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0.1.1 Introduction

Dispersion is the dependence of the closed orbit on the beam energy. In a storage
ring with horizontal but no vertical bends, the horizontal dispersion characterizes
the optics. Absent misalignments and transverse coupling the first order vertical
dispersion is zero. Residual vertical dispersion results from vertical kicks due to
offset quadrupoles and tilted dipoles, and from coupling of horizontal dispersion via
tilted quadrupoles and offset sextupoles. Vertical dispersion is a principle source of
vertical emittance. Measurement of vertical dispersion is essential to identifying and
correcting its sources.

A simple technique for determining the dispersion is to measure the difference in
closed orbits of different energies. The energy is changed by adjusting the frequency
of the RF cavities. Alternatively, we recognize that dispersion represents the cou-
pling of longitudinal and transverse motion. This allows us to exploit the techniques
developed for measuring horizontal-vertical coupling, in particular resonant excita-
tion of the normal mode frequencies and then measurement of the relative phase and
amplitude of the vertical and horizontal response at each beam position monitor.
[1][2]

0.1.2 Formalism

We begin with an illustration of horizontal dispersion as coupling of longitudinal and
horizontal motion. The linear motion is characterized by a 4X4 full turn map T . We
suppose that there is a single RF cavity with matrix

Crf =

(
I 0
0 A

)
, where A =

(
1 0
−ω

c
V
E

1

)
(1)

Then

T = RCrf where R =

(
X Xz

Zx Z

)
(2)

Write

X =

(
cos θx − α sin θx βx sin θx
−γx sin θx cos θx + α sin θx

)
and Z =

(
1 Lαp
0 1

)
(3)
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Since ~η(δ) is the closed orbit for energy offset δ we have that

R


η
η′

l
1

 =


η
η′

l′

1


→ X

(
η
η′

)
+Xz

(
l
1

)
=

(
η
η′

)
We know that the transverse position is independent of l as long as there is no RF.
Therefore we can write that

Xz = (I −X)

(
0 η
0 η′

)
=

(
0 η(1− cos θx + α sin θx)− η′βx sin θx
0 γη sin θx + η′(1− cos θx − α sin θx)

)
(4)

and using the symplecticity of R we find that

Zx =

(
η′(1− cos θx + α sin θx)− ηγ sin θx η(cos θx + α sin θx − 1)− η′βx sin θx

0 0

)
Then if

T =

(
M m
n N

)
we find that

H = m+ n† =

(
−m12

ωV
cE

2η(1− cos θx)
−m22

ωV
cE

2η′(1− cos θx)

)
(5)

The coupling matrix defined as

C =
−Hsgn(Tr[M −N ])

γ
√

(Tr[M −N ])2 + 4|H|
(6)

where γ2 = 1− |C|, so that
T = V UV −1 (7)

with

U =

(
A 0
0 B

)
and V =

(
γI C
−C† γI

)
(A and B are 2x2 matrices. I is the 2x2 identity). The determinant of H as given
in Equation 5 is

|H| = −2ωV

cE
(1− cos θx)(m12η

′ −m22η)

= −2
(2πQz)

2

Lαp
(1− cos θx)(m12η

′ −m22η).
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L is the circumference, and αp the momentum compaction. In the weak coupling
limit where 4|H| � (Tr[M − N ])2, that is far from the coupling resonance, γ ∼ 1
and

C ∼ H

Tr[M −N ]

∼ H

2(cos θx − cos θz)

∼ 1

2(cos θx − cos θz)

−m12
ωV
cE

2η(1− cos θx)

−m22
ωV
cE

2η′(1− cos θx)


∼

(
0 η
0 η′

)
(8)

where we have assumed that cos θz ∼ 1, that is synchrotron tune near zero. We
see that the dispersion can be identified with elements of the coupling matrix. A
measurement of the longitudinal-horizontal and longitudinal-vertical coupling yields
the dispersion. In general of course, the synchrotron tune is finite, and the elements
of the coupling matrix C and the dispersion will differ. This is especially true if there
is significant dispersion in the RF cavities[3]. Corrections of the measured transverse-
longitudinal coupling are best done with respect to a model of that coupling, rather
than a model of the ”dc” dispersion.

0.1.3 Measurement of the coupling matrix

We need to relate the coupling matrix elements to the quantity that we can measure,
namely the vertical and horizontal amplitude and phase of the signal modulated
at the synchrotron tune, at each bpm. It is convenient to use normalized phase
space coordinates. We remember that the phase space 4-vector ~x is related to the
normalized, normal mode representation ~w according to

~x = V G−1Ū ~w (9)

where

U = G−1ŪG, G =

(
Ga 0
0 Gb

)
(10)

and

Ū =

(
R(θa) 0

0 R(θb)

)
, R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, and Gi =

( 1√
βi

0

− αi√
βi

√
βi

)
(11)
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We imagine that the a-mode is horizontal(vertical) motion, and the b-mode is
synchrotron motion. The beam is resonantly excited at the synchrotron tune Qs.
Then 

wa
w′a
wb
w′b

 = w0


0
0
1
0

 (12)

where we have chosen without loss of generality to specify ~w at a time when w′b = 0.
Then at any later time and at location i,

wa
w′a
wb
w′b

 = w0


0
0

cos(θ − φiz)
sin(θ − φiz)

 (13)

where θ = ωst, and ωs is the synchrotron tune. From a measurement of the time
dependence of the position signal at the ith beam position monitor we extract the
transverse amplitude and phase where

xi = Aix cos(θ − φix) (14)

(or x → y). We can similarly write the longitudinal displacement in terms of the
longitudinal amplitude and phase,

zi = Aiz cos(θ − φiz) (15)

where φi(x/y) is the horizontal (vertical) normal mode betatron phase advance and
φiz is the longitudinal phase advance at θ = 2πnQs. From Equation 9 we get that

G~x = GV G−1 ~w

G~x =

(
γ C̄
−C̄† γ

)
0
0

cos(θ − φiz)
sin(θ − φiz)


where C̄ = GaCG

−1
b and then

1√
βx
Aix cos(θ + φix)

∼
1√
βz
Aiz cos(θ + φiz)

∼

 =


C̄11 cos(θ − φiz) + C̄12 sin(θ − φiz)

∼
γ cos(θ − φiz)
γ sin(θ − φiz)


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With some rearrangement we find that

C̄12 =

√
βiz
βix

Aix
Aiz

sin(φix − φiz)

C̄11 =

√
βiz
βix

Aix
Aiz

cos(φix − φiz)

Finally, C12 =
√
βaβbC̄12 and then according to Equation 8

ηx/y = C12 = βiz
Ai(x/y)
Aiz

sin(φi(x/y) − φiz)

=
√
βiz

Ai(x/y)
az

sin(φi(x/y) − φiz)

where Aiz = az
√
βiz. Since there is no good way to measure the longitudinal phase

and amplitude of the beam at each of the BPMs, we depend on the model calculation.
Since the longitudinal focusing is typically very weak, the longitudinal phase advances
very slowly and any errors that might arise due to discrepancy between model and
measurement tend to be very small.

The longitudinal amplitude is not measured. In practice we determine the longi-
tudinal amplitude (the amplitude of the energy oscillation) by fitting the measured
C12 (horizontal dispersion data) to the model dispersion. The fitted amplitude is
used to determine vertical dispersion.

In summary, to measure the dispersion by resonant excitation

1. Drive the beam at the synchrotron tune

2. Measure the amplitude and phase of the horizontal and vertical components of
the motion at each beam position monitor.

3. Compute the longitudinal beta and phase at each BPM from the machine
model.

4. Use the measured horizontal and computed longitudinal phase and amplitude
to determine a quantity proportional to the horizontal dispersion and fit to the
model dispersion to determine the amplitude of energy oscillations

5. From the measured vertical phase and amplitude, the computed longitudinal
phase, and the fitted amplitude of energy oscillations, determine the vertical
dispersion.
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In the CesrTA at the Cornell Electron Storage Ring, the technique yields a measure-
ment of the vertical dispersion with few millimeter resolution in a few seconds.
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