

LC02 Codes Session 04-feb-2002

P. Tenenbaum

The LIAR Collaboration

C. Adolphsen, R. Assmann, K. Bane, P. Emma, L. Hendrickson, F. Ostiguy, T. Raubenheimer, A. Seryi, R. Siemann, G. Stupakov, P. Tenenbaum, K. Thompson, F. Zimmermann

What is LIAR?

- The Linear Accerlator Research Code
- Designed to study "high-performance" linear accelerators
- Not a "design code" (a la MAD, DIMAD) but a performance simulation code
 - emphasis on implementation of misalignments, errors, and correction algorithms

LIAR's Beamline Representation

- Magnets: quads, xcors, ycors, bends
 - represented at R-matrix level
 - dynamic calc of R-matrix based on particle energy (for chromatic aberrations, dispersion)
 - xcor/ycor dispersion included, but not bend magnet (bend matrix somewhat primitive)
 - magnet movers with finite step size represented
- RF structures
 - R-matrix, energy gain sinusoidal in time
 - short- and long-range transverse wakefields
 - short range longitudinal wakefields
 - include "average loading" (loss parameter) in design optics

LIAR beamline (2)

- BPMs and MARKERs
 - single- and multi-bunch positions, 2nd momemts
 - BPM resolutions included
 - Lots of diagnostic info generated which is not normally observable
- Element supports
 - can have multiple RF structures/girder
 - only 1 quad/girder
 - quads can if desired share girder with RF structures

LIAR Beamline

- Representation of Beamline Imperfections
 - misalignments (x or y)
 - uncorrelated, Gaussian-distributed, by element or by girder/support
 - correlated, generated by ATL motion
 - Errors
 - quad strength or rotation
 - x/ycor strength or rotation
 - bend strength or rotation
 - **RF** structure amplitude or phase
 - Resolution limits of quad movers and BPMs

LIAR Representation of the Beam

- Beam is a series of "Macroparticles," each of which
 - Has 6 first moments (x,x',y,y',z,E)
 - Has 10 second moments (4x4 x/y sigma matrix)
 - Has a charge
 - Full beam with RMS length/espread represented by group of macroparticles
 - Bunch trains permitted

LIAR Diagnostic/Correction Capabilities

- Multiknobs
 - hand generated by user, can include magnet or RF structure parameters
 - Tuning algorithm deterministic (different from realistic "move it around and seek best value" approach)
- Reference Orbits
- Feedbacks
 - no time-response information
 - Implementation somewhat different from "conventional" beam-based steering feedbacks
- Assorted steering algorithms
 - 1:1 with correctors
 - assorted magnet-mover based methods
 - various tunable parameters
 - **DF** steering
 - designed for SLAC linac, not easy to apply in general
- Automatic loop over seeds and save end-beamline emittances, etc.

LIAR Limitations

- No multipoles above quadrupole
- Beam representation not amenable to tracking through high-order multipoles
- Bunch length fixed throughout beamline
- "Hard-coded" for all RF structures very similar
 - only 1 SRWF, loss parameter at any given time
- Management of LRWFs cumbersome
- Written in FORTRAN-90
 - has advantages and disadvantages
 - difficult to add new tuning method without modifying code – nice to be able to do "quicker" and "dirtier" (and "more private") studies

The Big Structural Changes

- MATLAB-LIAR interface
 - All of LIAR can be executed as a MATLAB subroutine
 - MATLAB has read/write access to LIAR beam/lattice data
 - Can write simulations where
 - LIAR tracking generates data (BPM readings, etc)
 - MATLAB routines read data, decide correction, apply correction to LIAR beamline
 - Example: studies of NLC steering feedbacks with time-dependent behavior included

Structural Changes (2)

LIAR-DIMAD interface

- allows change in beam representation from LIAR mode to DIMAD mode (zillions of point-particles)
- Tracks using DIMAD tracking engine
- Permits use of high-order multipoles
- Can be converted between different representations at will
- Complete beamline information interfacing between 2 tracking engines – "transparent to the user"
- Allows bunch compression
- NB: DIMAD mode does not permit change in design energy or wakefields (switch back to LIAR mode for RF structures)

Structural Changes (3)

- Vast improvements in RF structure management
 - up to 10 different short-range wakes permitted
 - up to 10 different long-range wakes permitted
 - much-improved management of loss parameters and long-range transverse wakefields (inc. error wakes)
- Can have interleaved structures, vastly different structure types (L-, S-, X-band) in one beamline

New Features

- Bend magnets
 - all those parameters (K1, K2, H1, H2, fringe field integrals) allowed
 - Dispersion handled better
 - Improved (?) R-matrix and field-error handling
 - Gradient bends
- Ground Motion models
 - The entire Seryi GM model now included in LIAR
 - wavelike motion $P(\omega,k)$ parameters
 - diffusive (ATL) motion
 - Systematic (ATTL) motion
 - Can represent 2 beamlines pointing at each other and properly represent the correlated motion!

New Features (2)

- Correlation plots
 - scan multiknob, measure beam size at a marker, look for the best value
- Generation of closed orbit bumps
- More general DF Steering algorithm
- Effects of tilted (yawed/pitched) RF structure or support

- More GM features
 - resonant girders, FD stabilization
- LRWF angle wakes (maybe!)
- Debugging, debugging, debugging
- Documentation, documentation, documentation

Do We Need It?

- Incoherent Synchrotron Radiation
- Detector Solenoid
- Definition of girders/supports/movers in beamline definition file
 - presently done inferrentially in LIAR