

"I hear the roar of the big machine..."

X-Band Linear Collider (JLC/NLC): Luminosity Issues

2002 Linear Collider Meeting Monday Plenary

P. Tenenbaum

The Basics

• JLC/NLC linear collider design uses:

- 11.424 GHz ("X-Band") RF acceleration...
- 70 MeV/m unloaded gradient...
- 0.75x10¹⁰ e⁺/e⁻ per bunch...
- 192 bunches per RF pulse with 1.4 nsec spacing (268 nsec total train length)...
- 120 RF pulses per second...
- IP spot sizes approx. 250 nm x 2.5 nm...
- To achieve 2.0 3.5 x 10³⁴ luminosity @ 0.5 1.0 TeV CM

Parameter List

	Stage 1		Stage 2	
CMS Energy (GeV)	500		1000	
Site	US	Japan	US	Japan
Luminosity (10 ³³)	20	25	30	25
Repetition Rate (Hz)	120	150	120	100
Bunch Charge (10 ¹⁰)	0.75		0.75	
Bunches/RF Pulse	192		192	
Bunch Separation (ns)	1.4		1.4	
Eff. Gradient (MV/m)	48.5		48.5	
Injected $\gamma\epsilon_x$ / $\gamma\epsilon_y$ (10 ⁻⁸)	300 / 2		300 / 2	
γε _x at IP (10 ⁻⁸ m-rad)	360		360	
γε _y at IP (10 ⁻⁸ m-rad)	4		4	
eta_{x} / eta_{y} at IP (mm)	8/0.11		13/0.11	
σ _x / σ _y at IP (nm)	243 / 3.0		219 / 2.3	
$ heta_{x}$ / $ heta_{y}$ at IP (nm)	32 / 28		17 / 20	
σ _z at IP (um)	110		110	
yave	0.1	4	0.2	29
Pinch Enhancement	1.51		1.47	
Beamstrahlung δB (%)	5.4		8.9	
Photons per e+/e-	1.3		1.3	
Two Linac Length (km)	12.6		25.8	

• Unified JLC/NLC parameter list

- some variation due to different line frequencies!
- Other variations (bunch spacing and charge) conceivable

Layout

• Two interaction regions (sequential, not simultaneous, operation)

- HEIR: minimal bending, 20 mrad crossing angle (set by linac lines)
 - up to 3-5 TeV CM (someday!)
- LEIR: more bending, 25-30 mrad crossing angle
 - Luminosity okay up to about 1 TeV CM
- Bypass lines for running below max energy
 - Most flexible for operation and installation
- Linac tunnels sized for 1 TeV CM
 - stage 1: fill 50%, run thru bypass lines to beam delivery system
 - populate 2nd half of each linac over time to reach 1 TeV CM

Electron Source

GTL Layout stolen from T. Maruyama...

- Polarized Photocathode
- DC gun (not RF)
- Based on the SLAC source used for SLC and E-158
- Two sources planned for redundancy
- High charge/current, 80% polarization, stability (by bunch and by bunch train)
- Excellent recent results by GTL, Nagoya U, SLAC E-158 / Accelerator Dept.

Positron Source

- "Conventional" (6 GeV e⁻ on 4 R.L. W-Re target)
- Based on improved SLAC design
 - L-band capture (larger acceptance)
 - multiplexed targets (reduce peak shock load)
 - Bigger targets (reduce avg heat/shock/radiation damage)
- Also considering TESLAstyle source (undulator in main e⁻ beam and thin target)

Images stolen from D. Schultz and J. Sheppard

Damping Rings

- Main damping rings:
 - similar to 3rd generation light sources
 - energy (1.98 GeV)
 - emittance (γε = 3 x 0.02 mm.mrad)
 - Single-turn injection and extraction of bunch trains (challenging!)
- Pre-damping ring
 - positrons only
 - reduces huge emittance from target to level acceptable to MDR (γε ~ 150 mm.mrad)

Images stolen from T. Raubenheimer and A. Wolski

P. Tenenbaum

Damping Rings (2)

- Need low emittance and short damping times
 - lots of wigglers 46 m in MDRs, 50 m in PPDR)
 - Still need to store trains for multiple machine cycles (1 cycle ~ 8 msec)
 - 3 trains stored in MDR
 - 2 trains stored in PPDR
 - gaps for kickers
- Alignment of DR elements crucial for low emittance
 - Achievable with hi-res BPMs, magnet movers, skewquad trims on sextupoles

Images stolen from A. Wolski

Damping Rings (3)

- Lots of fun storage ring issues
 - lons
 - electron clouds
 - HOM instabilities
 - Path length control
 - Dynamic aperture (esp. with wigglers)
 - Intra-beam Scattering
 - Non-invasive beam size diagnostics
 - etc etc etc

Bunch Compressors

- Reduce σ_z from ~ 5 mm (DR) to 110 μm (linac)
- 2-stage design
 - stage 1: 5 mm → 600 µm @ 1.98 GeV
 - Stage 2: 600 µm →110 µm @ 8 GeV
- Prevents DR phase errors from becoming IP Energy errors
- Be careful of coherent synchrotron radiation!

Main Linacs

- About 12 km long each
- Use 0.6 m or 0.9 m Xband RF structures
- Strong wakefields drive ML design
- Short-range: cause beam break-up
 - cure with energy spread along bunch ("BNS Damping")
 - Leads to tight quad alignment tolerances

Main Linac Module

Main Linac: Long Range Wakefields

- Address by detuning (different HOM freqs in different cells) and direct damping
 - Implies tolerance on HOM freqs, structure straightness
 - Short strucs: need to interleave 2-3 structure types on a girder
 - implies tolerance on alignment of structures on girder
- Additional reduction via sub-train feedback
 - relies on deflections within train being constant from train to train

Main Linac Emittance Budget

Effect	Tolerance	Δγε _y , mm.mrad	
Beam-to-Quad Offsets	2.0 µm	0.005	
Quad Strength Errors	0.1%	0.0001	
Struc-to-Girder Misalignments	30 µm	0.0014 (single-bunch) 0.0002 (multi-bunch) [*]	
Struc-to-Girder Tilts	30 µrad	0.0008	
Struc BPM Resolution	5 µm	0.0006	
Quad Rotations	200 µrad	0.0008	
Mover Steering Interval	30 minutes	0.0004	
Structure Bow	50 µm	0.0002*	
Cell-to-Cell Errors	3.5 μm	0.0002*	
HOM Freq Errors	1 MHz	0.0002*	
Total		0.0099 (50%)	

P. Tenenbaum

Beam Delivery System

- Both IRs use short "Raimondi/Seryi" design with integrated collimation
 - Cancel coll aberrations in FF

• Principal challenges:

- delicate cancellation of aberrations
- Stability both position and strength – of magnets, esp. final doublet
- Collimation wakefields, protection of BDS, protection of collimators

Stabilization of BDS

- Steering feedbacks
- IP optimization fbcks
 - "dither" waist, eta, coupling and tune on luminosity signal
 - IP Collision steering feedback
 - tune beam-beam offset on deflection signal
- Sub-train IP Collision feedback?
- Fast active final doublet position control

Images stolen from L. Hendrickson, T. Himel, S. Smith, TESLA-TDR

Stabilization of BDS (2)

- Longer term: driven by diffusive ground motion
- Tools to preserve luminosity
 - IP collide feedback
 - steering feedback through sextupoles
 - Adjust aberrations via dither feedbacks
- Only 1 overall realign needed per year

BDS Energy Scaling

Plot data courtesy Y. Nosochkov

- Lower energy aberrations get worse
- Higher energy SR dilutions get worse
- Can be addressed by scaling BDS bends
 - changes geometry
- In practice, little improvement seen at lower energies

Conclusion and Provocation

- JLC/NLC pushes X-band technology to the state of the art (and maybe a bit past)
 - gradient issues see next talk!
 - wakefields make linac more challenging, requires more/better diagnostic and control
- JLC/NLC damping rings are not too far from existing light sources
- JLC/NLC BDS is reasonable extrapolation from SLC and FFTB
 - not too different from CLIC, TESLA BDS for similar energies
- It's been an exciting and productive couple of years since LC99!