

Cesr TA

July 10, 2012

Shrink emittance

To minimize the emittance (temperature) of the beams in CESR

- Operate at 2GeV (vs 5.3)
- Relocate superconducting wigglers to L0 straight to
 - increase radiation damping rate
 - and reduce emittance

Superconducting Damping Wigglers

Increase damping rate and reduce emittance

Xray beam size monitor – beam height

Visible light beam size monitor (L3) – beam length and width

xBSM Optics Line & Detector

Xray beam size monitor

32 channel photodiode array50μm pitch

L3 visible light beam size monitor

Visible light beam size monitor

 $\sigma_x = 275 \ \mu m$

D. L. Rubin

Electron Cloud

What is the electron cloud?

- Synchrotron radiation from the circulating positrons, strikes the walls of the vacuum chamber and photoelectrons are emitted
- Photo electrons traverse the chamber, strike the opposite wall and emit secondary electrons
- Secondary electrons are accelerated by subsequent bunches, hit the wall and emit . . .
- Evolution of the cloud depends on chamber geometry and local magnetic field

Retarding Field Analyzer

Measures the time average cloud density and energy spectrum

View of from outside vacuum chamber of dipole style RFA with 9 independent collectors. The fine mesh wire grid is in place (but transparent)


```
Quadrupole RFA
```


Dipole RFA data with characteristic central peak

D. L. Rubin

Mitigation in a dipole field

Electron cloud mitigations

Dipole chamber with antechamber and grooves

Wiggler chamber with clearing electrode

Cu

TiN

3840511-269

RFAs located at B-field max, min, and mid

Electron cloud mitigations in damping wiggler

Solenoids suppress ecloud

Bunch by bunch and turn by turn vertical emittance is measured with xray beam size monitor

Emittance dilution begins in bunch 10

Bunch Dependent Tune Shift

Vertical and horizontal tune shift vs bunch number 22 bunches/train - 14ns spacing $\Delta Q \sim$ cloud density

- Install time resolving RFAs in L3 chicane grooved chamber
- Replace Q15W a-Carbon coated chamber with TiN chamber
- Replace Q15E diamond-like carbon coated chamber with bare aluminum
- All vacuum D-line for xray beam size monitor
- Upgrade visible light monitor with fast readout

END