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We describe a new technique for low-emittance tuning of electron and positron storage rings. This

technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal

modes of the beam motion, and has benefits over conventional methods. It is relatively fast and

straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning

for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult

to determine accurately. We discuss the theory behind the technique, present some simulation results

illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some

initial experimental tests on the CesrTA storage ring.
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I. INTRODUCTION

Lepton storage rings often require tuning to achieve very
low vertical emittance: in light sources, this increases the
beam brightness; in colliders, it improves luminosity. A
number of facilities in recent years have reported vertical
emittances of a few picometers [1–4]. Achieving emittan-
ces in this range requires precise correction of machine
errors that generate vertical dispersion and betatron cou-
pling. A common technique is to perform an analysis of the
measured orbit response matrix (ORM) to determine the
sources of error [5]. This includes diagnostic errors such as
tilts of the beam position monitors (BPMs). However, data
collection for ORM analysis is often rather slow, as it
involves measuring the change in the closed orbit in re-
sponse to each of the horizontal and vertical orbit correc-
tion (steering) magnets in the ring. In a large ring, there
may be dozens of such orbit correctors. Fitting a model to
the measured data (to determine the errors present in the
ring) involves numerically intensive computation, and can
also be time consuming. For large rings, such as those
proposed, for example, for the damping rings of the
International Linear Collider [6], it may become imprac-
tical to perform ORM analysis on a routine basis to achieve
and maintain the specified vertical emittance.

In this paper, we describe an alternative technique for
low-emittance tuning, based on excitation of the normal
modes of the beam motion. Measurement of the turn-by-
turn signals on the BPM buttons during resonant excitation

allows the BPMs to be calibrated in terms of the local
normal mode axes. Measurement and correction of the
‘‘vertical’’ mode dispersion then provides a route to min-
imizing the vertical emittance. Since the BPMs are cali-
brated directly from the beam motion, the technique is
intrinsically insensitive to BPM gain and alignment errors.
Furthermore, given the appropriate hardware for resonant
excitation and turn-by-turn beam position measurements,
data collection and analysis are very fast and thus the
technique can be applied as easily to a large ring as to a
small ring.
In Sec. II we describe the technique in detail, and discuss

the underlying theory. We illustrate its application by
presenting simulation results in Sec. III. Some tests of
the technique have already been carried out at Cornell’s
CesrTA storage ring [7]: we present some relevant results
from these tests in Sec. IV. Finally, we discuss some
conclusions and outline possible further work in Sec. V.

II. THEORY

A. Normal mode dispersion and emittance

In a lepton storage ring, the beam is prevented from
damping to zero emittance by quantum excitation.
Consider a particle following the closed orbit. In a mag-
netic field (e.g. in a dipole magnet), the particle will
randomly emit photons; if the dispersion is nonzero, then
the change in energy of the particle resulting from a photon
emission will mean that the particle is no longer on the
closed orbit. Instead, it has some betatron amplitude
around the closed orbit. The average of the betatron am-
plitude (more precisely, of the betatron action) over all
particles in the beam gives the beam emittance.
Particle motion in a storage ring can be conveniently

described in terms of action-angle variables. In the present
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work, we consider only linear motion. The relationship
between action-angle and Cartesian variables is
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where N is a matrix that transforms the single-turn transfer
matrix M into a block-diagonal rotation R:

N�1MN ¼ R: (2)

The Cartesian variables are defined as follows. x and y are,
respectively, horizontal and vertical transverse coordinates
in a plane perpendicular to the reference trajectory at a
given point s; px and py are the normalized transverse

canonical momenta:

px ¼ �m _xþ qAx

P0

(3)

(and similarly for py), where � is the relativistic factor for a

particle with rest mass m and charge q, the dot denotes the
time derivative, Ax is the x component of the electromag-
netic vector potential, and P0 is a chosen reference mo-
mentum. The longitudinal coordinate is defined by

z ¼ �0cðt0 � tÞ; (4)

where t is the time that the particle arrives in the plane
perpendicular to the reference trajectory at s, �0 is the
normalized velocity of a particle with momentum P0, and a
particle traveling along the reference trajectory with nor-
malized velocity �0 arrives at the point s at time t0. The
energy deviation � is defined by

� ¼ E

P0c
� 1

�0

; (5)

where E is the total energy of the particle (for a particle
with the reference momentum, � ¼ 0).

The beam emittances are given by averaging the oscil-
lation amplitudes (betatron and synchrotron actions) over
all particles in the beam:

�k ¼ hJki; (6)

where k ¼ I, II, or III indicates the degree of freedom. Now
consider a particle that undergoes an instantaneous change
in energy, for example, resulting from photon emission.
The energy deviation � changes by some amount ��. In
the approximation that the photon is emitted directly along
the instantaneous direction of motion of the particle (valid
for ultrarelativistic particles), the transverse Cartesian co-
ordinates and momenta, and the longitudinal coordinate,
do not change:
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The change in the action-angle variables may be expressed:
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The condition for there to be no excitation of the mode II
emittance (generally identified with the vertical emittance)
can then be written:

N�1
36 ¼ N�1

46 ¼ 0; (9)

where N�1
ij is the ði; jÞ component of the inverse of N.

Generally, it is easier to give a direct physical interpre-
tation to the components of the single-turn transfer matrix
M than to the components of the normalizing matrix N
(which can be constructed from the eigenvalues ofM). For
example, the components of M outside the 2� 2 block
diagonals are related to betatron coupling (M13, M14 etc.),
to horizontal dispersion (M15, M16, etc.), and to vertical
dispersion (M35, M36, etc.). Although the condition in
Eq. (9) does represent a constraint on the components of
M, it is not easy to express this constraint directly in terms
of the components ofM. In general, it is possible for every
component of M to be nonzero, while still satisfying
Eq. (9). Physically, this would correspond to a case where
the dispersion is parallel to the axis for motion in mode I.
Then, under a change in energy of a particle, only mode I
motion is excited.
It should be noted that, although we refer to axes corre-

sponding to motion in each of the (transverse) normal
modes, a beam excited in one or other normal mode will,
in general, describe an ellipse, rather than a straight line, in
coordinate space when observed over many turns at a
particular location in a storage ring. Properly, one can
only speak of a mode ‘‘axis’’ in the special case that the
ellipse has infinitesimal width. That is, the ellipse is essen-
tially a line. However, if the coupling in the ring is not
strong, then the ellipses described by normal mode motion
will have very narrow width, and it is reasonable to asso-
ciate the major axis of the ellipse with an axis of the normal
mode motion. Some justification for this assertion is given
in Sec. IV, where we present and discuss the experimental
results.
Often, low-emittance tuning procedures in storage rings

address the vertical dispersion and betatron coupling sepa-
rately. However, if one can measure (and minimize) the
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component of the dispersion along the mode II axis, then it
should be possible to minimize the vertical emittance by
correcting a single quantity (the mode II dispersion) rather
than two separate quantities. Besides offering a more direct
and concise correction procedure, there is the possibility of
achieving a better correction. With a limited number of
correction elements in the ring, it is conceivable that the
optimum conditions for low emittance may be achieved not
by trying to minimize either (or both) the vertical disper-
sion and betatron coupling, but by trying to align the
dispersion with the mode I axis.

There are numerous formalisms for describing coupled
motion in accelerator beam lines, including storage rings;
see, for example, Refs. [8–10]. The significance of the
mode II dispersion for the emittance is indicated by the
fact that, in the formalism of [9], the mode II emittance in a
storage ring may be estimated from

�II � Cq�
2 I5;II
I2

; (10)

where Cq � 3:832� 10�13 m is the quantum constant, �

is the relativistic factor of the beam, and I2 and I5;II are
synchrotron radiation integrals:

I2 ¼
I ds

�2
; I5;II ¼

I H II

j�j3 ds: (11)

� is the radius of curvature of the orbit, and the lattice
function H II is defined by

H II ¼ �II�
2
II þ 2�II�II�

0
II þ �II�

02
II ; (12)

where �II, �II, �II, �II, and �0
II are generalizations of the

uncoupled Twiss parameters and dispersion functions to
the coupled case. In the case of weak coupling, we can
expect the Twiss parameters to take values close to those in
the case of zero (or corrected) coupling; however, the
mode II dispersion may be significantly different from
the vertical dispersion. This may occur, for example, if
coupling rotates the mode II axis so that it has a horizontal
component at a location where there is large horizontal
dispersion: the mode II dispersion will then acquire a
significant contribution from the horizontal dispersion,
even if the vertical dispersion is zero.

It is important to note that the emittance computed using
Eq. (10) takes into account the effects of both vertical
dispersion and betatron coupling. An experimental method
to measure and minimize directly the mode II dispersion,
rather than the vertical dispersion and betatron coupling
separately, therefore offers the possibility of an elegant and
effective procedure for low-emittance tuning.

B. Measurement of mode II dispersion

The BPMs in a storage ring are usually designed to
return the horizontal (x) and vertical (y) position of the
beam with respect to a specified ‘‘laboratory’’ coordinate

system. The coordinate values are obtained by processing
the signals on the buttons induced by a beam. Generally,
the signals on the BPM buttons have a nonlinear depen-
dence on the position of the beam. The precise form of the
dependence depends on the geometry of the buttons and
the vacuum chamber. However, if the beam position varies
over a small range, then the button signals can be assumed
to vary linearly with beam position. This assumption is
needed for calibrating BPMs using normal mode beam
excitation. The justification for this can be obtained from
the simulation and experimental results.
Alignment errors and errors in the signal amplification

and processing electronics lead to systematic errors in the
coordinate values returned by a BPM. For simplicity, we
consider in this section a linear model in which the errors
may be represented by a gain matrix, g:

x

y

 !
measured ¼ g � x

y

� �
actual

; (13)

where

g ¼ gxx gxy
gyx gyy

� �
: (14)

Ideally, g is the identity matrix. In practice, the compo-
nents of g can vary independently of each other. The value
of gyx is particularly significant for correction of the ver-

tical dispersion: if it is nonzero, then a purely horizontal
motion of the beam resulting from a change in beam
energy (as during a dispersion measurement) can also
appear in the measured y coordinate. An attempt to ‘‘cor-
rect’’ the measured vertical dispersion would then intro-
duce vertical dispersion where none was, in fact, present.
There are various techniques that can be applied to

determine the gain errors (either in a linear, or in a more
general nonlinear model), including ORM analysis [5] and
BPM gain mapping [11,12]. Measurements of the BPM
gain errors will be valid only over a limited period of time
due to such things as alignment changes, drifts in elec-
tronics, and changes in the orbit coupled with the nonlinear
response of a BPM, etc. Some of the measurement tech-
niques (e.g. ORM analysis) involve significant time and
effort. Other techniques, particularly those based on analy-
sis of turn-by-turn data, may be accomplished more
quickly. However, it will generally be beneficial to have
a range of methods available that may provide results that
are either directly comparable or complementary. Given
the need to repeat measurements periodically because of
variation in machine conditions, techniques in which data
may be collected within a few minutes have a strong
advantage.
One such technique is to calibrate the BPM from normal

mode motion of the beam. By observing turn-by-turn
motion with the beam excited in one or the other transverse
normal mode, it is possible to calibrate the BPMs so that
the values returned are the beam coordinates along the
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normal mode axes. As discussed in Sec. II A, these are the
coordinates that are most relevant for low-emittance tun-
ing. The relevant coordinate systems that can be defined in
a BPM are illustrated schematically in Fig. 1.

Consider a BPM with four buttons. Let the signal on
button i when a bunch passes through the BPM be denoted
bi (i ¼ 1, 2, 3, or 4). If the coupling is not too large, the
beam motion in normal mode I will lie along a line that we
refer to as the u axis, and motion in mode II will lie along a
line that we refer to as the v axis.

Assuming a linear response, which will be the case if the
amplitude of excitation is not too large, the relationship
between a change ð�u;�vÞ of the beam from its closed
orbit position and the corresponding change in the button
signals can be written as
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The matrix elements ð@bi=@uÞv and ð@bi=@vÞu can be
obtained by observing the beam when the beam is shaken
at the mode I and mode II frequencies via resonant exci-
tation of the beam.When the beam is shaken at a frequency
corresponding to mode I, the position ð�uj;�vjÞ on the jth
turn will have �vj ¼ 0. Similarly, when shaking at the

mode II frequency, �uj will be zero. When shaking the

beam, the absolute changes �u and �v will not be known.
However, we can determine the correlations between the
changes in button signals from the readings taken during

the excitation in each normal mode. For example, ð@b2@b1
Þv is

the change in the signal at button 2 per unit change in the
signal at button 1, for motion in mode I (v constant). Since

@b2
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v ¼ ð@b2@u Þv

ð@b1@u Þv
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we can write Eq. (15) in the form
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The components of B can be determined by correlating the
changes in signals measured on different buttons while
resonantly exciting the beam in one or the other of the
transverse normal modes. Without knowing the absolute
amplitude of the motion, the components of C cannot be
determined. However, they may be estimated, e.g., from
modeling the BPM response to horizontal and vertical
beam motion. Errors in the values for the components of
C will lead to systematic errors in the measurement of the

normal mode dispersion. In particular, an error in ð@b1@v Þu
will lead to a systematic error, corresponding to some scale
factor, in the measurement of the mode II dispersion.
However, since the ultimate goal is to achieve zero
mode II dispersion, this scale factor is not expected to be
significant. Put another way, if the mode II dispersion is
zero, then the systematic error will not affect the measure-
ment. The systematic error will mean that the effect of the
correction will not be exactly as expected, and some itera-
tion will be needed; however, if the error is not too large,
the correction should still converge.
Given values for the components of B (from measure-

ments) and C (from modeling), we can determine C�1

and B�1 (defined such that B�1 � B ¼ I2, with I2 being
the 2� 2 identity matrix). Then

lab x

lab y

BPM x

BPM y
Normal 
mode v

Normal 
mode u

BPM button 3
BPM button 4

BPM button 1
BPM button 2

FIG. 1. Coordinate systems in a BPM. The laboratory coordi-
nate system is defined with respect to the survey positions. BPM
alignment and electronics errors mean that the coordinates
returned by the BPM are with respect to the ‘‘BPM axes’’ which
are not perfectly aligned with the laboratory system. Coupling
means that resonant excitation of the transverse modes leads to
motion along axes different from the laboratory or BPM axes.
The four BPM buttons are labeled according to the convention
used in CESR.
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Equation (20) represents a BPM calibration. It allows us to
determine the changes in position along the normal mode
axes in a BPM, from the changes in button signals. Applied
to the button signals taken during a dispersion measure-
ment, Eq. (20) allows us to determine the normal mode
dispersion. The dispersion measurement may be made in
the conventional way, by observing the change in beam
position on the (calibrated) BPMs with respect to a change
in beam energy induced by variation of the frequency of
the rf cavities.

Note that, since the BPM is calibrated directly from
normal mode motion of the beam, the normal mode disper-
sion measurement will be insensitive to BPM tilt and gain
errors. Such errors can, in some circumstances, be a limit-
ing factor in emittance tuning using conventional tech-
niques. Nonlinear variation of the BPM buttons response
to changes in beam position (i.e. changes that are large
compared with the amplitude of the resonant excitation)
may mean that the calibration is a function of the closed
orbit position. The calibration may also be a function of
such things as the beam current, the temperature of the
electronics, etc. However, since the calibration is straight-
forward and (with the appropriate hardware for performing
a resonant excitation) can be accomplished very quickly
(within a few minutes), a calibration can be performed
immediately before each dispersion measurement.

C. Correction of mode II dispersion and
minimization of mode II emittance

Once the BPMs have been calibrated to allow measure-
ment of the mode II dispersion, correction of the dispersion
may be accomplished using conventional techniques. For
example, a set of components (vertical steering magnets,
and skew quadrupoles) that affect the mode II dispersion
may be identified, and a response matrix between these
components and the mode II dispersion at the BPMs con-
structed using a model, or from measurements in the
machine. Inverting the response matrix (by singular value
decomposition) and applying the inverted matrix to the
measured mode II dispersion gives the changes required
to correct the mode II dispersion.

It is important to note that, typically, BPMs are located in
field-free regions where synchrotron radiation is not gen-
erated. However, the mode II emittance will be minimized
by correcting the mode II dispersion in locations (dipoles,
undulators, and wigglers) where synchrotron radiation is
produced. In principle, this ought to be taken into account in
the correction scheme, e.g., by placing a higher weight
on those BPMs that are closest to the points where
large amounts of synchrotron radiation are produced. In

weighting the BPMs for the correction procedure, there
should also be some account taken of the optics. The
mode II dispersion at a location with large horizontal
dispersion will show a strong response to even a small
amount of coupling: the coupling tilts the normal mode
axes, and even a small tilt of the mode II axis will lead to a
large component of the horizontal dispersion appearing
along the mode II axis. On the other hand, where the
horizontal dispersion is small, the mode II dispersion will
be relatively insensitive to changes in coupling. Low-
emittance storage rings generally need low horizontal dis-
persion in the dipoles (and in any insertion devices); but the
horizontal dispersion may reach large values between the
dipoles. To minimize the mode II emittance, therefore, a
larger weight should be given to the mode II dispersion
close to the dipoles and insertion devices, both because this
is where the mode II emittance is generated, and because
this is where the mode II dispersion will likely be least
sensitive to coupling. In practice, we find from simulations
of CesrTA that, although weighting the BPMs has some
effect on the results of tuning based on mode II dispersion
correction, there does not seem to be a very strong impact. It
is possible that with further optimization of the way in
which the weighting is applied, or in other lattices,
there may be a more significant effect. The results from
simulations and experiments presented in the following
sections have been obtained without applying any weight-
ing to the BPMs.
It should also be noted that, in general, emittance is

generated not just by the dispersion�II, but also by gradient
of the dispersion,�0

II; however, it is usually only possible to

measure the dispersion and not its gradient. The inability to
measure �0

II may limit the effectiveness of tuning for low

emittance by correcting the mode II dispersion. It may be
hoped, however, that if the BPMs are not too far apart, then
zero (or very low) values for �II will imply low values also
for �0

II. The possible effectiveness of low-emittance tuning

based on correction of only �II in CesrTA will be demon-
strated in simulations in the following section.

III. SIMULATIONS

A. CesrTA

To illustrate the use of normal mode calibration of the
BPMs for low-emittance tuning of a storage ring, we
present the results of some simulations based on a model
of CesrTA. The results of some experiments on CesrTA are
presented in Sec. IV.
CesrTA is a synchrotron with 768 m circumference that

can store either electrons or positrons. The beam energy
can be varied between 2 and 5 GeV. For all the studies
described here, the energy was 2 GeV. Typical lattice
functions (Twiss parameters and dispersion) are shown in
Fig. 2. With these lattice functions, the natural emittance of
CesrTA at 2 GeV is approximately 2.7 nm.
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The main purpose of CesrTA is to investigate electron
cloud effects in a parameter regime with low vertical
emittance (< 20 pm). The storage ring was developed
from the CESRc ring by a number of modifications, in-
cluding removal of the detector (CLEO) and relocation of
the superferric damping wigglers to dispersion-free regions
of the lattice. Since the original CESRc ring had not been
designed to reach the low emittances needed for CesrTA, a
significant part of the CesrTA program consisted of devel-
opment of techniques for achieving vertical emittance
below 20 pm on a reliable and routine basis. This includes
improvement of the instrumentation including new BPM
electronics capable of turn-by-turn measurements with
resolution of a few microns, and fast beam-size monitors
to allow emittance measurements with resolution of a few
picometers.

Simulations for this paper were carried out in an ex-
tended version of AT [13], an accelerator modeling code
running in Matlab. The model allows a range of magnetic
field strength and alignment errors to be simulated, includ-
ing skew quadrupole fields, tilts (around the beam axis),
and vertical displacements. The x and y coordinates (in the
laboratory frame) of a particle (representing the centroid of
a bunch) tracked through the lattice can be recorded over
any number of turns at any specified locations. Since the
calibration technique that we apply is based on readings
from individual buttons, the model button signals were

generated as functions of the beam x and y coordinates.
The ‘‘BPM coordinates’’ can then be calculated as func-
tions of the button signals. By this means, the calibration
process can be simulated, and the calibration matrices B
and C for each BPM calculated from the results of tracking
over multiple turns in the model.

B. BPM model

The calibration technique that we describe here depends
on the BPM button signals having a linear dependence on
the beam position, over the range of beam position varia-
tions that occur during the calibration process. However,
over the range of possible beam positions, the BPM button
signals have a complicated nonlinear response, that de-
pends on the geometry of the vacuum chamber in the
region of the BPM, and on the geometry of the buttons
themselves. To include nonlinear effects in the simulations
without needing to implement the full complex depen-
dence of the button signals on the beam position, we
used a simplified model in the simulations, in which the
signal bi on BPM button i is given by

bi ¼ giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� xiÞ2 þ ðy� yiÞ2
p ; (21)

where ðx; yÞ are the beam coordinates (with respect to the
reference trajectory) and ðxi; yiÞ are the coordinates of the
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FIG. 2. Lattice functions in CesrTA. Top: horizontal (black) and vertical (red) beta functions. Bottom: horizontal dispersion, with
BPM locations indicated by blue circles, and skew quadrupole locations indicated by vertical dashed lines.
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button location (again with respect to the reference
trajectory). gi is a gain factor, that will include (for ex-
ample) a dependence on the bunch charge. In principle, if
the bunch charge is known accurately, then the signals
from only two buttons are needed to determine the beam
coordinates. However, in the case that the buttons are
symmetrically positioned at

xi ¼ �x0; yi ¼ �y0 (22)

(where for xi, the plus sign holds for i ¼ 2 and i ¼ 4, and
for yi, the plus sign holds for i ¼ 3 and i ¼ 4), then
averaging the button signals leads to the following expres-
sions for the beam coordinates:

x ¼ 1

8x0

��
g1
b1

�
2 �

�
g2
b2

�
2 þ

�
g3
b3

�
2 �

�
g4
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�
2
�
; (23)

y ¼ 1

8y0

��
g1
b1

�
2 þ

�
g2
b2

�
2 �

�
g3
b3

�
2 �

�
g4
b4

�
2
�
: (24)

BPM alignment (including tilt) errors may be imple-
mented in the simulation by applying some appropriate
transformation to the button coordinates ðxi; yiÞ in Eq. (21),
while continuing to use the nominal values for the button
coordinates in calculating the beam coordinates from the
button signals using Eqs. (23) and (24). Similarly, gain
errors may be implemented by applying some variation to
the values of gi in Eq. (21), while continuing to use the
nominal values for the gain coefficients in calculating
the beam coordinates from the button signals using
Eqs. (23) and (24).
Simulated calibration data, obtained by implementing

Eqs. (21), (23), and (24) in a tracking code, are shown in
Figs. 3 and 4. The data were generated by determining the
6D phase space coordinates of a particle with, in this case,
nonzero mode I oscillation amplitude (using the eigenvec-
tors of the single-turn matrix), and zero amplitude in the
other two oscillation modes. The particle was tracked for
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FIG. 3. Simulation of turn-by-turn button signals on a BPM (7W). Each plot shows a correlation between two BPM button signals or
beam coordinates (returned by the BPM), obtained by tracking a bunch performing coherent oscillations in normal mode I. An ideal
model (with no errors) of the CesrTA lattice is used: tracking data are shown as blue points; fitted ellipses are shown in red; the major
axes of the ellipses are shown as black lines. The ellipses are more clearly visible when coupling is present (see Fig. 4). Button signals
are calculated using Eq. (21), with relative gain errors applied to the buttons as follows: g2=g1 ¼ 1:063, g3=g1 ¼ 1:282, g4=g1 ¼
1:170. The button locations are given by x0 ¼ 20 mm, y0 ¼ 10 mm. x and y beam coordinates are calculated from Eqs. (23) and (24),
but using nominal gain values g1 ¼ g2 ¼ g3 ¼ g4.
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several hundred turns in an ideal model of the lattice, with
the button signals at the BPMs, calculated using Eq. (21),
recorded on each turn. Figure 3 shows a set of correlation
plots (between BPM button signals, or beam coordinates)
for BPM 7W with relative gain errors applied to the
buttons. The x and y beam coordinates are calculated
from the button signals by applying Eqs. (23) and (24),
but with ‘‘nominal’’ gain values g1 ¼ g2 ¼ g3 ¼ g4. The
relative button gain errors, used for calculating the button
signals from the actual beam position in the simulation,
have been chosen roughly to reproduce the experimental
data that we show later in Fig. 7. Note that there is reason-
ably good agreement between the simulation and the ex-
perimental data in the gradients of the correlations between
the button signals, and between the x coordinate and the
button signals. The agreement between the simulation and
the experimental data in the gradients involving the y
coordinate, however, is poor: this is likely the result of
coupling in the real machine, which is not included in the
model. Without any coupling or gain errors, there will be
no variation in the y coordinate resulting from oscillation
in normal mode I. Figure 4 shows the results of the same
simulation, except with one skew quadrupole (SKQ48W)

turned on, with strength k ¼ �0:023 m�2. (Figure 4 is
to be compared with Fig. 12, which shows the correspond-
ing experimental data.) With coupling generated by the
skew quadrupole, the beam motion in normal mode I is
now no longer along a line in coordinate space: instead, the
beam describes an ellipse, which results in ellipses clearly
visible in the correlation plots between the button signals.
Again, there is good agreement in the gradients of the
major axes of the ellipses, between the simulation
(Fig. 4) and the experimental data (Fig. 12), except for
the plots involving the y coordinate.

C. Emittance calculation

Exact values for the horizontal, vertical, and longitudi-
nal emittances in the model, taking into account field and
alignment errors leading to dispersion and coupling, are
obtained in AT using the envelope method [14]. As an initial
test of the theory, the emittance for 1000 seeds of skew
quadrupole errors distributed around the ring was calcu-
lated in three different ways: (1) using the envelope
method; (2) estimated using Eq. (10); (3) estimated using
Eq. (10) but with a modified version of Eq. (12), in which
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the mode II dispersion is replaced by the vertical (y)
dispersion. Figure 5 shows the distribution of the ratio of
the estimated (methods 2 and 3) to the exact (method 1)
mode II emittances over 1000 seeds of random skew
quadrupole errors. Results are shown for two cases: with
the nominal rf voltage of 8.1 MV in CesrTA, and with a
reduced rf voltage of 0.81 MV.

If we consider first the case of the reduced rf voltage, we
see that Eq. (10) gives a very good estimate of the true
mode II emittance, while the emittance calculated from
modified equations (using the vertical rather than the
mode II dispersion) shows a very large spread. This illus-
trates the fact that the mode II dispersion takes account all
of the significant contributions to the emittance generation.

For larger rf voltages, the spread in the results from
Eq. (10) increases: this is because the approximations
required to derive this equation start to break down. In
particular, the derivation assumes that any correlations
between the longitudinal and transverse coordinates of

particles in the bunch can be neglected. Although this is true
for most storage rings, correlations between longitudinal
and transverse coordinates can appear when the synchro-
tron tune becomes large. A large synchrotron tune results
from strong longitudinal focusing from the rf cavities, and a
large momentum compaction factor. If we consider an
ellipse in longitudinal phase space, the rf focusing will
give a ‘‘tilt’’ to the ellipse,while themomentumcompaction
factor as the particles move around the rest of the ring will
have the effect both of advancing particles around the
ellipse (the longitudinal phase advance), and modifying
the shape of the ellipse. The stronger the rf focusing, and
the larger the momentum compaction factor, the larger the
tilt of the longitudinal phase space ellipse will be. For a real
distribution, this indicates that there will be a significant
correlation between the energy of a particle and its
longitudinal position (coordinate) within the bunch.
Where dispersion is present, this will in turn lead to a
correlation between the transverse and longitudinal
coordinates: this is not taken into account in the deriva-
tion of Eq. (10). In CesrTA, the synchrotron tune is
about 0.023 with an rf voltage of 0.81 MV, increasing to
0.074 at an rf voltage of 8.1 MV. The effect of the larger
synchrotron tune on the accuracy of Eq. (10) can be clearly
seen in Fig. 5.
The fact that the relationship between mode II emittance

and mode II dispersion expressed by Eq. (10) starts to
break down for large rf voltages, suggests that correction
of the mode II dispersion may be a more effective tech-
nique for correcting the emittance in storage rings at lower
values of the synchrotron tune. However, the simulation
results presented in the following section suggest that the
technique should still be useful even in CesrTA with the
nominal rf voltage. The purpose of the simulations de-
scribed in the present section is principally to illustrate
the relevance of the mode II dispersion for the mode II
emittance, but the results also give some indication of
potential limitations of the use of mode II dispersion for
low-emittance tuning in particular (somewhat unusual)
parameter regimes.

D. Emittance tuning

Emittance tuning simulations were performed to inves-
tigate the likely mode II emittance that might be achieved
with the magnitude of magnet alignment and BPM gain
errors expected in practice in CesrTA. Random errors were
applied, with values having Gaussian distributions, with
rms as shown in Table I. Note that the BPM alignment
and gain errors are applied as variations in the button
coordinates ðxi; yiÞ and gain coefficients gi, as described
in Sec. III B.
With errors applied in the model, the correction proce-

dure was implemented as follows.
(1) An initial orbit correction using the vertical steering

magnets was applied.
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FIG. 5. Emittance estimated from dispersion in CesrTA with
(top) 8.1 MV rf voltage, and (bottom) 0.81 MV rf voltage. The
lines show the distribution (over 1000 seeds of machine errors)
of the ratio of the estimated mode II emittance to the actual
mode II emittance; the vertical axes are scaled so that each curve
has unit area. In the normal mode case, the mode II dispersion is
used, and the emittance estimated using Eq. (10). In the
Cartesian case, a modified version of Eq. (10) is used, in which
the mode II dispersion is replaced by the vertical dispersion in
Eq. (12). In both cases, the exact emittance is calculated using
the envelope method. The approximations involved in Eq. (10)
are valid for small values of the synchrotron tune (which is 0.074
at 8.1 MV rf, and 0.023 at 0.81 MV rf).
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(2) The normal modes were identified from the single-
turn transfer matrix; particles in each of the normal modes
(with initial values of the dynamical variables taken from
the real parts of the eigenvectors of the single-turn transfer
matrix) were tracked for 50 turns, with the button signals at
each BPM recorded on each turn.

(3) The calibration matrix B, defined in Eq. (18), for
each BPM was determined from correlations between the
turn-by-turn button signals. Nominal values, based on
electromagnetic modeling of the BPM buttons and the
design of the electronics, were assumed for the calibration
matrix C.

(4) The mode II dispersion was calculated at each BPM
from the change in (calibrated) BPM reading with respect
to energy. That is, the change in button readings corre-
sponding to a change in closed orbit with respect to energy
were found, and then the change in coordinates calculated
using Eq. (20).

(5) A dispersion correction was applied by setting the
strengths of 26 skew quadrupoles (with locations shown in
Fig. 2), determined from the nominal (i.e. ideal model)
response matrix between the skew quadrupole strengths
and the mode II dispersion at the BPMs.

(6) A further iteration of the dispersion measurement
and correction was applied (by repeating steps 2–5).

For simulations involving a large number of seeds,
the total time required for tracking becomes significant.
The time required for tracking depends mainly on the
number of turns used to collect the BPM calibration data.
In step 2, the number of turns was chosen to minimize the
tracking time required in the simulation, while still achiev-
ing good accuracy for the determination of the normal
modes. It was found that increasing the number of turns
beyond 50 did not have any significant impact on the
results. In the experimental studies on CesrTA, we used
the full 1024 turns of data returned by the BPMs, simply
because the data were available, and there would be no
significant advantage in reducing the number of turns.
We have not investigated how, in practice, the accuracy of
the results depends on the number of turns of data collected.

The tuning simulation was repeated using a similar
procedure to that given above, but using the vertical dis-
persion instead of the mode II dispersion. The results from
each simulation, as distributions of the final emittance over

1000 seeds of random errors with different magnitude of
BPM gain errors, are shown in Fig. 6.
Clearly, a dispersion correction (following an orbit cor-

rection) alone is insufficient to achieve the goal of mode II
emittance less than 20 pm if the correction is based on the
vertical dispersion. This is consistent with experience of
CesrTA operation: low-emittance tuning has generally
been accomplished using correction of both (vertical) dis-
persion and coupling, with each correction calculated and
applied separately. However, if the mode II dispersion is
used, then dispersion correction (following an orbit cor-
rection) seems capable, at least in simulation, of reducing
the emittance well below the goal of 20 pm. Note that
the technique seems robust, in that for all 1000 seeds of
random errors, the procedure converged to a stable
solution.
Also shown in Fig. 6 are the distributions of the vertical

dispersion and the mode II dispersion (rms of values
measured at the BPMs, including simulated noise), after
tuning based on correction of the respective dispersion in
each case. For the vertical dispersion, the results are again
sensitive to the BPM gain errors, and in fact the gain errors
limit the quality of the dispersion correction that can be
achieved. The mode II dispersion measurement is insensi-
tive to the (systematic) BPM gain errors, but appears to be
significantly affected by the (random) measurement errors:
a resolution of 12 mm is assumed for the dispersion mea-
surement. Because the measured value of the mode II
dispersion following correction is limited by the resolution
of the dispersion measurement, the mode II emittance
following correction is poorly correlated with the mea-
sured rms dispersion. It is therefore difficult to set a goal
for the dispersion correction: however, from the distribu-
tions in Fig. 6, it appears that if a mode II dispersion of
around 15 mm (rms measured at the BPMs) can be
achieved, then a mode II emittance below 20 pm has a
good probability (in the simulations, 86% of seeds gave a
mode II emittance below 20 pm after correction of the
mode II dispersion).
It is also significant to note that the emittance achieved

after minimizing the vertical dispersion is dependent on the
BPM gain errors: larger BPM gain errors tend to lead to
larger final mode II emittances. This is to be expected,
since gain errors in the BPMs will couple horizontal dis-
persion into the vertical. With large BPM coupling, the
vertical dispersion measurement will be subject to signifi-
cant systematic errors, limiting the quality of the correc-
tion. However, the correction based on normal mode
dispersion is completely insensitive to BPM gain errors:
this is a consequence of the fact that the BPMs are cali-
brated using normal mode excitation of the beam. The
calibration technique effectively determines the appropri-
ate relationship between changes in button signal and
changes in beam position, for the BPM to read the beam
motion along the normal mode axes.

TABLE I. The rms values for error distributions.

Error type Distribution rms

Dipole tilt 300 	rad
Quadrupole tilt 300 	rad
Quadrupole vertical alignment 250 	m
Sextupole vertical alignment 250 	m
BPM vertical alignment 100 	m
BPM tilt 20 mrad

BPM gain 0–10%

Dispersion measurement resolution 12 mm
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Similar results have been obtained for simulations
of other storage rings, e.g., the KEK Accelerator Test
Facility [15].

IV. EXPERIMENTAL RESULTS

A. BPM calibration

Typical calibration data for a single BPM (BPM 7W) are
shown in Fig. 7. The plots are produced by recording the
raw button signals for 1024 consecutive turns, while the
beam is resonantly excited in normal mode I. A similar set
of plots is produced for resonant excitation in mode II.
Each plot shows the correlation between a pair of buttons.
The control system also records the horizontal (x) and
vertical (y) position of the beam on each turn, based on a
nominal calibration of the BPM: the correlations between
the coordinates and the button signals are also shown. The
amplitude of the beam oscillation is more than 2 mm peak
to peak, in the horizontal. There is some oscillation visible
in the vertical, about 100 	m peak to peak: this could be a
consequence of some coupling in the machine, or some
error in the nominal BPM calibration, or both. The corre-
lations between the button signals are almost perfectly

linear, with very little scatter: we expect our assumption
of a linear relationship between the beam position and
button signals that we used in Sec. II B to be valid. The
gradient of the correlations between each pair of buttons
provides the values for the calibration matrix B, Eq. (18).
The gradients are positive or negative according to whether
the buttons are on the same horizontal side or opposite
horizontal sides of the vacuum chamber (see Fig. 1). Note
that calibration data for all BPMs in the ring can be
collected simultaneously. Fitting the gradients to the
correlation plots is a straightforward and very fast
procedure.
To test the calibration of a BPM, we can inspect the

Fourier spectrum of the beam coordinates returned by the
BPM over a number of consecutive turns during resonant
excitation of a normal mode. If the BPM is incorrectly
calibrated to read the normal mode coordinates, the spec-
trum of both coordinates will contain peaks at the resonant
frequency corresponding to the excited mode. For a cor-
rectly calibrated BPM, the spectrum of the mode I coor-
dinate will contain a peak only at the mode I frequency, and
the spectrum of the mode II coordinate will contain a peak
only at the mode II frequency. Figure 8 shows the Fourier
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spectra of the coordinates returned by BPM 7Wover 1024
consecutive turns, with resonant beam excitation in mode I.
We see that a peak corresponding to the ‘‘horizontal’’ tune
(the mode I resonant frequency) appears in the spectra of
both the x and y coordinates. However, using the normal
mode calibration derived from the data shown in part in
Fig. 7, the mode I frequency peak is entirely absent from
the mode II spectrum. Similarly, Fig. 9 shows the Fourier
spectra of the coordinates returned by BPM 7Wover 1024
consecutive turns, with resonant beam excitation in
mode II. With the nominal calibration, a peak correspond-
ing to the mode II resonant frequency is clearly visible in
the spectra of both the x and y coordinates. However, with
the calibration based on observation of the turn-by-turn
data, the mode II resonant frequency peak is entirely absent
from the spectrum of the mode I coordinate. Note that there
is a significant peak at the mode I resonant frequency,
visible in the mode I coordinate: this likely results from
real beam motion. These observations provide confidence
in the BPM calibration obtained from observation of turn-
by-turn button signals during resonant excitation in one or
the other of the normal modes.
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B. Mode II dispersion response to changes in skew
quadrupole strength

To test the measurement of the mode II dispersion using
calibrated BPMs, and also to validate the model, the
change in mode II dispersion was measured, following
known changes in selected skew quadrupole strengths.
Figure 10 shows the measured mode II dispersion after a
standard tuning procedure, involving correction of the
closed orbit, vertical dispersion, and betatron coupling.
The skew quadrupole strengths in a model were adjusted
to fit the measured mode II dispersion. Here, an ideal
model, with all magnet strengths set to their design values,
and no alignment or BPM errors, was used for the fitting.
Using a response matrix (inverted by singular value de-
composition), strengths of all skew quadrupoles were de-
termined that gave the best match between the mode II
dispersion in the model, and the mode II dispersion mea-
sured in the machine. The strengths of the skew quadru-
poles and the mode II dispersion found in this fit in this
case are also shown in Fig. 10. The rms (over the values at
the BPMs) measured mode II dispersion is 21 mm, and the
fitted skew quadrupole strengths are generally less than
2� 10�3=m2. Note that there is a significant residual
between the fitted dispersion and the measured dispersion:
this suggests that there may be only a limited ability to
correct the mode II dispersion using the skew quadrupoles.

After making the initial measurement, the strength of
skew quadrupole 48W was changed by �k¼�0:023m�2.
The change in mode II dispersion and the changes in fitted
skew quadrupole strengths are shown in Fig. 11. The
horizontal dispersion in the lattice at the location of this
skew quadrupole is close to zero. Therefore, the vertical

dispersion is not expected to change when the strength of
the skew quadrupole is varied. This was verified using
conventional measurement techniques (using the nominal
BPM calibrations). However, there is a large change in the
mode II dispersion (peak at 0.6 m). This is primarily a
result of the coupling introduced by the skew quadrupole
which tilts the normal mode axes. Thus, where the hori-
zontal dispersion is large, a significant component appears
along the mode II axis.
The strengths of the skew quadrupoles in a model of the

machine were adjusted to fit the mode II dispersion mea-
sured after the change in skew quadrupole 48W, and the
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strengths compared with the values fitted to the dispersion
measured before changing skew quadrupole 48W. The
changes in fitted skew quadrupole strengths are shown in
the top plot in Fig. 11. The change in fitted strength of skew
quadrupole 48W (� 0:022 m�2) agrees well with the
change made in the machine (� 0:023 m�2). A number
of other skew quadrupoles are fitted with smaller, but not
insignificant, strengths. This may be the result of discrep-
ancies between the model and the actual machine condi-
tion, or of some degeneracy between the effects of the skew
quadrupoles on the mode II dispersion.

Note that the dispersion was measured by excitation
of longitudinal oscillations of the beam. Low-level

processing of the button signals recorded during the exci-
tation returns an amplitude and phase for the signal (at the
synchrotron frequency) on each button. The normal mode
calibration data (obtained by observation of button signals
during excitation of the transverse modes) can then be
applied directly to the button amplitude and phase data, to
return the mode I and mode II dispersion. This technique,
known as an ‘‘AC dispersion measurement’’ [16], has been
shown to produce results that match very closely the
measurement of dispersion using more conventional tech-
niques. This is to be contrasted to the common procedure
for measuring dispersion in a storage ring which involves
measuring the change in the closed orbit when the rf
frequency is varied. In CesrTA, changing the rf frequency
is a relatively slow process because of the superconducting
rf system and there is a very limited range over which the
rf frequency can be varied. The AC dispersion measure-
ment, on the other hand, requires no variation in the rf
parameters; only a few thousand turns (215 turns are gen-
erally used when making the measurement on CesrTA) of
turn-by-turn button signals are required, which makes this
measurement technique extremely fast. Results agree
closely with dispersion measurement using rf frequency
variation, whether using the standard or the normal mode
BPM calibration.
Figure 12 shows the correlation plots between the button

signals on BPM 7W during resonant excitation of mode I,
with the strength of skew quadrupole 48W changed by
�k ¼ �0:023 m�2. Compared with Fig. 7, which shows
the same measurement, but with skew quadrupole 48W set
to its nominal value after machine tuning, the effects of
coupling are now very pronounced. Distinct ellipses are
produced when signals from pairs of buttons are plotted
against each other over successive turns. The approxima-
tion of weak coupling is a poor one, and the normal mode
motion cannot be associated with simple axes in coordinate
space. Nevertheless, we can still obtain an effective
‘‘normal mode calibration’’ of the BPMs, by taking the
gradients of the major axes of the ellipses to define the
components of the calibration matrix B. The justification
for this lies in the agreement between the measured
mode II dispersion response to changes in skew quadrupole
strengths, and the response predicted from the model, as
shown, for example, in Fig. 11. Furthermore, if the normal
mode calibration is used in correcting the mode II disper-
sion, then on successive iterations the coupling should
become weaker, and the weak coupling assumption will
become a better approximation.
The validity of the model is further illustrated in Fig. 13.

This shows the variation in the skew quadrupole strengths
in a model fitted to the measured mode II dispersion, over a
range of applied changes in strength of skew quadrupole
48W. The agreement between the applied change and
the fitted strength is good over a wide range of values,
even where there is significant coupling in the machine.
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The fitted model strengths of other skew quadrupoles also
vary (approximately) linearly with the strength of skew
quadrupole 48W applied in the machine, but the depen-
dence is relatively weak. There are three skew quadrupoles
for which the fitted gradients are between 20% and 30% of
the gradient fitted for skew quadrupole 48W: these are the
skew quadrupoles 47W, 48E, and 47E, which are exactly
the skew quadrupoles in the same region of the machine as
skew quadrupole 48W (which is at s ¼ 377 m in Fig. 2).
As already mentioned, the fitted changes in strength of
these skew quadrupoles may be the result of some degen-
eracy, or the result of some discrepancy between the model
and the machine: further studies using a carefully cali-
brated model would be needed to identify the exact cause.
However, it appears to be possible to use the model to
predict reasonably well the effect of changes in skew
quadrupole strength on the mode II dispersion in the ma-
chine. This suggests that a response matrix (between skew
quadrupole strengths and mode II dispersion measured at
the BPMs) calculated from the ideal model should provide
a reasonable basis for correcting the mode II dispersion in
the machine.
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C. Low-emittance tuning by correction of
mode II dispersion

To explore the effect of the mode II dispersion on the
vertical emittance in CesrTA, two attempts were made at
correcting the measured mode II dispersion. The beam
diagnostics in CesrTA includes a fast (turn-by-turn) x-ray
synchrotron radiation beam-size monitor (xBSM) [17],
with resolution for beam-size measurements less than
10 	m. Unfortunately, on the first attempt at mode II
dispersion correction, this monitor was unavailable, which
meant that an estimate of the emittance could not be made.
However, the results of dispersion and coupling measure-
ments (shown in Table II) appeared promising. Initially, the
storage ring was tuned using the conventional procedure,
involving correction of the orbit, dispersion, and coupling
by optimizing the strengths of the vertical steering magnets
and skew quadrupoles. Following this initial tuning, all
skew quadrupoles were turned off. The normal mode cali-
bration factors were measured, and the mode II dispersion
was measured. The coupling, characterized by the rms
value of �C12 [9,18,19], was also measured. Using the
response matrix between the skew quadrupoles and
mode II dispersion, at the BPMs, computed from the ideal
model, the skew quadrupole strengths needed to correct the
measured mode II dispersion were calculated. These
strengths were applied, and the BPMs recalibrated. The
measurements of mode II dispersion and coupling (rms
�C12) were then repeated. As can be seen from Table II,
there was a significant reduction in both the measured
mode II dispersion (in line with the prediction from the
model), and the coupling.

Once the xBSM was available, a further attempt at low-
emittance tuning using mode II dispersion correction was
made. On this occasion, the following procedure was
applied.

(1) The storage ring was tuned using the conventional
procedure, based on correction of orbit, vertical dispersion,
and betatron coupling, using vertical steering magnets and
skew quadrupoles. The emittance was estimated from
measurements of the vertical beam size using the xBSM.
(2) All skew quadrupoles were turned off, and the emit-

tance again estimated from the xBSM.
(3) Normal mode BPM calibration data were collected

using the results of the calibration, the mode II dispersion
at the BPMs was measured. Using a response matrix
computed from the design model, skew quadrupole
strengths to correct the mode II dispersion were calculated
and applied. Note that equal weighting was given to the
dispersion measured at each BPM. The emittance was
again estimated from the xBSM.
(4) A further iteration of normal mode calibration and

correction was applied, and a final estimate of the emit-
tance made from the xBSM.
The results are shown in Table III. The emittance is

estimated using the formula


y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y�y þ 
2

��
2
y

q
; (25)

using the nominal vertical beta function at the xBSM
source point of �y ¼ 30 m and the rms energy spread at

2 GeV of 
� ¼ 9� 10�4. The vertical dispersion at the
xBSM was measured by observing the change in the
centroid beam position with respect to a change in beam
energy induced by a change in rf frequency. We assume
that the betatron coupling makes a negligible contribution
to the vertical beam size.
At first sight, the results appear disappointing. First, the

measured mode II dispersion decreased after turning off
the skew quadrupoles following the initial (conventional)
emittance tuning. However, this is not inconsistent with an
increase in the emittance, since the mode II dispersion is
measured only at the BPMs, and not in the dipoles and
wigglers where it really has significance for the emittance.
It should also be noted that the changes in mode II disper-
sion that were measured were small compared with the
accuracy of the measurement (of approximately 12 mm,
based on the repeatability of the measurement with no
changes in machine condition between measurements).
Second, the attempt at correcting the mode II dispersion

TABLE III. Results of a test of emittance tuning in CesrTA using correction of mode II dispersion. The rms of the mode II dispersion
is calculated over the values measured at the BPMs. The vertical beam size is measured using an x-ray beam-size monitor (xBSM). The
vertical dispersion (�y) is measured at the BPM closest to the source point for the xBSM.

Correction step Machine conditions rms �II

(mm)

rms vertical beam size

(	m)

�y

(mm)

�y
(pm)

1 Following initial tuning (orbit, dispersion and coupling correction) 38 21 6 14

2 All skew quadrupoles turned off 32 27 3 24

3 After first mode II dispersion correction 32 22 8 14

4 After second mode II dispersion correction 31 28 13 21

TABLE II. Results of an initial test of mode II dispersion
correction in CesrTA. The rms values are the root mean squares
of the measurements at all BPMs.

Machine conditions rms �II (mm) rms �C12

After initial tuning, all skews off 31 0.014

After mode II dispersion correction 18 0.007
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appears to have had little effect on the dispersion. But this
is in fact consistent with the model, given that the mea-
sured mode II dispersion could not be well fitted using the
model. Figure 14 shows the strengths of the skew quadru-
poles in the model fitted to the measured dispersion (top), a
comparison between the mode II dispersion fitted in the
model and the mode II dispersion measured in the machine
(center) and the difference between the measurement and
the fit (bottom). In this case, the model achieves a poor fit
to the measurement: the strengths of the skew quadrupoles
are weak, and the residual between the measurement and
the fitted model is almost as large as the measured mode II
dispersion. This indicates that the sources of mode II dis-
persion in the machine (including orbit distortion, orbit
offsets in the sextupoles, and quadrupole tilts) are not well
fitted by the skew quadrupoles. In this case, the skew
quadrupoles are not expected to be effective in correcting
the mode II dispersion.

It must also be noted that after both corrections, the
measured rms mode II dispersion is almost twice that
expected from the simulations (see Fig. 6). This could be
because the measurement error was larger on this occasion
than previously, or because the model was not sufficiently
close to the machine. Although there appeared to be good
agreement between the model and the machine for the
effect of changing one particular skew quadrupole
(SKQ48W), this was for relatively large changes in the
skew quadrupole strength. It is possible that for precise
correction of the mode II dispersion, at the level achieved
in the simulations, a more accurate model of the machine
would be required.
Nevertheless, it appears that the first correction,

although it had little apparent effect on the mode II disper-
sion, did lead to some reduction of the vertical emittance.
But a further attempt at correction appears to have led to an
increase in the vertical emittance. There are several pos-
sible explanations for this. One is that the correction, by
attempting to reduce the overall rms dispersion, may have
resulted in a reduction in the mode II dispersion at some
locations, but at the cost of a small increase in the mode II
dispersion at others. Since the mode II dispersion tends to
be small where the horizontal dispersion is small, i.e., in
the dipoles and wigglers, the most likely locations for a
small increase in the mode II dispersion are at the locations
where synchrotron radiation is generated: this would then
lead to an increase in the mode II emittance. One way to
address this issue would be to apply a higher weight to the
dispersion measurements at the BPMs close to the wigglers
and dipoles, and a lower weight to the dispersion measure-
ments at locations where the horizontal dispersion is large
(but where no synchrotron radiation is generated).
Another possible explanation could simply be that the

mode II dispersion measurement is not sufficiently accu-
rate, or that the response matrix (based on the ideal model)
is not sufficiently close to the actual machine. Based on
reproducibility tests, the accuracy of the mode II dispersion
measurement is believed to be approximately 12 mm: this
is large compared to the changes in mode II dispersion seen
after applying the corrections. In this case, it is possible
that there was in fact a real increase in the mode II disper-
sion, with a consequent increase in the emittance.
Following the experimental studies, further simulations

were carried out to investigate the possible reasons for the
increase in emittance following a second iteration of
the mode II dispersion correction. It was found that using
the procedure described in Sec. III D (and which was used
also in the experimental studies), the mode II emittance
does indeed fluctuate by large amounts on successive iter-
ations: a typical example for a particular seed of machine
errors is shown in Fig. 15 (top). Applying a higher weight in
the correction to the dispersion measurements at BPMs
close to the dipoles and wigglers can reduce the fluctuations
to some extent, but the effect is not strong, or completely
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FIG. 14. Results of fitting a model to a measurement of the
mode II dispersion. The measurement was made after all skew
quadrupoles were turned off, following an initial low-emittance
tuning using conventional techniques (vertical orbit and disper-
sion correction, and coupling correction). Top: fitted skew quad-
rupole strengths. Middle: measured and fitted mode II
dispersion. Bottom: residual between measured and fitted
mode II dispersion. Note that in this case, a poor fit is achieved
in the model to the mode II dispersion. This suggests that the
skew quadrupoles would not be effective in correcting the real
sources of mode II dispersion in the machine.
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reliable. The effects of random errors in the dispersion
measurement (which are included in the simulations) can
be reduced to some extent simply by applying a scaling
factor to the computed correction. That is, the computed
changes in skew quadrupole strengths are multiplied by a
chosen scaling factor (with value between 0 and 1) before
they are applied: this effectively averages the dispersion
correction over several iterations. A typical example of the
results, for a scaling factor of 0.4 and a particular seed of
machine errors, is shown in Fig. 15 (bottom). As expected, a
small value for the scaling factor means that a larger
number of iterations are required before the emittance
converges. However, the fluctuations in the emittance be-
tween successive iterations are effectively smoothed out,
and the final values achieved are similar to the smallest
values achieved with a scaling factor of 1. This modification
of the tuning technique (i.e. the implementation of a scaling
factor) would be easy to implement in practice; however,

some further investigation would be required to optimize
the value of the scaling factor, to minimize the number of
iterations required to reach convergence while still achiev-
ing a reduction in the emittance fluctuations on successive
corrections. In simulations, a value of around 0.4 for the
scaling factor seemed to give good results.
Finally, we note that the emittance values estimated

from the beam measurements are broadly consistent with
the results of simulations presented in Sec. III. With real-
istic machine errors in CesrTA, a correction based purely
on correction of the orbit and vertical dispersion is ex-
pected to achieve vertical emittances of order 50 pm or
more, depending on the size of the errors and, in particular,
the BPM gain errors (see Fig. 6). In the conventional tuning
techniques applied at CesrTA, in particular through orbit
and dispersion correction, and correction of the coupling
(characterized by �C12), emittances of around 7 pm have
been achieved. Simulations suggest that tuning based on
correction of the mode II dispersion could give emittances
of that order or below: however, this depends on the seed of
random errors. In the distribution shown in Fig. 6, a little
over 50% of seeds of machine errors result in a final
emittance below 10 pm, while 36% of seeds result in a
final emittance between 10 and 20 pm.

V. SUMMARYAND CONCLUSIONS

Calibration of BPMs using normal mode beam excita-
tion offers the possibility of a novel technique for low-
emittance tuning in storage rings. This technique has a
number of potential advantages over conventional tech-
niques, such as ORM analysis. These advantages include:
(i) The calibration data can be collected and processed
quickly (within a few minutes) and easily. The only in-
strumentation requirements are: a means for resonant ex-
citation of transverse beam motion; and BPMs capable of
returning turn-by-turn signals from each button. (ii) Since
the calibration takes only a short time, it can be performed
after any significant change in beam conditions, such as
changes in orbit, coupling, or beam current. This ensures
that the calibration is always accurate for the present
machine conditions. (iii) Using calibrated BPMs, low-
emittance tuning consists of minimizing the mode II dis-
persion, which can be measured directly using conven-
tional techniques (e.g. observing the change in beam
position with respect to a change in beam energy). This
is again a relatively fast and straightforward procedure.
(iv) The technique can be applied as easily to a large ring as
to a small ring. (v) Since the BPMs are calibrated directly
from observation of normal mode beam motion, the cali-
brated BPM readings are insensitive to BPM alignment
errors, or gain errors arising (for example) from poor
characterization of the electronics. Such errors can be
difficult to determine with good accuracy, and can vary
over time, but can be an important limitation on conven-
tional low-emittance tuning techniques.
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FIG. 15. Results from simulation of iterating a mode II dis-
persion correction for tuning the mode II emittance. Top: with a
scaling factor of 1 applied to the computed changes in skew
quadrupole strengths, there are significant fluctuations in the
mode II emittance in successive iteration. Bottom: with a scaling
factor of 0.4, the fluctuations are smoothed out, and the emit-
tance (and dispersion) converge to some final values. The same
magnitude of machine errors was applied as used in the simu-
lations described in Sec. III D. Note that the same seed of
random errors was used to generate both top and bottom plots.
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Simulations for CesrTA (and for the KEK Accelerator
Test Facility) suggest that the technique is very robust, and
could be used to achieve very low beam emittances: the
distribution shown in Fig. 6 for the emittance following
normal mode dispersion correction has a little over 50% of
seeds resulting in a final emittance below 10 pm. The basic
principles behind the BPM calibration have been demon-
strated in experimental tests at CesrTA. It has been shown
possible to collect good quality data reliably and routinely;
and tests of the calibration (principally, comparisons of the
frequency spectra of readings from uncalibrated and cali-
brated BPMs) indicate that following the calibration pro-
cedure, the BPMs do indeed read beam motion along the
normal mode axes. Predictions of a model (based on an
ideal machine) have been shown to be in good agreement
with measurements of the response of the mode II disper-
sion to changes in skew quadrupole strengths. This pro-
vides the basis for a low-emittance tuning procedure based
simply on the correction of the mode II dispersion using
skew quadrupoles.

So far, attempts to apply the normal mode calibration to
low-emittance tuning of CesrTA have met with limited
success. Using conventional techniques, emittances of
around 7 pm (significantly below the initial project goal)
have already been achieved. Simulations suggest that it
may be possible, depending on the exact distribution of
machine errors, to achieve emittances of that order or less,
using correction of the mode II dispersion. However, in a
test of the technique, it was found that the measured
mode II dispersion could not be well fitted using the
available skew quadrupoles. Although the low value of
the emittance achieved after conventional tuning (involv-
ing correction of the orbit and vertical dispersion, and
separate correction of the coupling) was reproduced after
tuning based on correction of the mode II emittance,
further reduction of the emittance was not demonstrated.
It is not possible to make a direct detailed comparison
between the mode II dispersion measured in the machine
and the mode II dispersion predicted by a model, because
the dispersion depends on the exact set of errors present,
and these are not known. However, the measured change in
mode II dispersion resulting from a known change in skew
quadrupole strength is consistent with the change predicted
from a model (taking into account that an ideal model has
been used, and not a model that has been calibrated against
machine measurements). Simulations can be used to pre-
dict the distribution of final emittance, after correction of
the mode II dispersion, over many seeds of random error:
the measured emittance of 14 pm following application of
the tuning procedure on the real machine has a reasonable
probability within the distribution (shown in Fig. 6) calcu-
lated using realistic values for the magnitudes of the errors.

From simulations, it seems possible that the reason the
emittance was not further reduced by additional iterations
of the correction procedure was because of inaccuracies in

the dispersion measurement, and differences between the
response matrix in the model and the machine. However, it
appears (from simulation) than an effective way to improve
the technique could simply be to apply a scaling factor to
the computed skew quadrupole strengths, before applying
them to the machine. Other improvements to the correction
procedure are also possible, for example, larger weights
could be applied to the dispersion measurements at BPMs
close to the wigglers and dipoles. Further studies would be
needed to optimize the correction procedure: however, the
results obtained so far provide a proof of principle for the
technique. Our studies have focused on an operating stor-
age ring (CesrTA) in its present configuration. Although a
number of upgrades to the diagnostics and correction
systems have been made in recent years to allow the
machine to achieve very low vertical emittances, these
upgrades have inevitably been limited by the availability
of resources, and constraints from the original machine
design and construction. It would be interesting to inves-
tigate further modifications and upgrades (for example, the
possibility of additional skew quadrupole correctors) that
may allow achievement of still smaller vertical emittances.
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