

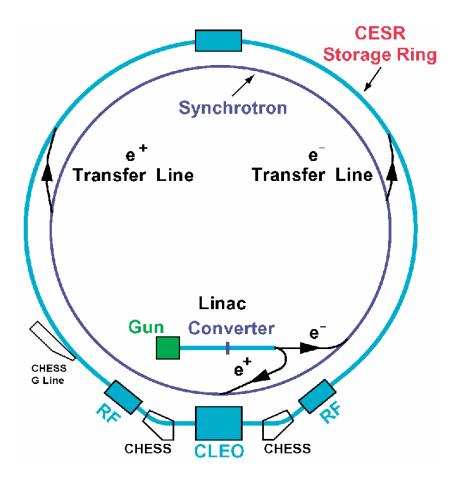
Cornell University Cornell High Energy Synchrotron Source

CESR as Light Source

David Rubin for the CESR Operations Group *Cornell University Laboratory for Elementary-Particle Physics*

- Introduction to CESR
- CESR Operating Status
- Multi-bunch optics
- Low emittance tuning
- Single beam test optics

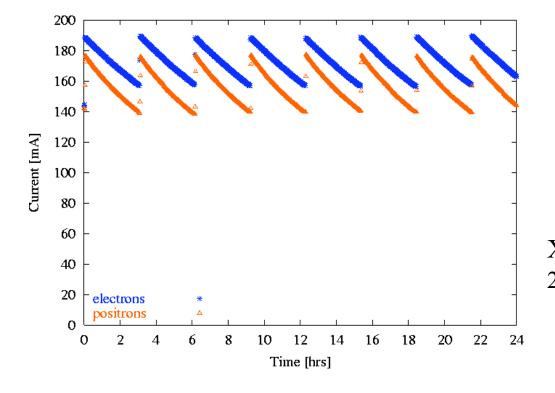
- CESR operates with counterrotating beams of electrons and positrons
 - Beam energy ranges from 1.5-5.5 GeV


HEP Bunch configuration

- 9 equally spaced trains
- As many as 6 bunches/train with 14ns spacing
- $I_{total} \sim 250 \ mA/beam$

Injector

- Linac $\sim 300 MeV e^- \& 150 MeV e^+$
- Synchrotron booster accelerates to full storage ring energy
- Linac/synchrotron cycle at 60Hz
- Electron gun pulses at up to 72MHz (one bunch every 14ns)


to fill CESR with trains of bunches (~25 bunches/cycle)

CESR

CESR operations

200 mA - 30 bunches electrons 180 mA - 22 bunches positrons $\tau \sim 12$ hours Periodic top off ~ 3hours (Top off in 3 minutes) $\epsilon_h \sim 140$ nm $\epsilon_v \sim 1-2$ nm X-ray beam position stability < 30 µm. 23.5 hours beam/day

CESR multi-bunch operation

Electron

Transfer

Positron

Transfer

Positrons Electrons

Feedback Kicker Separator

IP LØ

Two beam operation

To prevent collisions of counterrotating beams, 4 electrostatic kickers that deflect electrons and positrons in opposite directions are used to generate differential closed orbits

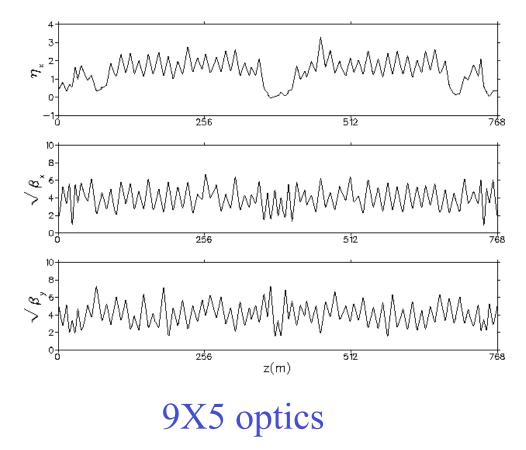
With 9 trains/ 6 bunches/train collisions at IP

With removal of low β interaction region optics collisions are not tolerable →
Configuration for CHESS today is
4 positron and 5 electron trains

[6 bunches/train]

24 bunches of positrons, 30 bunches of electrons

High bunch current /good lifetime/ low vertical emittance are mutually exclusive More brilliance requires more bunches



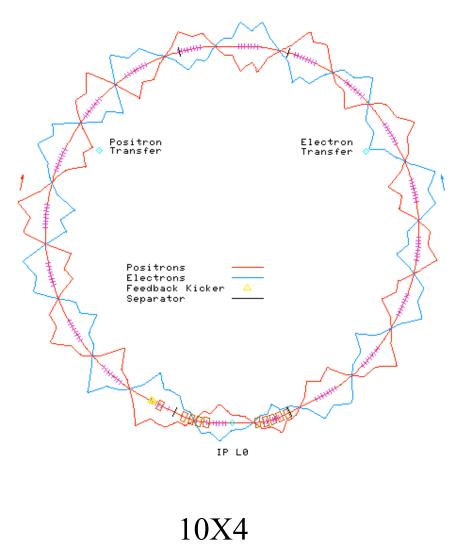
More Bunches

CESR optics are flexible

- -No periodicity
- -No symmetry
- -All quadrupoles (100) and sextupoles (78) are independently powered

Plot file: BZ:BETA_ORBIT.PCM Lat file: /a/ln×113/nfs/acc/user/dlr/bmad/lat/bmad_chess_20090225.kat Lattice: CHESS_20090225

Cornell University Cornell High Energy Synchrotron Source


CESR multi-bunch operation

10X4 optics

Rearrange β-phase advance
-Electron and positron closed orbits accommodate 10 trains (20 lobes) with 4 bunches/train

 \rightarrow 40 bunches/beam

Development of 10X4 optics is underway in machine studies Anticipate 10X4 operation beginning with next CHESS run - September 2009

Accelerator R&D

(grad students Jim Shanks and Walter Hopkins)

Low Emittance Tuning

Having removed the low- β interaction region optics

including CLEO 1.5T solenoid, rotated IR quadrupoles, vertical separators

we have eliminated principle sources of transverse coupling, vertical

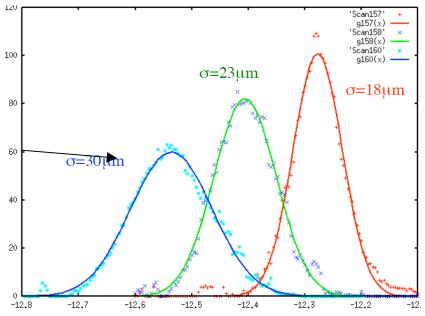
dispersion and vertical beam size

Instrumentation

-

-New survey and alignment network

laser tracker/digital level


 \rightarrow faster and more precise alignment

-Upgrade from analog to digital beam position monitor electronics will permit

single bunch/single pass/real time/nondestructive measurement of

Orbit , β -functions, Transverse coupling ,Dispersion

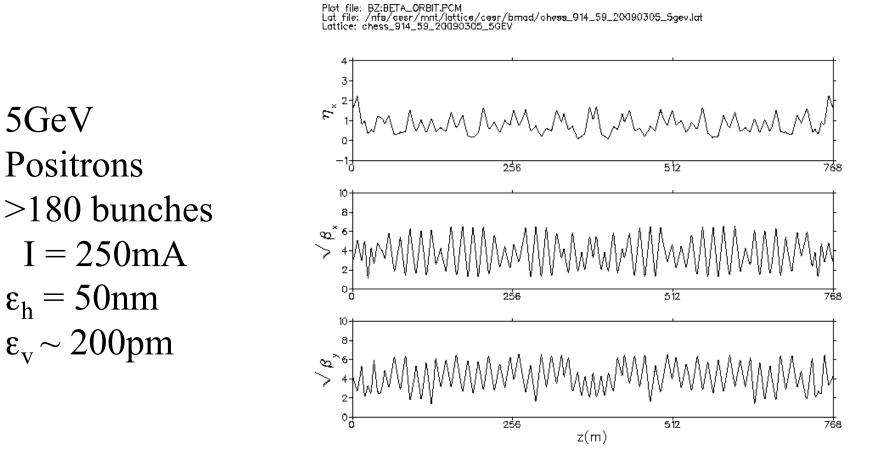
- Xray vertical beam size monitor (bunch by bunch)
- Developing techniques and software for online analysis of beam based data
- → preserve minimum emittance and stable beam position

Accelerator R&D

Undulator Test optics CESR optics are flexible but:

- Two beam optics severely constrained to preclude collisions
 - Number of bunches/beam limited
 - Impedes low emittance tuning
 - (beam is off axis and in fringe field in most magnets)
 - Complicates injection
 - (injected bunch collides with opposite species stored beam)

Single beam optics - no "pretzel" constraint


- Lower horizontal emittance optics
- More bunches (lower bunch current, smaller vertical beam size, longer lifetime)
- More efficient injection (top off ?)
- Reduced vertical emittance

Cornell University Cornell High Energy Synchrotron Source

Single beam optics

Undulator test optics

CESR Parameters	Today	September 2009	Single beam Machine studies	
Energy[GeV]	5.3	5.3	5.3	2.0
Emittance[nm] (h/v)	140/1	110/1	52/0.2	2.5/0.02
Bunches	30/22	40/40	>180	>180
Current/beam [mA]	175	225	250	>250
Particle species	e ⁺ & e ⁻	e⁺ & e⁻	e ⁺ or e ⁻	e ⁺ or e ⁻
Horizontal Tune	10.57	10.21	14.57	14.57