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Abstract 
.4t the Cornell Electron Storage Ring (CESR) we have de- 

veloped a technique for local measurement and correction of the 
transverse betatron coupling. We compare this to the standard 
“global” coupling correction that minimizes the closest approach 
of the two normal mode frequencies as observed on a spectrum 
analyzer. In our local coupling technique we measure [l] and 
correct the coupling of the transverse betatron modes at about 
90 different points in the machine. Our measurements consist 
of experimental values for the the rrormalixed aspect ratio of 
the beam, the square root of the vertical to the horizontal emil- 
tance. DIMAT [2] , a single beam simulation program, has been 
modified to calculate coupling as a function of skew quadrupole 
strengths. A least square fitting routine finds values of skew 
quadrupole strengths which reproduce our measured coupling 
data. These results are used to change the strengths of about 
12 of the skew quadrupoles in CESR and so reduce the coupling. 
After 2 iterations we can reduce the normalized aspect ratio to 
about 0.015. 

Introduction 

Relative Phase and Amplitude [7] 
Consider the molTme x-y coordinate system as a conse- 

quence of the excitation of only the A mode. Take as an ini- 
tial vector Wo = (c~,O,0,0)~ Then n turns later when the nor- 
mal mode A has propagated through some phase 4~ = 2znv~, 
the physical state of the system is 

x=vw n =VU”W =G-‘iTgW 0 0 (41 
Deiine 

Then 
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In an electron storage ring there is generally coupling be- 
tween the horizontal and vertical planes. This may be caused by 
experimental solenoids, misa!ignments of normal focusing quads, 
or sextupolcs. In the presence of coupling the normal modes of 
oscillation no longer correspond to purely horizontal or purely 
vertical motion. The c’s are parameters based on the elements 
of the full turn transfer matrix and they characterize how the 
normal modes are linked to horizontal and vertical motion. We 
can calcl,lnte the normal mode emittances from the C’s and the 
normal mode twiss parameters. 

.___- 
;,;f@;’ + c:, ; (dy - ‘&)A = A+, 

tire ratio of the y anrplitude to the x amplitude 
’ -a,4 IS the phase difference between 

the two motions for the” A mode. 
Inverting these expressions gives 

Typically the coupling is parametrized by the closest ap- 
proach or splitting of the normal mode tunes. When the tunes 
can be brought together by an adjustment of the purely hor- 
izontal and vertical focussing quads the machine is “globally 
decoupled”. Global decoupling is quick and useful but does not 
guarantee correction of coupling errors. We show its effects on 
the ??. A scheme for measuring and compensating local coupling 
errors has been developed and used at CKSR. Results are pre- 
sented and indicate a decrease in vertical beam size of roughly a 
factor of 3. Sources of error in the measurements are discussed. 

Similarly if only the U mode is excited, 

c 1 , Z-E 7 z$ 
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Normal Mode Decomposition 13-51 
A full turn coupled transfer matrix T is decomposed into 

normal modes as follows: 

where (z/y)” is the ratio of rhe x amplitude to the y amplitude 
for the B mode and A$, = (ST -- Q,,Js is the phase ditference 
between the two motions for the B mode. 

Thus .three of the four elements of C are determined from 
tal;de~~;m~entally measurable quantrtres (y/z)~, (z/y)~, ADA, 

Physical Meaning of ?? 
The real space ellipse traced out on successive turns by a 

particle with only one normal mode excited is written as 

I vuv-’ 
where 

u= (t i) ; V=(Ti+ y) and 7’i ‘Cl-1 (2) 

x = s,,pcosq5 ; Y = ~atrr~ coy (4 -t- Ad) (7) 
This dehnes an ellipse whose axes have lengths of d and f and 
are rotated at an angle of 0 with respect to the x and y axes. If 
only the A mode is excited then Fig.1 shows how these relate to 
the horizontal and vertical motion. 

\ 
A is the full t;rn transfer‘matrix for’ one of the normal modes 
and so is written in the form 

A= 
( 

cos 2nv.4 + QA sin 27FuA pAsin2?rYA 
-7~ sin 2?rvA cos 2’xvA - OA sin 2zUA > 

(3) 

and similarly for B. T,U, and V are 4x4 matrices. A,B, and C 
are 2x2 matrices and I is the 2x2 identity matrix. The labora- 
tory phase space coordinates X are related to the normal mode 
coordinates W by X = VW. The same relation, X = VW, 
holds for energy displacements so the normal mode dispersions -. 
may be calculated from (r,,,, r/L, r/v, nL)T = I/-’ (qz, r):,~,,, ~1:)’ 

Given the normal mode twiss parameters and dispersions the 
normal mode emittances may be calculated in the usual way [6] 

Figure 1 : Beam ellipse for weak coupling and the A mode 
excited 

For weak coupling, where I??;,]* << 1 and 7 M 1 we find 

These normal mode coordinates are normalized to remove 
the u and 0 dependence. 

m=GW=(? iB)W ; where GA= [$ A) 

and similarly for Gg. Applying the same normahlation to V 

e.,, Y $‘g ; dA N <A&?& ; /A = tAIClzl& 

In this approximation, after scaling by the ratios of the root 
betas, csz is interpreted as the angle through which the ellipse 
has been rotated and crz is interpreted as the ratio of the lengths 
of the minor to major axes. 

yields 

V~GV&lE i 
YI 

\ -GBCtG,’ 

The results for the B mode excitation are easily obtained 
by switching the horizontal and vertical axes in Figure 1 and 
PA t--t @B ; t,~, --+ tB ; c22 + c’ll. 

This can also be seen in anot,hcr manner which will later 
prove useful. Recall equations (6) which hold for only the A 
mode excited. Since A#J, is the difference in phase between 
the horizontal aud vertical motions, the Czz is a measure of 
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the component of the vertical motion that is in phase with the 
horizontal motion and the ?? 12 is a measure of the component of 
the vertical motion that is 90’ out of phase with the horizontal 
motion. So this immediately associates ??zz with the tilt angle 
of the real space ellipse and cl2 with the blow up of the real 
space ellipse. Global Decoupling 

The most common way to adjust the coupling is to globally 
decouple the machine, a process that is best described opera- 
tionally. The strengths of normal quads are adjusted to bring 
the normal mode tunes together. Typically the tunes cannot 
be made equal. The minimum tune split is used as a measure 
of the coupling in the machine. Skew quads are then used to 
minimize the tune split. Finally the normal quads are returned 
to their original values to bring the machine back to its normal 
operating point. We examine the global decoupling in terms of 
the coupling parameters C. 
Set Up Notation 

- Recall equation (1) and define H = rnt + n and a = 
G~ffGi’. Also define a normalized skew quad strength Q = 
KJ,/f where f is the focal length of the skew quad. Then 

(CO8 ‘Lru,., - co8 2~~0)2 = : [ Tr (Af - N)]’ + det ?? 

The matrices A4 and N do not change to first order in lhe coupler 
strengths q. [4] So TrM = 2 cos 27rvz where V, is the horizontal 
tune with all couplers turned off and similarly for TrN. Near 
the difference coupling resonance detg is always positive. ?? 
may be written as 

X = lf+sinx (VA + vg) + IT-Jsinff (VA - VB) 

and to first order in coupler strengths Q, II+ and II- are 

Hziz = R 1-z (VA =f VB)] c ‘hn (+A,*k ‘F b,pk) (8) 

k=SQ 

The sum is over all skew quads. There is also a contribution to 
the M+ from solenoids, but since this does not change the char- 
acter of the problem we will ignore it. R (I$) is a 2x2 rotation 
matrix so it has the form 

R (0) = -‘;;$ se:;) ( 
The d&,k is the phase advance of normal mode A between the 
kth skew quad and the observation point p. Notice that for 
observation points between couplers the II+ propagates like the 
difference of the phase advances and the z- propagates like 
the sum of the phase advances. CESR runs near the coupling 
resonance so generally the Ii+ varies slowly as a function of 
longitudinal position and the H- varies quickly. Also the H+ 
have the form of a constant times a rotation matrix, so that 
detz* = 0 iff II& = 0. Also 

det H = (det z+) sin’ rr (VA + YB) - (~det II-) sin’ T (~4 - vB) 

(9) 
The c and 7 that appeared earlier in the matrix V are related 
to these by 

c=- -H 

d I 

_I+; +Qf-N) 
rTr(A-8) i ‘= 2 2 Tr(A-B) 

Define c* to be the part of c corresponding to the El*:. If we 
are not close to the coupling resonance then 7 = 1. If we are 
very close to the coupling resonance then 7 x l/A. 
Global Decoupling - - 

- The first step in global decoupling is to adjust normal quads 
to brine the normal mode tunes toeether. This corresuonds to 
setting Tr(M - N) = 0. The closest approach of the tunes is 

given by /COS 2?iv,4 - cos 2n-VBl = G. 
Next adjust skew quads to bring the tunes together, that is 

to get 0 = Ices 2xYA - cos 21rvaj = m. From equation (9) 

this requires that II.+ = 0 but places no restriction on f-i-. 2 
may generally be written as 

c = -fI+ “‘y~_(yA+vH) -+- -:lf-JJinT (VA - 0) 
7Tr(A-D) 27 (cos 27rUA - CO8 2XVO) 

So near the coupling resonance, 

-1 
-H-J 

27 sin 2zuA 

Recall that H+/\/m is just a rotation matrix, so that even - - 
as H+ goes to zero, C remains finite. 

Now adjust the normal quads to return the tunes to the 
operating point. Recall eqn. (8). As the tunes are brought 
back to the operating point the phase advances between the 
skew quads and the observation point change. So the H+ also 
change and H+ # 0. If the operating point is not too far from 
the coupling resonance then the phase advances will only change 
slightly and Hk wilt remain near their values on the coupling 
resonance. So the C+ will remain small. The H- was never 
constrained so ??- is also unconstrained. This can be seen in 
the DIMAT output shown in Figures 2 and 3. Figure 2 shows 
the coupling produced by powering two skew quads. It happens 
to contain more C+, which propagates between couplers as the 
dilference of the normal mode phase advances, than c-, which 
propagates between couplers as the sum of the normal mode 
phase advances. Figure 3 shows the coupling after the machine 
has been globally decoupled. The global decoupling ,has left 
almost no C+ but has not changed the amount of ??-. 
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detector 

%nre 2 (top) : CIZ at each detector due to two symmet- 
rically placed, anti-symmetrically powered skew quads. 
Figure 3 (bottom) : cl, at each detector due to two pairs of 
symmetrically placed, anti-symmetrically powered skew qua&. 
The machine has been globally decoupled. 

Global decoupling makes c+ very small if the operating 
point is not far from the coupling resonance but it does not 
affect the c-. There is nothing special about a globally decou- 
pled machine unless it is at the coupling resonance. In fact if a 
machine is not at the coupling resonance, global decoupling is ill 
defined, because the change in the p* as the tunes are brought 
together depend on the detailed changes in the phase advances 
between the skew quads and the observation point. This in turn 
depends on which quads are used to bring the tunes together. 
For example, using two pairs of symetrically located quads, bring 
the machine to the coupling resonance, then globally decouple, 
and return to the operating tunes using the same pairs of quads. 
Now if the machine is returned to the coupling resonance using 
two different pairs of quads the machine is generally not globally 
decoupled. 

Reduction of Coupling in CESR 
Measurement 

- A normal mode of the beam is coherently excited by a 
shaker. The signals from each button of each beam detector are 
sent through a spectrum analyzer along with a reference signal 
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from the shaker drive. The relative phase and amplitude of the 
vertical and horizontal motions is determined. From excitation 
of normal mode A, the ADA and (Y/Z)A are measured and Cl2 
and ??22 are determined. Similarly excitation of normal mode E 
yields c,, and ??I,. 

For weak coupling, normal modes A and B closely corre- 
spond to horizontal and vertical motion respectfully. So when 
normal mode A is shaken there is a large coherent horizontal 
sigrla! and a much smaller coherent vertical signal. There is also 
noise from the incoherent motion in the br>nm. Since the inco- 
herent horizontal motion is much great~l than the incoherent 
vertical motion the data from excitation of normal mode A is 
much cleaner than the data from excitation of-normal mode n. 

Also recall that for normal mode A, the Czz measures the 
component of the vertical motion that is in phase with the hori- 
zontal motion. So, the ??zz are susceptible to large errors if any 
of the large coherent horizontal signal ‘leaks” into the small co- 
herent vertical signal. This leakage takes place in the detector 
and in the electronics that process the detector signal. The cl2 
are not susceptible to this effect because they measure horizon- 
tal and vertical signals that are 90’ out of phase with each other. 
Any leakage produces horizontal and vertical motions that are 
either exactly in phase or 180’ out of phase with each other. So 
the ??I, data are much cleaner than the czz data. Our analysis 
is based only on tile cl2 data. 
lY!IQc&d~~ 

- We began by globally decoupling the machineto remove 
most of the C+. The rms size of the CL2 is about 0.033. Figure 
4 shows this data.-For each iteration we shook normal mode A 
and measured the Cl2 and the Czz at each of the beam detectors. 
Then D1M.T was used to find the strengths of skew quads that 
would best reproduce the ??I, data. These changes were dialed 
into CESR, For the first iteration three pairs of skew quads were 
used. Alter the first iteration the rms size had been reduced by 
about 25% to about 0.024. If everything had worked perfectly 
all the ??I2 would have been zero. Since they were not al! zero 
we did a second iteration. Tllis time it was neccessary to use 
4 pairs of skew quads to get a good fit from DIMAT. After the 
second iteration the rms had been reduced about 45% to about 
0.013. These are shown in Figure 5. 

o 102030405060708090100 
deteclor 

Figure 4 (top) : ?? 12 at each dctcctor. &lachinc has been 
globally decoupled, but sf.i!! shows local coupling. 
Figure 5 (bottom) : Clz at each detector after two iterations 
of local decoupling. 

Sources of F.rror 
- A major source of error is /3 errors, or more precisely dif- 

ferences between the p’s in the machine and in the simulation. 
These are caused by errors in the quad strengths. We assume 
that the simulation has been adjusted so that its normal mode 
tunes match those in the machine. This is especially important 
at CESR, where we operate near the coupling resonance so that 
a small change in one of the tunes may produce a large change 
in the distance to the coupling resonance. 

The p errors affect the results in 3 ways. First, in going from 
the measured relative phases and amplitudes of the horizontal 
and vertical motion to the c’s the dependence on the twiss pa- 

rameters is taken out. Second, the e!fect that the skew quads 
have on the -d’s is scaled by &Z$B. Because the calibration 
of the skew quad, its focal length as a function of excitation, is 
usually determined through a coupling measurement this error 
appears twice, once for the 0 errors at the skew quad when it is 
calibrated and once for the /3 errors at the skew quad when it is 
used. The exception to this is when the calibration is done just 
before the skew quad is used, as then the /? errors are included 
in the calibration. Finally, these fl errors change the phase ad- 
vances between the skew quads and the observation points. Tile 
coupling effect from this strongly depends on the configuration 
of couolers in the machine. 

Fortunately even fairly large differences (as n~uch a~ 20-2516) 
between the B’s in the machine and in the simulation can bc 
tolerated; the method will still reduce the coupling. I!owcver if 
the errors are large the reduction in coupling for each iteration 
will be small. For.the data shown above the fractional differences 
between the P’s m the machine and the simulation were large 
about 25%. If the B’s are measured and the values of the normai 
quads in the simulation are adjusted to produce p’s that match 
those measured in the machine, the differences between the p’s 
in the machine and in the simulation can be reduced to about 
5%. If this had been done, only one iteration would have been 
required to go from tile coupling in Figure ‘1 to the coupling in 
Figure 5. 

By its nature, correction of local coupling requires many 
skew quads distributed around the ring. Altllougll CLSR has 9 
pairs of skew quads, in the test above only 4 pairs were used. 
As a result there is coupling remaining in Figure 5 bci i’veen de- 
tectors 5 and 30. About half of this cannot be removed by the 
4 pairs of skew quads used. 

In addition to a!! of the:;e systematic errors there are also 
random errors of about 0.005 in the -612. 

In spite of all these problems after two iterations we were 
able to reduce the coupling in CESR to the level of clz x 0.013. 
This requires about 2-3 hours of machine time, about the same 
amount of time required to correct the B’s in the machine. With 
our current knowledge, after about 2-3 iterations we should be 
able to reduce the coupling to the level of the noise in the mea- 
surements, that is about CIZ x 0.005. 

We have shown how tile c’s relate to the vertical beamsize 
and the normal mode emittances but have not discussed this in 
det,ail.‘rhis is because the vertical beamsizes produced by the 
coupling generally found in CESR is about the same as the res- 
olution of our vertical beam size monitor. So we have no good 
exoerimental data. 
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