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In the most basic colliding beam storage ring bunches of conterrotating
electrons and positrons share a common equilibrium orbit. The evenly spaced
bunches collide at 2n; locations around the ring, where n is the number of
bunches in each beam. At each collision point the machine optics are manipu-
lated to minimize both the spot size and the effect of the beam-beam interaction.
The separated function guide field is characterized by alternate gradient focus-
ing.

1 Equations of Motion

To the magnetic guide field there corresponds a Lorentz force
F=qvxB, (1)

yielding identical trajectories for conterrotating and oppositely charge beams, at
least in so far as the particle energy is independent of azimuthal location around
the ring'.Then the beam trajectories are described by the equation of motion

mwj =qvxB . (2)
The field B depends on the azimuthal position s along the magnetic axis of the
machine. We define a cylindrical coordinate system in which  and y correspond
to horizontal and vertical displacement with respect to the reference orbit. The
reference orbit is circular. The radius of curvature is determined by the part of
the field that is nonzero on the reference orbit, such as the uniform field of a
bending magnet. The magnetic field can then be expanded about the reference

! Synchrotron radiation and RF acceleration both break the symmetry, leading to
finite transverse displacement of the electron and positron orbits. The beams tend
to have minimum energy at opposite ends of the accelerating cavities. Nevertheless,
if the interaction points are located symmetrically with respect to the cavities, and
if they are points of vanishing dispersion, head on collision of the electrons and
positrons is certain.
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orbit. If we define the coefficients of the terms linear in z and y as k,(s) and
ky(s) respectively, the equations of motion become

d*z
= ha(s)a + Fu(s) Q
d*y
S = k(s + Fy(s) ()
where the time ¢ has been replaced by position along the trajectory s, as the
dependent variable, and k, = —35 + #8%9 with £ = — 552 By(0) and
ky = _#BB%;O)‘ The functions F(s) and F,(s) are meant to include all but
the linear terms in the effective force. In the ideal linear lattice F, = F, =0
[RW].
Then the change of variables:
= \/Bz(8)uy (5)
1 [° ds
§) = — , 6
=01 B ©
yields
d*u
dqﬁ; +Q%u, =0, (7

and similarly for motion in the vertical direction. §(s) is periodic in s, that is
B(s + C) = B(s), where C is the circumference of the machine and

s+C ds'
271'/3 m = Qe (8)

so that ¢ advances from 0 to 27 in one full turn. The distribution of quadrupole
magnets determines the frequency @, and (), of transverse oscillations.

There is of course a third such equation describing longitudinal or energy
oscillations. The so-called synchrotron frequency depends on the time depen-
dence of the accelerating voltage and the energy dependence of the revolution
frequency.

1.1 Nonlinearities and Resonances

The field errors, magnetic nonlinearities, beam-beam interaction etc. are in-
cluded in the term F'(s) which leads to the modification of the simple harmonic
oscillations as follows:

Pug

7R Qouz = Q2837 (s)Fa(s) . 9)

The driving term F'(s) is necessarily periodic in s and can be written as a fourier
expansion F(s) = 3 a,,e™9()_ If for example the perturbing field is simply a
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dipole kick sufficiently well localized that it can be described as a delta function,
we can write, using (6),

_ _dbg 1 A0 SN )
Fo(s) = 8(s)A8 = —-0(9) = OF, o m;ooe : (10)

Af is the angular kick imparted to the beam by the dipole in question. Then
(9) becomes
duy,

dg?

The driven oscillator (11) has resonances whenever Q? — m? = 0.

In general, in addition to its periodicity with respect to s, the function F' may
depend on the phase space coordinates of the particle (z,2',y,y',1,p/p). Such
dependence leads to higher order resonances. For example, the force associated
with a one dimensional, localized sextupole field is F(z,s) = S(s)x?, where

2
S(s) = %85%”2(5)#. We suppose that the field is uniform over the length ! of
the magnet so that the net kick due to the sextupole is Af = Sz2l. If as before
the s dependence is represented as a delta function, then the equation of motion

is:

A0 N
+Qhus = Qa2 Y €™ (11)

m=—00

Puyg
d¢?

We solve for the motion perturbatively, replacing x by its unperturbed value
namely z = a\/Bcos(Q¢). Then (12) becomes

T QRu, = Q5! i ¢im? (12)
TR on ’

m=—0o0

d*u 2 3/2025 1
e = 222 2
dgr Tt = QP 2

[ei(m+2Qz)¢+ei(m72Qm)¢+26im¢] . (13)
The beam responds resonantly when (m + 2Q)? — Q% = 0, or when Q = m/3.

In general, if F(s) is independent of z, resonances occur for Q = m. If
F(s,z) ~ x there are resonances whenever Q, = 2m, and for F(s,z) ~ z? at
Q. = 3m etc. For the most general case, the perturbation F, is a nonlinear
function of z,y and z and the resonance condition is pQ,; + rQy + nQ. = m
where p,r,n and m are integers. In an electron machine the radiation damping
ameliorates the effects of all but relatively low order resonances. Nevertheless,
great care is required in the choice of the operating point as we shall see.

1.2 Tune Plane

The resonant structure of the ”tune plane” is apparent in a detailed measure of
the beam lifetime, beam tails, or vertical beam size as a function of the machine
tune. A simulated scan in the vicinity of the CESR, operating point is shown in
Figure 1. At each of 1600 tunes, we track a particle for 1000 turns. If the tunes
are near a resonance condition, the amplitude will increase. We compute the
maximum vertical amplitude of each particle. In CESR the revolution frequency
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Fig. 1. Scan of vertical amplitude as a function of horizontal and vertical tune. The
ynchrotron tune Q, = —0.089.

is 390.1kHz. The plotted range in horizontal tune is from @, = 198.95/390.1 to
226.26/390.1, (.51 < @, < .58). The step size Af = 0.78kHz (AR = 0.002).
The synchrotron tune @@, = —0.089 is fixed throughout the scan. Resonance
lines are identified on the companion plot Figure 2.

The coupling of the longitudinal and transverse motion appears in the scan as
sidebands off of the horizontal half integer (Q, = .5) and the transverse coupling
resonance (@, = @,). The synchro-betatron coupling is due to the energy de-
pendence of the optical functions? and/or the dispersion in the RF accelerating
cavity. The dispersion is the energy dependence of the transverse displacement of
the beam. Because the dispersion is nonzero in the CESR cavities, the RF kick,
which also depends on energy, is coupled linearly to the horizontal displacement.
Higher order transverse resonances are due to the cumulative effect of the ma-
chine sextupoles. Indeed, single beam resonance structure is well understood in
terms of known coupling mechanisms and nonlinearities, and simulations yield

2 The focusing function k(s) that appears in equation (1) will in general depend on
the beam energy and the beam energy oscillates at the synchrotron frequency.
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Fig. 2. Along each of the lines indicated in the plot the tunes satisfy a resonance
condition pQ, +rQ,+nQ. = m. The plot includes all lines for values |p|+|r|+|n| < 5]

scans that bear a remarkable resemblance to the observed tune dependence of
beam size shown in Figure 1.

1.3 Matrix Formalism

In view of (9) it is obviously of great interest to compute §(s). In principle we
might compute §(s) by noting first of all that the solution to the homogenous
equation of motion is u, = acos ¢, where a is an arbitrary constant, and then
that z = a+/B cos ¢. Then substitution into (3) and (4) with F, = F, = 0 and
using (6), yields a differential equation for 3(s). Given the periodicity of 3(s),
it is uniquely defined by the differential equation.
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In practice it is more convenient to compute 3(s) by way of a matrix for-
malism. In so far as the guide field consists of distinct multipoles, the focusing
function k(s) in equations (3) and (4) is piecewise constant. That is, k is uniform
through each quadrupole, bend and drift. Therefore (3) and (4) can be solved
directly for the motion within each element. In particular

z(s) = Acos(Vks) + Bsin(Vks) (14)
¢'(s) = —AVEsin(Vks) + BVksin(Vks) . (15)
The constants A and B are determined by specifying the values of  and z’ at

some s. If we write that (z(0),2'(0)) = (zo, z() at the entrance to an element of
length [ then

z(l) = zo cos(Vkl) + % sin(Vkl) (16)
#'(l) = —zoVEsin(VEl) + 2y Vk cos(Vkl) , (17)

and in matrix notation:

(5'(5))):M(ﬁZ>:(-5%ss(§f/)m) T&:ﬁ)) () - o9

Each linear machine element can be described by a similar unit determinant
matrix, and the mapping of the phase space vector (z,z') through a sequence of
elements, by the product of the intermediate matrices.

Now consider propogation of the vector[CS1]

X1 — X9 = MX1 ) (19)

where 21 = a+/B; cos ¢1. Differentiation with respect to s yields 2} = a% \% cos ¢1—
1

1 .
. Th t 18) b :
a 77, sin ¢ en equation (18) becomes

av/B, cos ¢2 av/B, cos ¢
—a singg | = ML _,

¢ D] aq

N ¢2 — aﬁ o8 ¢1 — aﬁ sin ¢1> - (20)

Note that we have defined o = —%ﬂ’ . Now if we define the matrix
VB 0
Gi=|_o __ 1 (21)
VB, VB
so that

(5)-c ()

then (20) can be rewritten in a most suggestive form, namely

Gy (acos¢2) — MG, (acosqSl) . (23)

asin ¢ asin ¢,
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sin A¢  cos Ag

Here A¢ = ¢o — ¢1. Finally, (24) can be solved for M, and M can be written in
terms of the twiss parameters «, 3, and ¢ 3 .

_ cos A¢p  sin Ag _1
M =G, ( —sin A¢ cos A¢) G (25)

G2_1MG1:(COSA¢ —sinA¢> ‘ (24)

5ilcos A + ausin Ad] VP2Pysin Ag
= m[Aa cos Ag — (1 + asay) sin Ag) %[cos Ad — as sin Ad) )

(26)
where Aa = a; — as. And if M is the full turn matrix, then 8, = By = £,
a1 =az =a and A¢ = p = 27Q, and

_ [cosp+asinp Bsin p
M(s+C,s)_( —ysin cos,u—asinu)' (27)

(v = (1 + @®)/B.) The twiss parameters at any point in the machine are thus
determined by computation of the full turn transfer matrix at that point.

1.4 Propogating Twiss Parameters

The reader may be amused by a further extension of the formalism that permits
propogation of the twiss parameters through a sequence of elements. Returning

to (22), it is clear that for any phase space vector x = (z,z') that G~! (;7,) =

a (Z?ﬁg) so that the quantity (G1_1156+G1_21:c’)2+(G2_11m+G2_21x')2 = a2(cos? ¢+

sin” ¢) is an invariant. Substitution of the elements of G~ ! identified in (21),
yields a? = yz2 + 2oz’ + fz'> = ~-X where the three vectors v = (7, 2a, 8) and
X = (22, zz',2'*). The scalar product is an invariant. Since we know how z and
z' propogate we can construct a 3 x 3 matrix M corresponding to propogation
of X. The reader can verify that

M121 2M11 Mo M122
M= | MiiMsr (Mi1Mas + Mi2May) MiaMay | . (28)
M3 2Ms1 Mo M3,

Then X3 = MX;. We would like to determine the corresponding matrix N for
4. Since 72 - X = 71 - X1 = 41 - MTIMX; = v M1Xy, it is obvious that

3 Note that for a 2 x 2 matrix T, T~ = Tt/ detT and if T = (Z b), then T =

o5 d
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vy = (M HTy; and N = (M~)T. N is constructed by replacing the elements
of M with those of its inverse in (28) and transposing, yielding*

M3, =Mz M2y M3,
N = | —2MaoMy2 (M1 Moo + MyaMay) —2Mo M2 | . (29)
M, — M2 My M3,

As an example consider the propogation of the twiss parameters through a field
free region. Using (18) to obtain the elements of the matrix M through the field
free region we find that

0
N =[-2s 1 0] . (30)
1

At a point of minimum g, in a field free region, like that near the interaction
point, 7o = (1/80,0, 80) and at a distance s from the minimum,

Y(s) = Nv(0) = (1/Bo, —25/Bo, Bo + 5° / Bo) - (31)

2 Luminosity

The objective of the basic collider is of course, luminosity which depends on the
beam parameters as:

I = nbfrele? ) (32)
Amo,oy

np is the number of bunches, N, the number of particles per bunch, f,., the
revolution frequency and o, and o, the transverse beam size at the collision
point. That is as long as the bunch length is small compared to height and/or
width. It is clear that for a given beam current, L is a maximum when the cross
sectional area of the bunch is a minimum. The minimum bunch size is limited
by the beam-beam interaction.

2.1 Beam-Beam Interaction

The dependence of the vertical kick experienced by a particle in one beam, as a
function of its displacement from the centroid of the opposing beam is indicated
in Figure 3. The force is linear in displacement as long as that displacement is
small, giving rise to the linear beam-beam tune shift. The focal length associated
with the presumed gaussian charge distribution in the linear regime is:
1 2Nyr
o= ATe ) (33)
fi ’Y(U:c + Uy)ai
4 In the case of coupled motion with transport described by 4 x 4 matrices, the pro-
cedure is readily generalized. v becomes a 10 component vector and N a 10 x 10
matrix.
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Fig. 3. The vertical beam-beam kick as a function of vertical displacement from the
center of the opposing bunch for an aspect ratio o, /0, = 10. The kick is in arbitrary
units and the displacement in units of the rms vertical beam size.

where ¢ = z,y and . is the classical radius of the electron. And the corresponding
beam-beam tune shift is

_ B

AQi—47rfi :

(34)

The field becomes increasingly nonlinear for y > o,. The beam-beam inter-
action is the most important source of nonlinearity in the machine, or at least it
should be. Presumably it is the nonlinearities that will limit the luminosity per
unit current. Machine nonlinearities, that is, sextupole induced nonlinearities
can be controlled by careful design. The beam-beam induced nonlinearities are
beyond our control. Let us consider some of the dynamical implications of the
beam-beam interaction.
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2.2 Beam-beam coupling

In the event of conterrotating beams in collision we need to write an equation
of motion for each. The resulting coupled equations are:

d2

ngl +Qlur = Q1B Fy(z1 — m») (35)
d*usy 2 2 ol

3 + Qauz = Q32 Fi(z2 —m1) . (36)

uy and uy are horizontal coordinates for the motion of beams 1 and 2 respectively.
F is the force on beam 2 due to beam 1 and F5 the force on beam 1 due to
beam 2. The beam beam coupling yields normal modes A and B with tunes @ 4
and @p such that Q4 — @ x AQ, with AQ given in (34). In the limit of a
purely linear beam-beam kick, the coupled equations can be solved by making
the substitution vy = u4 + up and us = us — up. Then the tune of mode, A,
the o mode is the same as the unperturbed tune ), and mode B, the # mode is
shifted such that QB — Q4 = 2AQ, for AQ defined above. That is, the normal
mode splitting is just twice the linear beam-beam tune shift.

The beam-beam coupling can also be evaluated in a matrix formalism. In the
absence of the beam-beam coupling, the phase space coordinates x and z' are
mapped through a single turn by a 2 x 2 matrix M, so that x,+1 = Mx, and
x = (x,z"). If the eigenvalues A, of M have unit magnitude, then the motion is
stable. The eigenvalues have the form A\ = e** and the tune Q = pu/27.

In order to add the linear beam-beam coupling we need to generalize the
phase space vector to accomodate the coordinates of both beams. So we define
X = (x1,2],22,x}), where subscripts 1 and 2 indicate beams 1 and 2 respec-
tively. Then propogation through a full turn is described by the 4 x 4 matrix

T= (M 0 ) The beam-beam kick is given by the

0 M
1 0 0 0
_(Cc D\ | 1/f 1 =1/f 0

B_<D C>_ 0 0 1 0 (37)
-1/f 0 1/f 1

Then according to B, the kick received by beam 1 is Az} = (z1 — z2)/f, etc.
and f is the focal length given above. The full turn matrix

CM DM
F_BT_(DM CM) (38)
and the eigenvalues of F' yield the normal mode tunes. In particular
cos 4 — cos up = [(cos py — cos p2)? + [DM + (DM)[]? . (39)

The technique is readily generalized to include the effects of multiple beam-beam
interactions in a single turn. Of course the beam-beam kick is linear only over
a rather limited range. For particles with amplitudes that sample the nonlinear
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fields of the opposing bunch, the kick falls rapidly with displacement and the
measured normal mode splitting is somewhat less than that predicted by the
purely linear model.[SM1][CBW1] Apparently the region of the tune plane clear
of resonances must expand with the beam-beam interaction to accomodate the
splitting of the normal modes.

2.3 Saturation of the Tune Shift Parameter
In the limit where 0y < 0, the beam-beam tune shift parameter

* 2Ibre nb’beé.v
SAQ= e nd = MBS 40
& @ 27 € frevTz0y an 26*er, (40)

I, is the bunch current, e the charge of the electron, and we have made use
of (32-34). The strength of the beam-beam interaction increases with bunch
current, as the charge per unit area of the bunch. Resonant response of one
beam to the other eventually leads to an increase in the area of the bunch that
precludes further growth of the bunch charge density. The tune shift parameter
is saturated. Beyond saturation luminosity increases linearly with current. The
maximum luminosity per unit current obtains above saturation and so that is
clearly the regime in which to operate.[JS1] It is evidently desirable to remain in
saturation throughout the course of a fill. Data collected at the Cornell Electron
Storage Ring operation for high energy physics, and shown in Figures 4 and 5,
indicate both saturation of the tune shift parameter and the linear dependence
of luminosity on current.

2.4 Minimum 3

It should be apparent from the foregoing discussion, that in order to achieve
maximum luminosity it is sensible to minimize 8*, that is 8 at the interaction
point, to maximize the beam current, and to maximize the value of the saturated
tune shift parameter. We consider the three variables in turn.

There are two reasons why it is attractive to make 8* as small as possible. We
see from the equations of motion that the effects of the beam-beam interaction
scale with 3 at the collision point. Also the beam size scales inversely wih /3*.

One of the limitations to 8* from below is related to the finite bunch length.
Near the minimum £(s) = o+ [%, (see equation (31)), where o, is the minimum
and s the distance from the minimum. If the bunch length o, ~ S, then there
will be a significant increase in the effective 8 of the interaction as compared to
the minimum value. In practice 8* can be no smaller than the the length of the
bunch.

It is also apparent from the quadratic growth near the IP that if 8* is very
small that either g is very large in the final focus quadrupoles, or the quadrupoles
are very strong and very near to the interaction point. Both scenarios contribute
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Fig. 4. Beam-beam tune shift parameter as a function of average beam current. There
are seven bunches in each beam. Data collected during a 24 hour period of operation
for high energy physics is shown.

to the chromaticity of the machine and the demand for stronger sextupole mag-
nets. And as noted above, sextupole fields drive all manner of nonlinear reso-
nances. Also, the interaction region tends to be cluttered with particle detec-
tors and there is not always adequate real estate for optimal placement of such
quadrupoles.

There are other practical, rather than fundamental limits on the minimum
B. Consider for a moment the possibility that the collision point is displaced
longitudinally with respect to the focal point. Then the beams interact with
each other in a region in which 8 may be changing rapidly over the length of the
bunch. Again, the rate of change of 3 scales with LO, and so does the sensitivity to
such longitudinal alignment errors. In the basic single ring collider, the collision
point, that is the point at which conterrotating bunches arrive simultaneously,
is determined by the physical location and relative phase of the RF cavities. In
the simplest case, in which there is a single cavity, the difference between the
arrival time of the electron and positron bunches in the cavity is an integral
number of RF periods. In order that the bunches arrive simultaneously at the
beta minimum, the distance from cavity to that minimum must be an integral
number of RF wavelengths. For §* ~ lem, alignment to a few millimeters is
required.
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Fig. 5. Luminosity as a function of average beam current.

At CESR, with * = 1.8 and 0; ~ 1.9¢m a beam-beam tune shift limit of
AQ, ~ 0.04 is measured. In experimental optics designed to both shorten the
bunch and reduce g* to 1.3cm, we measure AQ, ~ 0.03. Finally for g* ~ 10cm
and o; = 1.9cm, AQ, ~ 0.06.

2.5 Increasing the Beam-Beam Limit

Referring again to our expression for luminosity (40), it is clear that maximizing
the limiting beam-beam tune shift is of great interest. Our discussion of beam-
beam coupling suggested that nonlinear resonances are largely responsible for
limiting the bunch charge density, and that the beam-beam interaction itself is
the source of many such resonances. In the basic collider with a single bunch
in each beam, the conterrotating bunches collide at two diametrically opposed
points. The equation of motion including the effects of the beam-beam interac-
tion at both points is:

d*u 9 2 3

w‘i‘Q = Q"B(s)2 (fi(x1,51) + fa(x2,82)) - (41)
Taking advantage of the periodicity in s we have:

Q= @ (Z o ()66 Za%")e"mw_¢2)> W
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If the twiss parameters at the two collision points are identical, fi = f5, and

al =ad? =apy
T @ = Q%) T an(x)em (emimterte) (43)
d¢? ~ "

= Q*B(#)? Y am(x)e™ e F 2c0s T (44)

where ¢T = ¢; £ ¢o. If the betatron phase advance separating the points is
identically 27 (Q/2) then ¢~ = ¢1 — ¢2 = . All m odd terms vanish and m
even terms increase by a factor of two. The resonance condition is pQ) = 2m. We
might equivalently imagine that a single turn of the machine is two turns of a
simpler machine with tune @ — Q% = (/2. In the smaller machine there is a
single beam-beam interaction with resonances at all m, pQ% = m. It is easy to
show with the help of (43,44) that for each resonance pQQ = 2m that there is a
corresponding resonance pQ% = m of equal strength. In such an idealized case of
symmetrically placed collision points, the resonance behavior is determined not
by the full turn phase advance but rather by the phase advance from one point
to the next, that is by @ 1. Multiple collision points are in such circumstance no
cause for alarm as long as the point Q,/N,Q,/N in the tune plane is clear of
dangerous resonances. N is the number of interaction points per turn.

In practice it is very difficult to achieve perfect symmetry, both in terms of
phase advance and interaction point parameters. Furthermore, resonances are
excited by machine hardware, such as RF cavities and sextupole magnets. All
such hardware must be symmetrically placed in order to ensure that Q% and
not () determine the resonance behavior. As an example, suppose that there are
two interaction points and only a single RF cavity. Synchro-betatron resonances
associated with cavity field nonlinearities will be circumscribed by the full turn
tune. Beam-beam resonances will depend on the half turn tune. While it may
be desirable to operate with phase advance just above the half integer for best
beam-beam performance, in a machine with two interaction points that implies a
full turn tune just above the integer, very near to the synchro-betatron coupling
resonance.

We conclude that while in principle performance is very nearly independent of
numbers of collision points, the requisite optical symmetry is difficult to achieve
and at very least is an expensive constraint on the machine design. The result of
asymmetries is excitation of additional resonances and the narrowing of available
good operating regions of the tune plane, and ultimately reduced beam-beam
tune shift. Of course it is also much easier to keep one group of experimentalists
happy than two.

In so far as radiation damping determines the equilibrium beam size it is
desirable to have fewer collision points. The radiation damping decrement §, is
the ratio of the time between collisions to the radiation damping time. A machine
with one rather than two beam-beam collisions per turn has twice the damping
decrement between collisions. On the other hand, that decrement is typically of
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order one part in 10* and it is not clear how a factor of two is relevant. There is
however some evidence that the limiting tune shift paramter £, ~ v/3[JS1] [R1].

2.6 Multiple Bunches

Luminosity is expected to scale with the number of bunches in each beam at
fixed bunch current. As noted above, the number of collision points in the ring
is twice the number of bunches in the beam. And there can be no longer any
doubt that the consequence of those parasitic collisions will be a degradation of
the beam-beam limiting tune shift. At best we suffer for having complicated the
tune-plane. And unless we are prepared to install a low beta insert at each of
the new crossing points, the beam-beam current limit will fall precipitously. It is
therefore attractive to consider separation of the beams at the parasitic crossing
points, and this is typically accomplished with electrostatic deflectors. The most
straightforward implementation is to locate separators ii wavelengths from
the crossing point, generating a half wavelength closed bump. Since the beam
width tends to be many times the beam height, separation based on beam size
is simpler in the vertical than in the horizontal plane. For the same reason, it is
somewhat easier to build vertical than horizontal separators. The disadvantage of
vertical separation is that vertical displacement in sextupole magnets introduces
transverse coupling. If the vertical displacement is opposite for the two beams,
then the transverse coupling is differential and therefore difficult to correct.
Vertical separation is most usefully employed in regions devoid of sextupoles.

As the number of bunches in each beam, and the number of parasitic crossing
points is increased, it is advantageous to generate with a minimal set of electro-
static deflectors, a differential closed orbit distortion that yields separation at
multiple crossing points. In the ”pretzel” scheme the closed orbits are off axis
through a large fraction of the machine arcs and the sextupole induced coupling
noted above renders vertical separation a dubious proposition. At CESR, two
symmetrically placed and powered pairs of horizontal deflectors, separate the
seven bunch beams at the thirteen parasitic crossing points as shown in Figure
6.

Optical Effects of Differential Displacement in Quadrupoles. Because
the orbits of the electrons and positrons are distinct through most of the quadrupole
magnets, and nearly all of the nonlinear elements in the storage ring, there will
in general be differences in the electron and positron beam parameters that in-
crease with separator voltage. The exclusive use of magnetic elements for the
guide field in the simplest machine assured commonality of closed orbits and
beam optics. The introduction of the differential distortion by way of electro-
static elements spoils that symmetry and it is compensated only by employment
of specfic design criteria.

In general both quadrupole and sextupole magnets can contribute to dif-
ferences in the characteristics of the off axis electron and positron beams. The
effective field of a quadrupole magnet on the closed orbit is that of a bend with
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Fig. 6. Electron and positron closed orbits are designed to separate the beams at the
parasitic crossing points that arise with seven bunches in each beam. The crossing
points are indicated by the tick marks in the plot. Multiple crossing points within a
lobe of the orbit arise due to the unequal bunch spacing.

radius of curvature inversely proportional to the displacement. Electrons and
positrons thus experience equal but opposite fields, and there will be asymmet-
ric contributions to the dispersion function.

The radiation damping times will also be different for electrons and positrons.
The damping rate ag for energy oscillations is determined by the dependence of
the rate at which energy is radiated on the energy itself. That is ag = :,1,0 dU“‘d
where T} is the revolution period and U4 is the synchrotron radiated energy[Sl]
In addition to the fact that U,.,q depends as the square of the energy there are
contributions related to the dependence of the closed orbit on the energy. In
a dipole magnet in which there is positive dispersion, the trajectory of higher
energy particles is at a larger radius than that of lower energy particles. The
higher energy particles therefore spend more time in the bend field and radiate
more energy. Now imagine a beam with closed orbit displace in a quadrupole.
Suppose that it is in a region of positive dispersion. If the displacement is towards
the outside of the ring then the higher energy particles in the beam will be
displaced even further away from the axis of the quadrupole and will radiate
more than the lower energy particles. On the other hand, if the beam is displaced
toward the inside of the ring, the higher energy particles will still be displaced
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toward the outside and in this case that means closer to the quad axis. The higher
energy particles then radiate less than the lower energy particles, contributing

an anti-damping component. Quantitatively ap = 2’1%—0&)(2 + D) where

_ $nG(G? + 2k)ds

D
$ G?ds ’

(45)

G(s) = 1/p(s) and p(s) is the radius of curvature of the on energy particle in
the dipole field and % is defined in (3) and (4). In the event of displaced orbits
in quadrupoles p(s) = m and (45) becomes

2i(GF + (wiki)?)ls
where the integral is relaced by a sum over discrete elements and [; is the length
of each. To lowest order, neglecting the dependence of the dispersion on the

particle species and noting that =] = —z;,

2%, mi(2xk)l;
D _ D_ —_ e AT 0
* Ez G%li

Since the damping of the longitudinal oscillations is different for electrons
and positrons, so is the damping of horizontal oscillations. As a consequence of
the differences in damping times and dispersion the beam emittances will be
distinct.

(47)

Effects of Differential Displacement in Sextupole Fields. The differen-
tial displacement of the beams in the sextupoles is perhaps even more serious
than in the quadrupoles. A sextupole behaves like a quadrupole with focal length
inversely proportional to the displacement from the axis. The quadrupole dis-
tribution determines the 8 function and the tune. Electrons and positrons may
well have different tunes and £* in a machine with pretzeled orbits. Sometimes
it is possible to eliminate differential effects by exploiting various symmetries.
In CESR for example, which is symmetric about the diameter that includes the
interaction point, an antisymmetric closed orbit distortion yields equal tunes
and emittances and 8*, but in general unequal dispersion and 3(s) throughout
the arcs and nonzero 8’ at the interaction point.

Evaluation of Optical Parameters of Displaced Beams. In any event, the
optics can be designed to minimize the electron and positron differences as long
as we know how to calculate those differences, and it is to that end that we now
turn our attention. We showed earlier the relationship between the elements of
the linear map and the twiss parameters, 3,3’ and the phase advance ¢. If the
closed orbit is coincident with the longitudinal axis of the machine elements,
then the full turn linear map is simply the product of the individual linear
transfer matrices. Remember that for nonlinear elements such as sextupoles the
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linear part of the transfer matrix is simply that of a field free region. The matrix
describes the linear dependence of the phase space coordinates of the trajectory
as it leaves the element, on the phase space coordinates at its entrance.

In a nonlinear element the linear part of the mapping of the phase space will
in general depend on the displacement of the trajectory from the magnetic axis.
Therefore the linear part of the mapping depends on the closed orbit. We can
compute the linear part of the mapping, that is the Jacobian of the map, but
first we must identify the coordinates of the closed orbit.

If we write the dependence of phase space coordinates of the trajectory as it
exits the magnet or sequence of magnets on the initial coordinates as zg%t (x;")
then the Jacobian

Ox™
Jij = = (48)
8:17;-"
Here z¢“* and :1:;" refer to the displacements z,z’,y,%'... from the closed orbit.

If all of the machine elements are strictly linear then J;; = M;; where M is the
product of the individual transfer matrices. In the presence of nonlinear elements,
the derivatives, J;; can be computed numerically with a tracking code. If the
mapping is through a full turn then there exists a closed orbit and its coordinates
can be computed as well. If the motion is confined to a plane, so that x = (z, z'),
then it is necessary to compute Ax°* as a function of three distinct initial values
Ax' to establish both the location of the closed orbit and the matrix J. This
is accomplished by tracking from the phase space coordinate xo + Ax®™ through
the full turn to find x¢ + Ax°¥. x¢ is the coordinate of the closed orbit. The
numerically computed Jacobian is the Jacobian of partial derivatives in the limit
where Ax®™ — (. Since Ax®" is the displacement with respect to the closed orbit
and the closed orbit is in general not well established a priori, iteration may be
required to obtain sufficient accuracy.

For motion that may include transverse coupling x = (x,z’,y,y'), five dis-
tinct trajectories establish the 4 x 4 Jacobian matrix and the closed orbit. In
order to determine the linear full turn map we suppose that initial and final
coordinates are related as follows

Axgt = J A (49)
— xgut _xY = J(Xfln — xo) . (50)

Then ) )
gt = Jxit — (] = xS = et 2 61

where z° = (I — J)x°. The suffix a runs from one to five and indicates the five
initial sets of coordinates z?* mapped to the five final vectors z%, and zg%*
indicates the i*" component of the a/* vector. That is z0% = J;;& o + 2. Now
define the matrices

i1 Ti2 T13 Ti4 T15
T21 X222 T23 T24 T25
Y= 231 T32 x33 T34 T35 | , (52)
T41 T42 T43 T44  T45
1 1 1 1 1
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and

00 0 0 1

so that (51) becomes
yeut = gy'™ | (54)

Then H = Y°¥[Y"]~! from which the Jacobian and the coordinate of the closed
orbit can be extracted [SB1]. The twiss parameters in turn are defined by the
Jacobian. Once the closed orbit has been established the linear mapping between
any two points in the lattice can be calculated in this fashion, yielding 8(s) and
¢(s) along the trajectory of the closed orbit.

We now are in a position to compute the distinct properties of the electron
and positron beams, and so we can at least in principle arrange the optical
elements to minimize the differences. The most significant include differences in
beam energies, damping times, and g*.

Separated Orbits and Guide Field Errors. Of course our ability to compute
and compensate effects of displaced orbits is ultimately limited by our knowledge
of the details of the guide field. In particular, multipole errors can introduce
peculiar effects in the company of separated orbits.

Quadrupole errors introduce a differential kick that can result in differential
horizontal displacement of the beams at the interaction point with calamitous
impact on luminosity. Elimination of such differences depends on a capability to
reliably measure relative displacement of the beams. Generally the collinearity
of the beams at the IP can be restored by a straightforward adjustment of the
electrostatic separator voltages.

Skew quadrupole errors introduce a vertical kick that is proportional to the
horizontal displacement of the closed orbit. The resulting vertical separation
at the IP is similarly removed if vertical electrostatic deflectors are available.
Lacking vertical deflectors there is no alternative but to use skew quadrupole
trims to make corrections. This can prove a particularly unwieldy scenario. The
skew fields couple horizontal and vertical oscillations. Skew quadrupoles located
in regions where there is a large differential horizontal displacement will simul-
tanously effect both the vertical closed orbit and the vertical beam size. Opti-
mization of luminosity depends critically on careful tuning of skew quadrupoles.
In a machine with displaced orbits, tuning is greatly facilitated if there are skew
quadrupoles located in regions where the orbits coincide.

3 Crossing Angle

In a multiple bunch scheme in which beams collide head on the collinearity
through the interaction region is of great practical value. It permits a direct
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determination of the relative dispacement of the beams at the IP and provides
a stretch of guide field in which skew quads can be implemented with abandon.
But the collinearity ultimately limits spacing of the bunches in each beam. To
be precise, if the collinear region extends a distance s from the IP then the
distance between the bunches in each beam must be at least 2s. Otherwise, the
electrons and positrons will collide at the parasitic crossing point nearest the IP.
We can accomodate beams with very closely spaced bunches in a single ring if
we introduce a small horizontal crossing angle at the interaction point as shown
in Figure 7. The crossing angle required to provide adequate separation at the

Fig. 7. Horizontal crossing angle at the interaction point. The electron positron crossing
points are indicated by the tick marks along the central trajectory. Note the separation
of the incoming positron(electron) bunch and the outgoing electron(positron) bunch
on either side of the IP. The plot extends £100m on each side of the IP.

first parasitic crossing point depends in detail on the bunch spacing, and 5(s)
in the interaction region. In typical low 8 optics with a bunch separation of 8
meters, a crossing half angle of . ~ 2mrad is sufficient.

3.1 Dependence of Beam-Beam Tune Shift on Crossing Angle

With the introduction of the crossing angle the nonlinear beam-beam kick gains
an additional dependence on the longitudinal displacement of the particle from
the center of the bunch and a synchrobetatron coupling results. The effect of
the coupling is characterized by the "badness” parameter x = %[Fl].Mea—
surements at CESR indicate a soft dependence of the beam-beam tune shift
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parameter on the crossing angle as shown in Figure 8. The implementation of a
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Fig. 8. The vertical tune-shift parameter as a function of crossing angle for average
beam currents freater than 9ma/beam. Open triangles are for head on collisions but
with beams traversing the interaction point at the angle indicated. The open triangles
thus give some notion of the effect of the large displacement in the IR optics.

crossing angle permits deployment of trains of closely spaced bunches. Just such
a configuration is indicated in Figure 9.

The symmetries that characterize the operation of the ”basic” collider have
been all but abandoned in the interest of multiple bunches. There is no guarantee
of equal tunes, beta functions, coupling, chromaticity or energy for the electron
and positron beams. And there is no certainty the bunches will collide. Collisions
are no longer head-on and there is no coincidence of trajectories anywhere in the
machine. Except at nodes of the closed orbit distortion, skew quadrupole fields
will displace the beams as well as change the aspect ratio. Of course all such
effects can be corrected in principle with the help of suitable combinations of
trim magnets. But the tuning by the accelerator operator that is such a critical
aspect of performance, is enormously complicated, and good diagnostics become
increasingly important.
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Fig. 9. The crossing angle at the IP is +2.1mrad and the peak horizontal displacement
in the horizontally focusing interaction region quadrupole is about 2cm. The tick marks
indicate the parasitic crossing points of the 9 trains of four bunches each. The bunches
are spaced 4.2 meters apart within each train. Nine trains does not lend itself to equal
spacings in CESR injector and storage ring, thus leading to the inconsistency in the
number of crossing points from one lobe to the next.

3.2 Solenoid Compensation

Most collider detectors depend on the magnetic field of a solenoid in order to
measure the momentum of the products of eTe~ annihilation. The longitudinal
field of the solenoid generates transverse coupling in the stored beams. As a beam
particle traverses the radial fringe field of the solenoid it receives a transverse
kick of amplitude proportional to its displacement from the magnet axis. It then
follows a circular path about the longitudinal field, finally receiving a kick as
it exits through the opposite fringe. Compensation of the transverse coupling is
usually accompished by a small rotation of the interaction region quadrupoles
about the longitudinal axis. The rotation angles are chosen so that the mapping
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of the transverse phase space through the compensation region to the interaction

point is block diagonal. Then horizontal emittance does not contribute to vertical
beam size at the interaction point. That is, if the transport through the region

is described by
M 0
T = ( " N) , (55)

where M and N are 2 x 2 matrices, and

T T
! !
v =T7|7 (56)
Y )
i !
Y IpP Y outside

then vertical motion at the collision point is decoupled from horizontal motion in
the arcs. In addition, as long as the full turn matrix evaluated anywhere outside
of the interaction region is block diagonal, there is no net or global coupling in
the machine, and the transverse normal modes are horizontal and vertical. In
the event of a small crossing angle at the interaction point, the solenoid field
and its compensation gains considerable significance as we shall now see.

It is relatively easy to measure and therefore to correct global coupling. The
most sensitive technique is to look for the minimum separation in normal mode
tunes. But the local coupling, which determines the beam size at the interaction
point, is accessible only by measuring the luminosity. It is therefore difficult
to optimize operationally. So let us suppose for a moment that the machine is
globally decoupled but that there is some error in the compensation. Then if the
transfer matrix from outside the compensation region, through to the IP is

T = (As z) (57)

with m and n, 2 X 2 nonzero matrices, the vertical beam size at the interaction
point is proportional to the horizontal beam size outside of the compensation
region, and the luminosity is diluted. If there is a horizontal crossing angle, the
closed orbits of the two beams have equal but opposite displacement and angle
as they enter the compensation region. And the displacement and angle can not
both be zero or there will be no crossing angle. In particular

T _ 0
(2) = (2) 9
start P

and zfp = 6%. It follows that the difference in the wvertical orbits at the IP is
related to the difference in horizontal orbits at the start of the compensation

region.
Ay _ Az
(Ay,>IP - (A'Z.I)start . (59)

In order to get some idea as to the size of such effects, suppose that the
overall coupling of horizontal into vertical emittance is 1%. Now consider a 1%
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compensation error. That is, the matrix n has some combination of values such
that 1% of the horizontal emittance is added to the vertical emittance at the
IP, effectively doubling it. The beam size at the TP grows by a factor of /2
and the luminosity similarly degraded. Meanwhile, the horizontal closed orbits
of the two beams in the arcs are displaced an equivalent of ~ 100, in order
that they be sufficiently well separated at the parasitic crossing points. The area
in phase space bounded by the closed orbits of the two beams corresponds to
an emittance about 100 times the horizontal emittance of a single beam since
0z ~ vezB:. The compensation error propogates 1% of that into the vertical at
the IP leading to a vertical separation of Ay ~ 1/B,€,. The vertical beam size is
already established to be oy ~ 1/0.01 x 2 X €,3,. The beams are thus separated
by Ay ~ 5v/20,. We find that a compensation error that increases the beam size
by 40%, results in a vertical separation in excess of 50,. The beams effectively
miss each other. Evidently a compensation error that has a moderate effect on
luminosity in terms of increased beam size, can have a devastating effect in terms
of closed orbit errors.

4 Conclusion

The symmetry of Maxwell’s equations with respect to time reversal guarantees
that in machines in which guide fields are purely magnetic that orbits and twiss
parameters be identical for both beams. But the basic ete™ collider has evolved
to a multibunch machine with many more crossing points than collision points
and the optics must be specifically constrained to preserve common beam prop-
erties. The successful operation of ever more complicated configurations depends
critically on an ability to diagnose machine errors and the flexibility to correct
them. This is especially true in the regime of very small 8* and totally distinct
closed orbits.
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