
(b) Determine $\phi(k)$.
(c) Determine $\Psi(x, t)$. You can leave the answer as an integral.

5. Square well

A particle in the inifinite square well has as its initial wave function an even mixture of the first two stationary states:

$$
\Psi(x, 0)=A\left[\psi_{1}(x)+\psi_{2}(x)\right]
$$

where

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a}
$$

(a) Normalize $\Psi(x, 0)$.
(b) Find $\Psi(x, t)$ and $|\Psi(x, t)|^{2}$
(c) Compute $\langle x\rangle$. (You don't have to evaluate the integrals.) What is the frequency of oscillation?
(d) Find the expectation value of H.

6. Ehrenfest's theorem

Use Schrodinger's equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

to calculate

$$
\frac{d\langle p\rangle}{d t}
$$

and show that the expectation values obey $F=m a$.

7. Half Harmonic Oscillator

Find the allowed energies of the half-harmonic oscillator.

$$
V(x)= \begin{cases}\frac{1}{2} m \omega^{2} x^{2}, & \text { for }(x>0) \\ \infty, & \text { for }(x<0)\end{cases}
$$

8. Reflection

A particle of mass m and kinetic energy $E>0$ is traveling in the positive x -direction when at $x=0$ there is an abrupt potential drop. That is,

$$
V(x)=\left\{\begin{array}{cr}
0, & \text { for }(x<0) \\
-V_{0}, & \text { for }(x>0)
\end{array}\right.
$$

What is the probability that it will reflect back?

9. Eigenvalues and eigenvectors

Consider the 2X2 matrix

$$
T=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Find the eigenvalues and the normalized eigenvectors. Construct the matrix S that diagonalizes T so that

$$
S T S^{-} 1=T^{\prime}
$$

and T^{\prime} is diagonal.
10. Spin 1

Consider a system with total angular momentum $3 / 2$ and with basis vectors

$$
\chi_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \chi_{0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \chi_{-1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Derive matrix representations for $J_{ \pm}, J_{z}, J^{2}$ and J_{y}.

11. Neutrinos

Assume that there are two distinct neutrino states $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$ with definite and distinct masses m_{1} and m_{2}. So for example, if at $t=0$, $|\psi(t=0)\rangle=\left|\nu_{1}\right\rangle$, then $|\psi(t)\rangle=\left|\nu_{1}\right\rangle e^{-i \frac{E_{1}}{\hbar} t}$. The mass eigenstates are linear combinations of the weak interaction eignenstates $\left|\nu_{e}\right\rangle$ and $\left|\nu_{\mu}\right\rangle$ and

$$
\begin{aligned}
\left|\nu_{1}\right\rangle & =\cos \theta\left|\nu_{e}\right\rangle+\sin \theta\left|\nu_{\mu}\right\rangle \\
\left|\nu_{2}\right\rangle & =-\sin \theta\left|\nu_{e}\right\rangle+\cos \theta\left|\nu_{\mu}\right\rangle
\end{aligned}
$$

where θ is a mixing angle.
(a) Suppose that the neutrino is born in the state $\left|\nu_{e}\right\rangle$ at time $t=0$ so that $|\psi(0)\rangle=\left|\nu_{e}\right\rangle=\cos \theta\left|\nu_{1}\right\rangle-\sin \theta\left|\nu_{2}\right\rangle$. And suppose that the neutrino has a definite linear momentum p and that $p^{2} c^{2} \gg m^{2} c^{4}$ so that

$$
E_{i}=\sqrt{p^{2} c^{2}+m_{i}^{2} c^{4}} \approx p c\left(1+m^{2} c^{2} /\left(2 p^{2}\right) ; \quad i=1,2\right.
$$

What is the neutrino state $|\psi(t)\rangle$ at $t>0$? Give your answer in the $\left|\nu_{1}\right\rangle,\left|\nu_{2}\right\rangle$ basis.
(b) What is the probability that the neutrino born as $\left|\nu_{e}\right\rangle$ has evolved to $\left|\nu_{\mu}\right\rangle$ at time t? Give your answer in terms of $\Delta m^{2}=m_{1}^{2}-m_{2}^{2}$

12. WKB

Consider the spherically symmetric potential $V(r)=k r$. The radial form of Scrhodinger's equation, with $l=0$ is

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+V(r) u=E u
$$

(a) Write an expression for the turning point r_{0} in terms of E_{n} and k.
(b) Use the WKB approximation to estimate the allowed energies of a particle in this potential with zero angular momentum.

Formulae and Tables

$$
\begin{aligned}
H \Psi & =i \hbar \frac{\partial \Psi}{\partial t} \\
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t) & =i \hbar \frac{\partial}{\partial t} \Psi(x, t)
\end{aligned}
$$

- WKB

$$
\begin{gathered}
\int_{x_{1}}^{x_{2}} p(x) d x=\left(n-\frac{1}{2}\right) \pi \hbar \quad \text { (no infinite vertical walls) } \\
\int_{x_{1}}^{x_{2}} p(x) d x=\left(n-\frac{1}{4}\right) \pi \hbar \quad(1 \text { infinite vertical wall) } \\
\int_{x_{1}}^{x_{2}} p(x) d x=n \pi \hbar \quad(2 \text { infinite vertical walls) } \\
\psi(x)=\frac{A}{\sqrt{p}} \exp \left(\frac{i}{\hbar} \int^{x} p\left(x^{\prime}\right) d x^{\prime}\right)+\frac{B}{\sqrt{p}} \exp \left(-\frac{i}{\hbar} \int^{x} p\left(x^{\prime}\right) d x^{\prime}\right) \\
\psi(x)=\frac{C}{\sqrt{|p|}} \exp \left(\frac{1}{\hbar} \int^{x}\left|p\left(x^{\prime}\right)\right| d x^{\prime}\right)+\frac{D}{\sqrt{|p|}} \exp \left(-\frac{1}{\hbar} \int^{x}\left|p\left(x^{\prime}\right)\right| d x^{\prime}\right)
\end{gathered}
$$

- One dimensional harmonic oscillator

$$
\begin{aligned}
H & =\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \\
a_{ \pm} & =\frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega \hat{x}) \\
a_{+} \psi_{n} & =\sqrt{(n+1)} \psi_{n+1} \\
a_{-} \psi_{n} & =\sqrt{n} \psi_{n-1} \\
{\left[a_{-}, a_{+}\right] } & =1 \\
H & =\hbar \omega\left(a_{-} a_{+}-\frac{1}{2}\right) \\
H \psi_{n} & =\hbar \omega\left(n+\frac{1}{2}\right) \psi_{n} \\
\psi_{0} & =\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}}, \quad \psi_{1}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \sqrt{\frac{2 m \omega}{\hbar}} x e^{-\frac{m \omega}{2 \hbar} x^{2}}
\end{aligned}
$$

- Relativisitic energy momentum

$$
E=\sqrt{p^{2} c^{2}+\left(m c^{2}\right)^{2}}
$$

- Time dependence of an expectation value

$$
\frac{d\langle Q\rangle}{d t}=\frac{i}{\hbar}\langle[H, Q]\rangle+\left\langle\frac{\partial Q}{\partial t}\right\rangle
$$

- Three dimensional infinite cubical well

$$
\begin{gathered}
\psi_{n_{x}, n_{y}, n_{z}}(x, y, z)=\left(\frac{2}{a}\right)^{3 / 2} \sin \left(\frac{n_{x} \pi}{a} x\right) \sin \left(\frac{n_{y} \pi}{a} y\right) \sin \left(\frac{n_{z} \pi}{a} z\right) \\
E_{n_{x}, n_{y}, n_{z}}^{0}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
\end{gathered}
$$

- $\operatorname{Spin} 1 / 2$

$$
\begin{aligned}
& S_{x}=\frac{\hbar}{2} \sigma_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), S_{y}=\frac{\hbar}{2} \sigma_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), S_{z}=\frac{\hbar}{2} \sigma_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \left(\begin{array}{cc}
\left\langle\frac{1}{2}, \frac{1}{2}\left(z^{\prime}\right)\right| R_{y}(\theta)\left|\frac{1}{2}, \frac{1}{2}(z)\right\rangle & \left\langle\frac{1}{2}, \frac{1}{2}\left(z^{\prime}\right)\right| R_{y}(\theta)\left|\frac{1}{2},-\frac{1}{2}(z)\right\rangle \\
\left\langle\frac{1}{2},-\frac{1}{2}\left(z^{\prime}\right)\right| R_{y}(\theta)\left|\frac{1}{2}, \frac{1}{2}(z)\right\rangle & \left\langle\frac{1}{2},-\frac{1}{2}\left(z^{\prime}\right)\right| R_{y}(\theta)\left|\frac{1}{2},-\frac{1}{2}(z)\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta^{2}}{2}
\end{array}\right)
\end{aligned}
$$

- Virial Theorem

$$
2\langle T\rangle=\langle\mathbf{r} \cdot \nabla V\rangle
$$

- Generators

$$
e^{i(\sigma \cdot \hat{n}) \phi / 2}=\cos (\phi / 2)+i(\hat{n} \cdot \sigma) \sin (\phi / 2)
$$

- Boundary conditions for $V(x)=\alpha \delta(x)$

$$
\begin{aligned}
& \psi(x) \text { continuous, } \\
& \Delta\left(\frac{d \psi}{d x}\right)=\frac{2 m \alpha}{\hbar^{2}} \psi(0)
\end{aligned}
$$

