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Scattering

1 Time dependent perturbation theory

In our study of time dependent perturbation theory we determined the the
transition probability from initial state ¢, to final state v, is given by the
absolute square of the amplitude
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where wy, = % To apply the theory to a scattering process we imagine

that the perturbation H (') turns on at —t/2 and off at ¢/2 and while it is
turned on it has constant value H. Then we can integrate and we get
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and the transition probability is
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Let’s examine the w,, dependent piece
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The first zero of f(w) occurs when w = 27/t. Its maximum value (at w = 0)
is t2. In the limit of large ¢, f(w) — 27td(w). To check that assertion we
integrate over all w
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In terms of the energies of initial and final states,
2rtd(w) — 27thdé(Ey — E,)

and we can write .
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The transition rate is
27
R = %]Habﬁé(Eb — E,)

In scattering experiments, the detector always has some finite acceptance.
And what we measure is a sum over all final states consistent with that
acceptance.
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p(Ey) is the density of final states, the number of final states per unit energy.
Well, we have figured this out before. The number of states between k£ and

k+ dk is
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Using E = p*/2m and 2pdp/2m = dE we have

VpmdEdS
(27h)3

dN Vpm

S (B =

B~ )= Gy

dN =

dN =

s

SO
2 1
R="————Vpm|Hg|*d
Now how do we connect to the cross section? The incoming particle is
represented by a plane wave
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and the outgoing wave by
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The +/V in the denominator is so that the wave function is normalized. The
particle density in the incoming wave is |1/,]|? = 1/V and the flux of incoming

particles is {; = © / . And
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That means that
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The negative sign is a convention. Suppose that H = V(7). Then
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The result is equivalent to that of the Green’s function analysis in the first
Born approximation. (See Griffiths p. 413)



