

Extending the energy reach of CESR CESR-c and CLEO-c Physics

D.Rubin, Cornell University

- CLEO-c physics program
- Accelerator physics at low energy

Physics Objectives

- Tests of LQCD
- Charm decay constants fD, fDs
- Charm absolute branching ratios
- Semi leptonic dcay form factors
- Direct determination of Vcd & Vcs
- ·QCD
- Charmonium and bottomonium spectroscopy
- ·Glueball search
- Measurement of R from 1 to 5GEV
- CP violation?
- Tau decay physics

Measurements

Leptonic charm decays

$$D^- \rightarrow \ell^- V, D_S^- \rightarrow \ell^- V$$

Semileptonic charm decays

$$D \rightarrow (K,K^*) \ell \nu, D \rightarrow (\pi,\rho,\omega) \ell \nu, D \rightarrow (\eta,\varphi) \ell \nu,$$

Hadronic decays of charmed mesons

$$D \rightarrow K\pi, D^+ \rightarrow K\pi\pi$$

- Rare decays, D mixing, CP violating decays
- Quarkonia and QCD

Heavy quark physics

- Precision of measured D branching fractions limit any result involving B -> D
- $(B \rightarrow Nsi K_s is the "gold plated" exception)$ Determination of CKM matrix elements and many theoretical (QCD) uncertainties weak interaction results limited by

Example - theoretical limit

• $B \rightarrow \pi \ell V$

Gives V_ub in principle with uncertainty approaching 5% with 400 fb-1 from B-Factories

But form factor for u quark to materialize as π has 20% uncertainty

Lattice QCD ?
Lattice QCD is not a model Only complete definition of QCD Only parameters are alpha_s, and quark masses Single formalism for B/D physics, ψ/Y, glueballs , No fudge factors
 Recent developments in techniques for lattice calculations promise mass, form factors, rates within ~few % Improved discretizations (larger lattice spacing) Affordable unquenching (vacuum polarization)
Critical need for detailed experimental data in all sectors to test the theory
October 28, 2002 D. Rubin - Cornell

Lattice QCD

New theoretical techniques permit calculations at the and mixing amplitudes for few % level of masses, decay constants, semileptonic form factors

- Masses, decay constants electroweak form factors, charge Masses leptonic widths, electromagnetic for factors D,Ds,D*,Ds*,B,Bs,B*,Bs* and corresponding baryons light quark hadrons radii, magnetic moments and mixing angles for low lying ψ, Y family below D and B threshold and mixing amplitudes for any meson in
- Gold plated processes for every off diagonal CKM matrix element

Lattice QCD

Progress is driven by improved algorithms, (rather than hardware)

Until recently calculations are quenched, sea quark masses -> ∞ (no vacuum polarization) -> 10-20% decay constant errors

Current simulations with

- Lattice spacing a=0.1fm
- realistic m_s, and m_u,m_d ~m_s/4

Require 3 months on 200 node PC cluster for 1% result

Lattice QCD
CLEO-c program will Precision measurements in ψ, Y sector for which few $\%$
calculations possible of masses, fine structure, leptonic widths, electromagnetic transition form factors
Semileptonic decay rates for D, Ds plus lattice QCD • Vcd to few % (currently 7%)
 Vcs to few % (currently 12%) few % tests of CKM unitarity
Leptonic decay rates for D,Ds plus lattice QCD give few % cross check
Glueball - need good data to motivate calculations
If theory and measurements disagree -> New Physics October 28, 2002 D. Rubin - Cornell

Establish credibility of Lattice QCD

CLEO - c will provide precision measurements which lattice calculations can be checked of processes involving both b and c quarks against

Recent results from HPQCD+MILC collaborations

n_f = 3, a=1/8fm

tune $m_u = m_d, m_s, m_c, m_b$, and α_s using m_{π} , m_k, m_{ψ} m_{γ} and ΔE_{γ} (1P-1S)

October 28, 2002

D. Rubin - Cornell

October 28, 2002

.-p.1/??

CLEO-c Run Plan

- $vs \sim 4100 MeV$ 3 fb⁻¹ $\psi(3770) - 3 \text{ fb}^{-1}$ ~ 1 fb⁻¹ each on $\Upsilon_{1s}, \Upsilon_{2s}, \Upsilon_{3s}$ 30 million events, 6M tagged D decays $1.5M D_s D_s$, 0.3M tagged D_s (310 times Mark III) spectroscopy, matrix elements, Γ_{ee}
- $\psi(3100) 1 \text{ fb}^{-1}$ l billion J/ψ (170 times Mark III, 20 times BES II) (480 times Mark III, 130 times BES II)

	Status	s Y Run	
	$\Upsilon_{ m 1s}$	$\Upsilon_{2\mathrm{s}}$	$\Upsilon_{3 m s}$
Target	950	500	1000
Actual	1090	×500	1250
Old	79	74	110 (pb ⁻¹)
Status	taken	in progress	processed
Analysis			
Disco	very? - D-st	tates, rare E1 trar	nsitions
Precis	sion - Ele	ctronic rates, ee, µ hadronic transiti	ų branching fractions, ons
October 28, 2002		D. Rubin - Cornell	15

 $D_{s}D_{s}$ Pure DD, D_sD_s production Sample: ψ (3770) 3fb-1 (1 year) 3fb-1 (1 year) ~6M tagged D decays 30M events, ~0.3M tagged Ds 1-2M events

D -> Kπ tag. S/B ~5000/1 High net tagging efficiency ~20% D_s -> φπ (φ-> KK) tag. S/B ~100/1

D+ -> μν

CLEO-c 3 fb-1 (3770) ~900 events

 $\delta V_{cd} f_D / V_{cd} f_D \sim (2 \pm .3 \pm .6)\%$

October 28, 2002

20	D. Rubin - Cornell		October 28, 2002
0 1.860 1.865 1.870 1.870 1.875 1.880	:	ſ	C ^s , Ai
	10	v Л	
	0.7	7.2	D⁺ -> K⁻π+π+
Cano 58 	0.6	2.4	D⁰-> Κ ⁻ π+
didates /	(B/B%)	(B/B%)	
D- tag	CLEO-c	PDG	Mode
$\sigma = 1.2 \text{ MeV/c}^2$			nodes
$\begin{array}{c c} 1500 & & & & \\ D^+ + K & \pi^+ \pi^+ & \text{Double Tags} \end{array}$	r other	t of D tags fo	3r = # of X/#
1.855 1.860 1.865 1.870 1.875 M (D) (GeV/c ²)			double tags
	with	ute Br(D->X)	Measure absol
	tag modes	d in hadronic .	No background
s / 0.5 MeV	nents	Measure	Fraction
$\frac{1}{200} + \frac{1}{200} + \frac{1}$	Inching	agged Bro	Double To
D ⁰ → K [−] π ⁺ Double Tags			

	Semilepton	ic decays
Rate ~ V _{cj} ² Low backgrou	f(q²) ² ınd and high rat	.е
Mode	PDG	CLEO-c
	(B/B%)	(B/B%)
D ⁰ -> K <i>t</i> v	GI	2
D ⁰ -> π <i>t</i> ν	16	2
D + -> π <i>l</i> ν	48	2
D _s -> φλν	25	ω
Vcd and Vcs Form facto	s to ~1.5% r slopes to few	% to test theory

More tests of lattice QCD

 $\Gamma(D \rightarrow \pi h) / \Gamma(D^{+} \rightarrow h)$ independent of V_{cd}

 $\Gamma(D_s \rightarrow \varphi h) / \Gamma(D_s \rightarrow h)$ independent of V_{cs}

Test QCD rate predictions to 3.5-4%

Having established credibility of theory

 $D^0 \rightarrow \pi e^+ v$ gives $\delta V_{cd} / V_{cd} = 1.7\%$ (now 7%) $D^0 \rightarrow K e^+ v$ gives $\delta V_{cs} / V_{cs} = 1.6\%$ (now 11%)

J/\ Radiative decays

CLEO-c physics summary

Precision measurement of Leptonic widths and EM transitions **D** branching fractions in Υ and ψ systems

Search for exotic states

-> Tests of lattice QCD

D Mixing D CP violation Tau physics R scan

October 28, 2002

October 28, 2002 D. Rubin	Electrostatically separated electron-positron orbits accomate counterrotating trains Electrons and positrons collide with +-2.5 mrad horizontal crossing angle 9 5-bunch trains in each beam	Energy reach 1.5-6GeV/beam	CESR-c	
- Cornell	Electrons Positrons Horizontal Electron In Positron Ir			
25	Separators njection Point njection Point	14:301801-002		

CESR-c IR

Summer 2000, replace 1.5m REC permanent magnet final focus quadrupole with hybrid of pm and superconducting quads

Intended for 5.3GeV operation but perfect for 1.5GeV as well

October 28, 2002

October 28, 2002

D. Rubin - Cornell

Beam-beam effect

- $^\circ$ In collision, beam-beam tune shift parameter ~ ${
 m I_b}/{
 m E}$
- Long range beam-beam interaction at 89 parasitic crossings ~ I_b/E (and this is the current limit at 5.3GeV)

Single beam collective effects, instabilities

- Impedance is independent of energy
- Effect of impedance ~I/E

30	D. Rubin - Cornell	October 28, 2002
nomentum	~ time to radiate away all n	Damping time 1
si mr	so that transverse momentu av and motion is dambed	design orbit
ly along	g cavities restore energy on	RF accelerating
'aalatea ∆P/P	nets, synchrotron photons r rticle momentum ΔP ₊ /P ₊ =	parallel to par
-	it (P _† /P)	to design orb
transverse	ricles have some momentum .	Circulating part
		Damping
	and emittance	Radiation damping a
	inergy dependence	CESR-c E

28, 2002 D. Rubin - Cornell	October 28,
damping time	Longer dai
Reduced beam-beam limit	• Rec
less tolerance to long range beam-beam effects	• Les
Aultibunch effects, etc.	• Mul
lower injection rate	• Low
, E²B² = E4/ρ² at fixed bending radius	Power ~ Ei
/E ~ E³	1/τ ~ P/E
t 1.9GeV, τ ~ <mark>500ms</mark>	so at 1.
on damping	Radiation
ESR at 5.3 GeV, an electron radiates ~1MeV/turn	In CESF
t ~ 5300 turns (or about <mark>25ms</mark>)	~> t ~
CESR-c Energy dependence	CE

Emittance

- Closed orbit depends on energy offset $x(s) = \eta(s)\delta$
- Energy changes suddenly with radiation of synchrotron photon
- Particle begins to oscillate about closed orbit generating emittance
- Lower energy -> fewer radiated photons and lower photon energy
- Emittance $\varepsilon \sim E^2$

Emittance

$$L \sim I_B^2 / \sigma_x \sigma_y = I_B^2 / (\epsilon_x \epsilon_y \beta_x \beta_y)^{1/2}$$

 T_z / ϵ_z limiting change density

- Then T(mey) and I are deriving
- Then I(max) and L ~ ϵ_x

CESR (5.3GeV), $\epsilon_x = 200$ nm-rad CESR (1.9GeV), $\epsilon_x = 30$ nm-rad

October 28, 2002

Damping and emittance control with wigglers

October 28, 2002

D. Rubin - Cornell

In a wiggler dominated ring Then 18m of 2.1T wiggler CESR-c Energy dependence $\epsilon \sim B_w L_w$ $1/\tau \sim B_w^2 L_w$ σ_E/E ~ (B_w)^{1/2} nearly independent of length -> τ ~ 50ms -> 100nm-rad < < < < 300nm-rad (B_w limited by tolerable energy spread)

October 28, 2002

D. Rubin - Cornell

7-pole, 1.3m 40cm period, 161A, B=2.1T

Superconducting wiggler

D. Rubin - Cornell

October 28, 2002	$\Delta y' = -\frac{B_0^2 L}{2(E_0/ce)^2} \left(y - \frac{E_0^2 L}{2(E_0/ce)^2} \right)^2 \left(y - \frac{E_0^2 L}{2(E_0/ce)^2} \right$	Vertical kick ~ θ B _z	$\vartheta = \frac{ceB_0}{E_0} \frac{\lambda_w}{2\pi}$	$B_z = -B_0 \sinh k_w y \sin h$	Optics ef
D. Rubin - Cornell	$+\frac{2}{3}\left(\frac{2\pi}{\lambda}\right)^2 y^3 + \dots$				fects - Idec
38					al Wiggler

Finite width of poles leads to horizontal nonlinearity Cubic nonlinearity ~ $(1/\lambda)^2$ Vertical focusing effect is big, $\Delta Q \sim 0.1/wiggler$ But is readily compensated by adjustment of nearby quadrupoles We choose the relatively long period -> λ = 40cm **Optics effects - Ideal Wiggler**

October 28, 2002

October 28, 2002

 $\sigma_{E}/E[\%]$

 $\varepsilon_{\rm x}$ [mm-mrad]

Number of wigglers

Wiggler length[m]

Bunch length[mm]

Bunch spacing[ns]

Bunches/train

D. Rubin - Cornell

Linear Optics

 $\beta_{h}^{*}[m]$

 $\beta^*_{v}[mm]$

Beam energy[GeV]

Number of trains

 $\mathcal{O}_{\mathbf{v}}$

7 and 8 pole wiggler transfer functions

D. Rubin - Cornell

Wiggler Beam Measurements

First wiggler installed 9/02 Beam energy = 1.84GeV

-Optical parameters in IR match CESR-c design

-Measure and correct betatron phase and transverse coupling

 Measurement of lattice parameters (including emittance) in good agreement with design

October 28, 2002

Wiggler Beam Measurements

- Reduced damping time (X 1/2) -> increased injection repitition rate
- Measurement of betatron tune vs displacement consistent with bench measurement and calculation of field profile

Wiggler Status

Second wiggler is ready for cold test

-Anticipate installation of 5 additional wigglers (and CLEO-c vertex detector) Spring 03

-Remaining 8 wigglers installed late 03

October 28, 2002

October 28, 2002

D. Rubin - Cornell

β_x* [cm] ş ξ. í⊌ [mA/bunch] **B**w [Tesla] T_{X,Y} [msec] I_{beam} [mA/beam] ε_x [nm-rad] **α_E/E₀** [×10³] Luminosity [+10³⁰] Beam Energy [GeV] 1.ចច 5 69 0.75 0.028 0.035 50 230 21 130 2.8 8 0.04 0.81 0.036 ö ទ្ធ 4.0 1.88 5 2.1 220 8 2 2 3 1.75 <mark>5</mark>2 0.79 0.034 0.04 230 5 1 500 5 215 22 0.03 0.06 1.8 1.2 0.64 370 ω Ω 00 0 1250 220

CESR-c design parameters

Energy Calibration

Collide $I_T \sim 12 \text{ mA}$ and scan

Identification of $\psi(\text{2S})$ yields calibration of beam energy

October 28, 2002

D. Rubin - Cornell

Linear OpticsAres
Except for wigglers - very similar to 5.3 GeV opticsWiggler focusing is exclusively vertical
$$\frac{1}{f_v} \sim \left(\frac{B_0}{E}\right)^2 L$$
=0.073 m⁻¹ for B_0=2.1T, L=1.3m and E=1.88 GeV
For typical $\beta_v \rightarrow \Delta Q_v \sim 1.2$ for 14 wigglersIn CESR all quadrupoles are independent and the strong
localized vertical focusing is easily compensated
 $(1.5 - > 2.5 \text{ GeV})$ October 28, 2002

October 28, 2002

 $\sigma_{E}/E[\%]$

 $\varepsilon_{\rm x}$ [mm-mrad]

Number of wigglers

Wiggler length[m]

Bunch length[mm]

Wiggler Peak Field[T]

Accelerating Voltage[MV]

Bunch spacing[ns]

Bunches/train

D. Rubin - Cornell

Linear Optics

Lattice parameters

 $\beta_{h}^{*}[m]$

Crossing angle[mrad]

 $\beta^*_{v}[mm]$

Beam energy[GeV]

 $\mathcal{O}_{\mathbf{v}}$

 \mathcal{O}

Number of trains

• But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off	 Longer period results in weaker cubic nonlinearity 	Finite pole width \rightarrow roll off in vertical field with horizontal displacement	$\Delta y' = -\frac{B_0^2 L}{2(B\rho)^2} \left(y + \frac{2}{3} \left(\frac{2\pi}{\lambda} \right)^2 y^3 + \dots \right)$	Wiggler cubic nonlinearity scales inversely as square of period	Dynamic Aperture
We need to determine optimum period and required field uniformity	 But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off We need to determine optimum period and required field uniformity 	 Longer period results in weaker cubic nonlinearity But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off We need to determine optimum period and required field uniformity 	 Finite pole width → roll off in vertical field with horizontal displacement Longer period results in weaker cubic nonlinearity But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off We need to determine optimum period and required field uniformity 	$\Delta y' = -\frac{B_0^2 L}{2(B\rho)^2} \left(y + \frac{2}{3} \left(\frac{2\pi}{\lambda} \right)^2 y^3 + \right)$ Finite pole width \rightarrow roll off in vertical field with horizontal displacement • Longer period results in weaker cubic nonlinearity • But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off We need to determine optimum period and required field uniformity	 Wiggler cubic nonlinearity scales inversely as square of period Δy' = - B₀²/2(Bρ)² (y + 2/3(2π)² y³ +) Finite pole width → roll off in vertical field with horizontal displacement Longer period results in weaker cubic nonlinearity But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off We need to determine optimum period and required field uniformity
	• But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off	 Longer period results in weaker cubic nonlinearity But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off 	 Finite pole width → roll off in vertical field with horizontal displacement Longer period results in weaker cubic nonlinearity But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off 	 Δy' = - B₀²L/(2Bρ)² (y + 2/3 (2π)² y³ +) Finite pole width → roll off in vertical field with horizontal displacement Longer period results in weaker cubic nonlinearity But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off 	 Wiggler cubic nonlinearity scales inversely as square of period Δy' = - B₀²L/(2(Bρ)²) (y + 2/(2π)²) y³ +) Finite pole width → roll off in vertical field with horizontal displacement Longer period results in weaker cubic nonlinearity But the larger excursion of wiggling orbit yields greater sensitivity to horizontal roll off

	D
	namic .
)	Ape
	erture
	- b
	eam
	mea
	surei
	ments

PM x-ray wigglers in CESR provide opportunity to test understanding of dynamics

Wiggler Nonlinearity
$$\Delta y' = -\frac{B_0^2 L}{3(B\rho)^2} \left(\frac{2\pi}{\lambda}\right)^2 a\beta$$
 $\Delta Q/a \sim \frac{\Delta y'}{y} \beta$ $\Delta Q/a \sim \frac{\Delta y'}{y} \beta$ CHESS/eastCHESS/westCHESS/eastCHESS/westPeriod[cm]20Cubic nonlinearity[m-2]27 27 42 42 14(11.9) = 167 $\beta_{v}^{2>}[m^2]$ 29Detuning (ΔQ /mm)29292224

Detuning of the pair of x-ray wigglers in CESR at 1.84GeV, is approximately twice that of 14 CESRc wigglers

October 28, 2002

D. Rubin - Cornell