D.Rubin

April 22, 2002

Scattering

1 Time dependent perturbation theory

In our study of time dependent perturbation theory we determined the the transition probability from initial state ψ_{a} to final state ψ_{b} is given by the absolute square of the amplitude

$$
c_{b}(t)=-\frac{i}{\hbar} \int_{-t / 2}^{t / 2}\left\langle\psi_{b}\right| H\left(t^{\prime}\right)\left|\psi_{a}\right\rangle e^{i \omega_{a b} t^{\prime}} d t^{\prime}
$$

where $\omega_{a b}=\frac{E_{a}-E_{b}}{\hbar}$. To apply the theory to a scattering process we imagine that the perturbation $H\left(t^{\prime}\right)$ turns on at $-t / 2$ and off at $t / 2$ and while it is turned on it has constant value H. Then we can integrate and we get

$$
c_{b}(t)=-\frac{i}{\hbar} \frac{1}{i \omega_{a b}}\left[e^{i \omega_{a b} t / 2}-e^{-i \omega_{a b} t / 2}\right] H_{a b}=-\frac{H_{a b}}{\hbar} \frac{2 i \sin \omega_{a b} t / 2}{\omega_{a b}}
$$

and the transition probability is

$$
\left|c_{b}\right|^{2}=\frac{1}{\hbar^{2}}\left|H_{a b}\right|^{2} \frac{4 \sin ^{2} \omega_{a b} t / 2}{\omega_{a b}^{2}}=\frac{1}{\hbar^{2}}\left|H_{a b}\right|^{2}\left(\frac{\sin \omega_{a b} t / 2}{\omega_{a b} t / 2}\right)^{2} t^{2}
$$

Let's examine the $\omega_{a b}$ dependent piece

$$
f(\omega) \equiv\left(\frac{\sin \omega t / 2}{\omega t / 2}\right)^{2} t^{2}
$$

The first zero of $f(\omega)$ occurs when $\omega=2 \pi / t$. Its maximum value (at $\omega=0$) is t^{2}. In the limit of large $t, f(\omega) \rightarrow 2 \pi t \delta(\omega)$. To check that assertion we integrate over all ω

$$
\int_{-\infty}^{\infty} f(\omega) d \omega=\int \frac{\sin ^{2} x}{x^{2}} d x \frac{2}{t} t^{2}=2 \pi t=\int 2 \pi t \delta(\omega) d \omega
$$

In terms of the energies of initial and final states,

$$
2 \pi t \delta(\omega) \rightarrow 2 \pi t \hbar \delta\left(E_{b}-E_{a}\right)
$$

and we can write

$$
\left|c_{b}\right|^{2}=\frac{1}{\hbar^{2}}\left|H_{a b}\right|^{2} 2 \pi t \delta\left(E_{b}-E_{z}\right)
$$

The transition rate is

$$
R=\frac{2 \pi}{\hbar}\left|H_{a b}\right|^{2} \delta\left(E_{b}-E_{a}\right)
$$

In scattering experiments, the detector always has some finite acceptance. And what we measure is a sum over all final states consistent with that acceptance.

$$
R=\frac{2 \pi}{\hbar} \int\left|H_{a b}\right|^{2} \delta\left(E_{b}-E_{a}\right) \rho\left(E_{b}\right) d E_{b}
$$

$\rho\left(E_{b}\right)$ is the density of final states, the number of final states per unit energy. Well, we have figured this out before. The number of states between k and $k+d k$ is

$$
d N=\frac{V k^{2} d k d \Omega}{8 \pi^{3}}=\frac{V p^{2} d p d \Omega}{(2 \pi \hbar)^{3}}
$$

Using $E=p^{2} / 2 m$ and $2 p d p / 2 m=d E$ we have

$$
\begin{gathered}
d N=\frac{V p m d E d \Omega}{(2 \pi \hbar)^{3}} \\
\frac{d N}{d E}=\rho(E)=\frac{V p m}{(2 \pi \hbar)^{3}} d \Omega
\end{gathered}
$$

so

$$
R=\frac{2 \pi}{\hbar} \frac{1}{(2 \pi \hbar)^{3}} V p m\left|H_{a b}\right|^{2} d \Omega
$$

Now how do we connect to the cross section? The incoming particle is represented by a plane wave

$$
\psi_{a}=\frac{1}{\sqrt{V}} e^{i \mathbf{k}_{\mathbf{a}} \cdot \mathbf{r}}
$$

and the outgoing wave by

$$
\psi_{b}=\frac{1}{\sqrt{V}} e^{i \mathbf{k}_{\mathbf{b}} \cdot \mathbf{r}}
$$

The \sqrt{V} in the denominator is so that the wave function is normalized. The particle density in the incoming wave is $\left|\psi_{a}\right|^{2}=1 / V$ and the flux of incoming particles is $\frac{v}{V}=\frac{p / m}{V}$. And

$$
\begin{gathered}
(d \sigma) \text { Flux }=d N=R \\
\left.d \sigma=\frac{R}{\text { Flux }}=\frac{V^{2} m^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left|\left\langle\psi_{b}\right| H\right| \psi_{a}\right\rangle\left.\right|^{2} d \Omega \\
\frac{d \sigma}{d \Omega}=\left(\frac{V m}{2 \pi \hbar^{2}}\right)^{2}\left|H_{a b}\right|^{2}
\end{gathered}
$$

That means that

$$
f(\theta)=-\frac{m V}{2 \pi \hbar^{2}}\left\langle\psi_{b}\right| H\left|\psi_{a}\right\rangle
$$

The negative sign is a convention. Suppose that $H=V(\vec{r})$. Then

$$
\begin{aligned}
f(\theta) & =-\frac{m V}{2 \pi \hbar^{2}} \int \frac{1}{\sqrt{V}} e^{-i \vec{k}_{b} \cdot \vec{r}} V(\vec{r}) \frac{1}{\sqrt{V}} e^{i \vec{k}_{a} \cdot \vec{r}} d^{3} r \\
& =-\frac{m}{2 \pi \hbar^{2}} \int e^{i\left(\vec{k}_{a}-\vec{k}_{b}\right) \cdot \vec{r}} V(\vec{r}) d^{3} r
\end{aligned}
$$

The result is equivalent to that of the Green's function analysis in the first Born approximation. (See Griffiths p. 413)

