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1. Analysis

One of the major challenges in designing the damping rings for the next
generation of linear colliders is how to model the many wigglers that will be
needed for emittance control. A prerequisite for the study of particle
dynamics is the ability to calculate transfer maps. This is difficult for
wigglers since analytic formulas do not exist except in the most simplified
cases. Wigglers can have strong nonlinear components [1,2], which can be a
major limitation on the dynamic aperture, and impose stringent conditions on
any analytic approximations. Recently, a field model has been developed at
Cornell that can be used to accurately track particles through a wiggler[3].
The advantages of the model are that it can be used to track symplecticly and
the model includes the end fields of the wiggler.

The field model is used with symplectic integration to do tracking. The
symplectic integration algorithm was developed by Y. Yu et al [4]. The
analysis starts with the Hamiltonian in the paraxial approximation
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where p, =P, [P, is the normalized transverse momentum, 6 = AE/P,c is the

relative energy deviation, z is the longitudinal position relative to the
reference particle, and a(x,y,s) = gA /P,c 1s the normalized vector potential.
Yu has shown that by dividing this Hamiltonian in a certain way symplectic
integration can be done. This procedure has been integrated into the PTC
(Polymorphic Tracking Code) subroutine library of Etienne Forest [5] which
in turn has been integrated into the Cornell BMAD particle simulation
software library [6].

The BMAD library is written in Fortran90 and has been developed to supply
a flexible framework that simplifies the task of writing custom programs to
do particle simulations. The BMAD input format is very similar to the MAD
input format so translating lattice files between the two formats is a fairly



simple task. Besides most of the standard MAD elements, BMAD recognizes
wigglers, combination solenoid/quadrupoles, and LINAC accelerating
cavities. Features include: Twiss parameter calculations, tracking, generating
and manipulating Taylor Maps, Wakefields, etc.

2. Field Model

As input to the symplectic integrator one must have an analytical formula for
the magnetic field that can be integrated to obtain the vector potential (the
need to be able to repeatedly differentiate the vector potential precludes the
alternative of interpolation from a field table). The Cornell wiggler field
model starts by writing the field B, (x,y,s) as a sum of terms
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Each term B, is parameterized by 5 quantities C, k_, k,, ¢, and f. The index
£, =12,0r3 1s used to designate which of 3 forms a B, term can take. The first
form (f,=1) is

B =-C % sin(k,x) sinh(k, y) cos(ks + ¢,)
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B, = C cos(k,x)cosh(k,y)cos(ks+ @)
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B =-C k—Y cos(k x) sinh(kyy) sin(k,s + ¢,)
.
with k; =k; +k:
The second form ( f, =2) 1is
B =C %sinh(kxx) sinh(k,y) cos(ks + ¢,)
B, = C cosh(k x)cosh(k y)cos(k s+ @) 2
B =-C % cosh(k x) sinh(k, y) sin(k;s + ¢,)
y
with k; =k -k
The third form ( £, = 3) is
B =C %sinh(kxx) sin(k, y) cos(k;s + ¢,)
y
B, = C cosh(k, x)cos(k,y)cos(k s+ @) -

B =-C % cosh(k,x) sin(k, y) sin(k.s + ¢,)
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k, 1is considered to be a function of k, and k. The relationship between them

ensures that Maxwell's equations are satisfied.

Given a calculation or measurement of the field at a set of points B, the
problem is to find a set of N terms such that B , and B, agree to some given

data
precision set by how accurately one needs to be able to track through a
wiggler. This is a standard problem in nonlinear optimization [7, 8]. The
solution is to minimize a merit function M
N
M= Y IB Byl +w, YIC,I
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The second term in M is to help preclude solutions with degenerate terms
that tend to cancel one another. The weight w_ should be set just large
enough to prevent this but not so large as to unduly distort the fit.

3. CESR-c Wiggler Model

The wiggler magnets being installed in the Cornell CESR-c storage

ring [9] have been modeled using the above procedure. Using the finite
element modeling program OPERA-3D, a table of field versus position was
generated. The validity of the field calculations was experimentally
confirmed by measurements of tune as a function of beam position in a
wiggler [10]. Table data and fit curves of B, as a function of s and x for the

CESR-c 8-pole wiggler are shown in Figures 1 and 2. 82 terms were used for
the fit. The peak field is about 2 Tesla and the RMS of the difference
IB,,.. -B! was 9 Gauss which gives an RMS to peak field ratio of 0.05%.
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Figure 1: a) B, as a function of 5. b) B, as a function of x. The data

points are from a finite element modeling program. The curves are
calculated from an 82 term fit.



Figures 2 and 3 show tracking simulation results for the CESR-c 8-pole
wiggler. Figure 2 shows p, at the end of the wiggler as a function of x at the
start with a starting condition of y = 20 mm. Figure 3a shows p, at the end as

a function of y at the start with x

start

set at 30 mm. The solid lines in Figures 2

and 3a are the results of using a Runge-Kutta (RK) integrator with adaptive
step size control [7] and with the field values obtained from interpolating the
table from OPERA-3D. The dashed lines are from symplectic integration (SI)
using the fitted field and 250 integration steps. The dash-dotted lines are from
a 7" order Taylor map (TM) which is generated using symplectic integration

with 250 integration steps.
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Figure 2: p, at the end of the wiggler as a

function of x at the start using 3 different
tracking methods.
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Figure 3: a) p,at the end of the wiggler
as a function of'y at the start using 3
different tracking methods. b)

Difference between RK traking and the
two other methods.

RK tracking, since it is derived directly from the equations of motion and the
magnetic field table, is the gold standard with which to compare other
tracking results. Figure 3b shows the difference between the SI and RK
tracking as well as the difference between the TM and RK tracking.
Additionally, for comparison, a line is shown whose slope represents a tune
shift of AQ=0.001 assuming a 8 of 10 m. The SI tracking agrees well with
the RK, better than 4 urad in Figures 2 and 8 urad in Figure 3. Slope
differences of the curves are also small, representing tune shifts of less than




0.001 (at B = 10 m) everywhere in the figures. The advantage of the SI
tracking is that it preserves the Poincare invariants, such as phase space
density, while the RK does not. This is an important consideration in long
term tracking where RK can give unphysical results.

The TM also show excellent agreement with the RK tracking except in
Figure 2 when the magnitude of x is larger than 30 mm or so. In the domain
where the TM agrees with the RK, the TM can be used for such purposes as
lattice design and other analyses that are not sensitive to non-symplectic
errors. The advantage of the TM is that it is fast. In the present instance the
TM was over a factor of 30 faster than the other two methods. (This does not
include the time to calculate the TM to begin with, but that only has to be
done once). To overcome the non-symplecticity of the TM it can be partially
inverted to form a symplectic generating function [11].

4. Conclusion

The wiggler model is useful because it can accurately model a wiggler
including end fields. This leads to efficient symplectic mapping which is
needed in long term tracking, and avoids the non-physical violation of
conserved quantities inherent when tracking is dependent upon interpolation
of a field table. For applications where symplecticity is not a concern, a
Taylor map, generated using the fit with symplectic integration can greatly
reduce computation time.

For long periodic wigglers, the number of terms needed to fit the field may
become large. In this case, a simple solution would be to divide the wiggler
into 3 sections: the periodic center section and two end sections. Each section
can be fitted separately. Since the center section is periodic, the number of
terms needed to fit it is independent of its length. For the end sections it
might be possible to cut down on the number of fit terms by making use of
three additional forms that have an exponential s-dependence. These forms
can be derived from (1), (2), and (3) using the substitution k, — -ik.

If pole misalignments need to be simulated, then planar symmetry cannot

be assumed. In this case, (1), (2), and (3) can be modified, at some small
increase in complexity, by using & x + ¢, in place of & x, and &,y + ¢, in place
of k,y. With this, any arbitrary magnetic field profile can be modeled.
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