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Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on

precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors

(BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-

turn data. The response to the beam will vary among the four electrodes due to differences in electronic

gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal

offset to apparent vertical position, and introduce spurious measurements of coupling and vertical

dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response

of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-

turn BPM data can be used to determine electrode gains to within �0:1%.
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I. INTRODUCTION

The Cornell Electron Storage Ring (CESR) test accel-
erator (CesrTA) [1] beam position monitors (BPMs) have
been instrumented with precision turn-by-turn, bunch-by-
bunch electronics [2]. The system provides the capability
of measuring the residual coupling and vertical dispersion
that contribute to dilution of the vertical emittance. System
tests indicate that the intrinsic position resolution is
<5 �m. We have developed a beam based technique that
provides a measure of the relative gain of the four button
electrodes with a precision of about 0.1%.

The strategy we describe for measuring the relative
button gain depends on the fact that, in a four electrode
BPM, the position of the bunch is overdetermined. By
measuring the electrode signal at a number of different
beam positions, the relative gains of the electrodes can be
calculated. Our approach is similar to the technique of
Satoh [3] et al. with some important differences. The
method of Satoh depends on knowledge of the response
function Fiðx; yÞ that gives the intensity on the ith button in
terms of the position ðx; yÞ of the bunch. The number of fit
parameters in the Satoh method is 3mþ 3, where m is the
number of measurements. Besides the three button gains,
for each measurement there are three unknowns to be
fitted: the x, y position and a scaling factor that is propor-
tional to the bunch charge. Each measurement yields four
data points, namely, the intensity on each button. As long
as m> 4, the system is overconstrained and the best fit
gains can be computed.

As opposed to Satoh, the technique described in this
paper does not require knowledge of the response function
and only requires that the geometry of the four BPM
electrodes be mirror symmetric. With this technique there

are just four unknown fitting parameters: three button gains
and a geometry scaling factor.

II. CONSTRAINTS ON THE BUTTON SIGNALS

The geometry and labeling are as in Fig. 1. The four
button electrodes have mirror symmetry and are labeled #1
through #4 with buttons #1 and #4, along with buttons #2
and #3, being diagonally opposite each other. The button
signal Bi of the ith electrode of a given BPM will be a
function of the position of the beam. For button #1 write

B1 ¼ kfðx; yÞ; (1)

FIG. 1. CESR beam position monitor. Note labeling of buttons
b1 . . .b4.*drubin@physics.cornell.edu
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where ðx; yÞ is the beam position at the BPM and k is a
constant that depends upon the bunch charge. The beam is
assumed to be near the center of the beam pipe so x and y
are small compared to the distance from the center of the
BPM to the electrodes. In this case, the normalized re-
sponse function f can be expanded in a double Taylor
series. To second order this gives

B1 � kðc0 þ c1xþ c2yþ c3x
2 þ c4y

2 þ c5xyÞ: (2)

It is assumed that there is mirror symmetry so that the
response functions of the other three buttons can be im-
mediately written as

B2 ¼ kfð�x; yÞ
� kðc0 � c1xþ c2yþ c3x

2 þ c4y
2 � c5xyÞ (3)

B3 ¼ kfðx;�yÞ
� kðc0 þ c1x� c2yþ c3x

2 þ c4y
2 � c5xyÞ (4)

B4 ¼ kfð�x;�yÞ
� kðc0 � c1x� c2yþ c3x

2 þ c4y
2 þ c5xyÞ: (5)

Taking sums and differences of Eqs. (2)–(5) gives

Bþ��þ � B1 � B2 � B3 þ B4 ¼ 4kc5xy (6)

Bþ�þ� � B1 � B2 þ B3 � B4 ¼ 4kc1x (7)

Bþþ�� � B1 þ B2 � B3 � B4 ¼ 4kc2y: (8)

Combining the above three equations to eliminate x and y
gives an expression that simply relates the button signals:

Bþ��þ ¼ c5
kc1c2

Bþ�þ�Bþþ��; (9)

where c1, c2, and c5 are constants that characterize the
BPM geometry. To the extent that Bþ��þ is proportional
to the product Bþ�þ�Bþþ��, the second order approxi-
mation is valid. (Note that if nonlinear terms are neglected
entirely the term c5 ¼ @2f=@x@y ¼ 0 and Bþ��þ is zero
for all trajectories.)

The relevance of the nonlinearities can be explored with
simulations. A finite element code was used to create a map
of exact button response as a function of beam position [4].
Figure 2 shows the computed signal for button 1 for each of
209 beam positions. The positions are taken from a
18 mm� 10 mm grid with the center coinciding with the
center of the BPM, and a grid spacing of 1 mm.

The intensities at a single button range from 0.7 to 2.2 on
an arbitrary scale as shown in Fig. 2. Insofar as Bþ��þ �

0, nonlinearities (second derivatives of the response func-
tion) are clearly important. We plot Bþ��þ as a function of
the distance to the center of the BPM in Fig. 3. It is
apparent that nonlinearities are significant at distances as
small as a couple of mm.
The product Bþ�þ�Bþþ�� is plotted versus Bþ��þ,

for the BPM button data generated from the nonlinear map
in Fig. 4. We see that our second order approximation is
excellent, and that the form of Eq. (9) fits the data with
small deviations appearing only at the largest amplitudes.
The above formulation is general in the sense that it

depends only on the mirror symmetry of the placement of
the four pickup electrodes and is independent of other
details of the geometry. The expansion parameter for the
Taylor series is � ¼ r=r0, where r is the distance of the
beam from the center of the BPM and r0 is the distance
from the pickup electrodes to the center of the beam pipe.
For a typical CESR BPM, r0 ¼ 28 mm. As you will see
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FIG. 2. Button signals from 209 orbits on a 18 mm� 10 mm
grid.
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below, button values corresponding to beam position r �
5 mm are used to determine button gains.

III. BPM GAIN ERRORS

If the button electrodes do not all have the same gain,
then the relationship between combinations of button in-
tensities defined in Eq. (9) will fail. We explore the effect
of gain errors using the previous simulation by reducing
the signal on button 4 by 5%. Figure 5 shows a plot of
Bþ�þ�Bþþ�� vs Bþ��þ for the simulated grid data. The
data is no longer single valued and linear and it is offset
from zero.

IV. MEASUREMENTS

Now we consider measured data. We expect that for all
BPMs of the same type that the product Bþ�þ�Bþþ��
will depend linearly on Bþ��þ with slope characteristic of
that BPM type and with zero intercept. Data for BPM
(#21E) is shown in Fig. 6. The button response is measured
for 75 distinct closed orbits arrayed more or less uniformly
over a 10 mm� 10 mm grid. The relationship between
Bþ�þ�Bþþ�� and Bþ��þ is very nearly linear, but it is
offset from zero in violation of Eq. (9). The offset indicates
a variation in the effective gains of the four buttons, either
electrical or geometric. Note that each closed orbit data
point shown in Fig. 6 is an average of 1024 turns.
As an alternative to using closed orbits, it is possible at

CesrTA to take turn-by-turn data while resonantly exciting
the beam at the horizontal and vertical normal mode tunes.
Over the course of 1024 turns, each BPM will measure
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FIG. 5. Bþ�þ�Bþþ�� vs Bþ��þ for points on a 18 mm by
10 mm grid with button intensity computed with the nonlinear
map. The button 4 signal is reduced by 5% with respect to
buttons 1, 2, and 3. [The gains ð1:4Þ ¼ 1; 1; 1; 0:95.] The þ
indicates the coordinate (0,0).
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FIG. 6. Bþ�þ�Bþþ�� vs Bþ��þ for measurements of CESR
BPM (#21E). There are 75 measurements distributed on a grid.
The þ indicates the coordinate (0,0).
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FIG. 4. Bþ�þ�Bþþ�� vs Bþ��þ for points on a 18 mm by
10 mm grid with button intensity computed with the map of
button signal vs beam position. Deviation from the superimposed
straight line, barely evident at even the largest amplitudes, shows
the extent to which the higher than second order terms can be
ignored. The units are arbitrary.
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FIG. 7. Bþ�þ�Bþþ�� vs Bþ��þ for measurements of CESR
BPM 33. There are 1024 turn-by-turn measurements.
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1024 different positions and the 1024 corresponding quar-
tets of button signals. This method has the advantage that
data can be taken very rapidly. The drawback is that the
signals cannot be averaged over multiple turns and, hence,
the noise will be greater. Resonantly excited turn-by-turn
data for BPM (#33E) is shown in Fig. 7. Again we find that
the data is well represented by the fundamental relation-
ship [Eq. (9)] but with a substantial offset from zero. The
width of the line is due to the intrinsic noise of the system.

V. GAIN FIT

If the deviations from Eq. (9) of the Bþ�þ�Bþþ�� vs
Bþ��þ curve are due to gain variations between different
button electrodes, a nonlinear least squares fit can be used
to determine the button gains gi. To do this, the merit
function to be minimized is

�2 ¼ Xn
i

�
ðg1Bi

1 � g2B
i
2 � g3B

i
3 þ g4B

i
4Þ

� c

I
ðg1Bi

1 � g2B
i
2 þ g4B

i
3 � g4B

i
4Þ

� ðg1Bi
1 þ g2B

i
2 � g3B

i
3 � g4B

i
4Þ
�
2
; (10)

where c is a geometrical coefficient that is common to all
BPMs with the same geometry.

The �2 defined above has a minimum for the best fit
gains gi and constant c. But there is also a minimum when
all the gains are zero. To prevent this, an additional con-
straint can be imposed by simply setting one of the gains to
unity. In practice, in order to limit any systematic effect
from our arbitrary selection of a particular button for
normalization, we fit the same data four times, normalizing
with respect to each of the four buttons, and then average
the results.

VI. SIMULATION

We use simulated data to test the validity of the algo-
rithm. We introduce gains that in general are different for
each button, and then use the fitting algorithm to determine
those gains. We generate button data corresponding to
beam positions on a rectangular grid. The quality of the
fit will depend on the size of the grid in x-y space as well as
the measurement error of the individual button signals. If
the grid is too small, then the fit will be sensitive to
measurement errors. However, the fit algorithm depends
on the assumption that r2=r20 � 1, so if the grid is too

large, the algorithm will fail.
Figure 8 shows the results of the fits to simulated button

data for three different grid sizes, �3 mm in both x and y,
�5 mm and �10 mm, and for button measurement reso-
lutions ranging from 0.1% to 1% of the average button
signal value. Each fit is based on 1000 measurements, and
for each fit we compute the difference of the fitted gains
from the real gains (�gij ¼ gifitted;j � gireal;j). The procedure

is repeated 1000 times, each time with a different seeding
of Gaussian measurement errors. Finally, we compute, and
plot, the root mean square of the difference,

�j ¼ 1

Nseeds

X
i

ð�gijÞ2:

We expect the button resolution for a single turn to be of
order 0.2%. Then according to the simulation we can
determine the gains to within 0.1% with a �5 mm by
�5 mm sampling region.
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VII. FITTING ORBIT DATA

As a test of the method, a fit to orbit data for BPM
(#21E) is shown in Fig. 9. For each of three sets of data we
measure button intensities for 25 closed orbits on a grid
that is approximately�9 mm by�5 mm. The three sets of
data are fit independently. Agreement between the fitted
gains for the three data sets is reasonably good.

VIII. TURN-BY-TURN DATA

The beam is resonantly excited at the horizontal and
vertical normal mode frequencies. The amplitude of the
transverse oscillations is �� 5 mm. We collect BPM

button data on each of 1024 turns simultaneously for the
100 beam position monitors in CESR. An example of fitted
data at one BPM is shown in Fig. 10. Gains computed for
100 BPMs based on turn-by-turn data are shown in Fig. 11.
The distribution of fitted gains for the turn-by-turn data is
shown in Fig. 12.

IX. TURN-BY-TURN VS CLOSED ORBIT DATA

The technique is evidently effective with either turn-by-
turn or closed orbit data. However, the procedure for
collecting turn-by-turn data is much more efficient. A
robust fit requires that the BPM be sampled uniformly
over a �5 mm��5 mm grid. That is readily accom-
plished in turn-by-turn data taking mode for all BPMs
simultaneously by resonant excitation of the beam at the
horizontal and vertical tunes. In closed orbit mode, com-
plete sampling depends on generating closed bumps to
manipulate the orbit in each BPM. In CESR there are
insufficient dipole correctors to adequately sample all of
the BPMs with closed orbits simultaneously. The advan-
tage of closed orbit data, in that each point is the average of
1024 single turn measurements, is balanced by the sim-
plicity of collecting a very large number of data points in
the turn-by-turn mode.

X. CONCLUSION

We have derived a relationship among the intensities of
the four buttons of a beam position monitor with horizontal
and vertical mirror symmetry. We show how the relation-
ship can be used to make a beam based measurement of the
relative gains of the four buttons. A simulation study
indicates that, if the resolution of the measurement of the
intensity of a single button is �0:2%, the gains can be
determined with a precision of 0.1%. We have used turn-
by-turn data to fit the gain for all 100 CESR beam position
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monitors. The standard deviation of the distribution of
measured gains is about 6%, consistent with the specifica-
tions of the system electronics. This turn-by-turn calibra-
tion of button gains will be implemented as part of the
standard initialization of measurements of dispersion and
transverse coupling.
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