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Scattering

1 Time dependent perturbation theory

In our study of time dependent perturbation theory we determined the the
transition probability from initial state ψa to final state ψb is given by the
absolute square of the amplitude

cb(t) = − i
h̄

∫ t/2

−t/2
〈ψb | H(t′) | ψa〉 eiωabt

′
dt′

where ωab = Ea−Eb

h̄
. To apply the theory to a scattering process we imagine

that the perturbation H(t′) turns on at −t/2 and off at t/2 and while it is
turned on it has constant value H. Then we can integrate and we get

cb(t) = − i
h̄

1

iωab

[
eiωabt/2 − e−iωabt/2

]
Hab = −Hab

h̄

2i sinωabt/2

ωab

and the transition probability is

|cb|2 =
1

h̄2 |Hab|2
4 sin2 ωabt/2

ω2
ab

=
1

h̄2 |Hab|2
(

sinωabt/2

ωabt/2

)2

t2

Let’s examine the ωab dependent piece

f(ω) ≡
(

sinωt/2

ωt/2

)2

t2

The first zero of f(ω) occurs when ω = 2π/t. Its maximum value (at ω = 0)
is t2. In the limit of large t, f(ω) → 2πtδ(ω). To check that assertion we
integrate over all ω

∫ ∞
−∞

f(ω)dω =
∫ sin2 x

x2
dx

2

t
t2 = 2πt =

∫
2πtδ(ω)dω
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In terms of the energies of initial and final states,

2πtδ(ω)→ 2πth̄δ(Eb − Ea)

and we can write

|cb|2 =
1

h̄2 |Hab|22πtδ(Eb − Ez)

The transition rate is

R =
2π

h̄
|Hab|2δ(Eb − Ea)

In scattering experiments, the detector always has some finite acceptance.
And what we measure is a sum over all final states consistent with that
acceptance.

R =
2π

h̄

∫
|Hab|2δ(Eb − Ea)ρ(Eb)dEb

ρ(Eb) is the density of final states, the number of final states per unit energy.
Well, we have figured this out before. The number of states between k and
k + dk is

dN =
V k2dkdΩ

8π3
=
V p2dpdΩ

(2πh̄)3

Using E = p2/2m and 2pdp/2m = dE we have

dN =
V pmdEdΩ

(2πh̄)3

dN

dE
= ρ(E) =

V pm

(2πh̄)3
dΩ

so

R =
2π

h̄

1

(2πh̄)3
V pm|Hab|2dΩ

Now how do we connect to the cross section? The incoming particle is
represented by a plane wave

ψa =
1√
V
eika·r

and the outgoing wave by

ψb =
1√
V
eikb·r
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The
√
V in the denominator is so that the wave function is normalized. The

particle density in the incoming wave is |ψa|2 = 1/V and the flux of incoming

particles is v
V

= p/m
V

. And

(dσ)Flux = dN = R

dσ =
R

Flux
=

V 2m2

(2πh̄2)2
| 〈ψb | H | ψa〉 |2dΩ

dσ

dΩ
=
(
V m

2πh̄2

)2

|Hab|2

That means that

f(θ) = − mV

2πh̄2 〈ψb | H | ψa〉

The negative sign is a convention. Suppose that H = V (~r). Then

f(θ) = − mV

2πh̄2

∫ 1√
V
e−i~kb·~rV (~r)

1√
V
ei~ka·~rd3r

= − m

2πh̄2

∫
ei(~ka−~kb)·~rV (~r)d3r

The result is equivalent to that of the Green’s function analysis in the first
Born approximation. (See Griffiths p. 413)
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