
Wakefield Notes

Joe Calvey

1. Longitudinal Wakes

We want to obtain the monopole, longitudinal, single particle (or “delta

function”) wake. From Palumbo, Eq. 25:

Wz(r, τ) =
1

q1

∫ ∞
−∞

ib(τ
′)wz(r, τ − τ ′)dτ ′ (1)

Here Wz is the wake produced by a bunch (obtained from T3P), sampled

at transverse position r and time τ . q1 is the total bunch charge, ib is the

instantaneous beam current, and wz is the single particle wake. Note that both

Wz and wz have units of V/C. We want to solve for wz.

First, let’s rewrite everything in terms of discrete quantities. Eq. 1 becomes:

Wz(τ) =
1

q1

τ∑
τ ′=0

ib(τ
′)wz(τ − τ ′)∆τ (2)

Here we have broken up the bunch into discrete chunks of length ∆τ , and

charge ib(τ
′)∆τ . We define τ ′ = 0 as the “head” of the bunch (typically 4σ

before the center), and enforce causality by truncating the sum at τ ′ = τ are

defined as where the bunch “starts” and “ends” . We have also dropped r, since

the monopole wake has no transverse dependence.

Using the convolution theorem, we obtain:

Wz(τ) =
∆τ

q1
F−1[îb(ω)ŵz(ω)] (3)

where F−1 is the (discrete) inverse Fourier transform, and a îb and ŵz are

transformed quantities. Taking the Fourier transform of both sides and solving

for ŵz gives us
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ŵz(τ) =
q1
∆τ

Ŵz(ω)

îb
(4)

Taking the inverse transform, we end up with

wz(τ) =
q1
∆τ

F−1

[
Ŵz(τ)

îb

]
(5)

2. Transverse Wakes

The Panofsky-Wenzel theorem states that

1

c

∂

∂τ
~w⊥(~r, ~r1; τ) = ∇⊥,rwz(~r, ~r1; τ) (6)

If we expand to first order in ~r1 (assuming a small displacement for the

leading particle), this becomes (P92):

1

c

∂

∂τ
~w⊥(~r, ~r1; τ) = ∇⊥,r (wz(~r, 0, τ) + [∇⊥,r1wz(~r, ~r1; τ)] |r1=0 ·~r1) (7)

In an axially symmetric structure, wz expanded to 2nd order is:

wz(~r, ~r1; τ) ≈ wz,0(τ) + rr1cos(φ)wz,1(τ) (8)

So Equation 7 simplifies to:

~w⊥(~r, ~r1; τ) = −cr1
∫ τ

−∞
wz,1(τ ′)dτ ′ (9)

Note that the transverse dipole wake depends only on the displacement of

the leading particle.

2.1. Without symmetry

Unfortunately, in CESR we don’t have axial symmetry. Instead, let’s write

out wz to second order in cartesian coordinates:
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wz(x, y, x1, y1, τ) = wz,0 +
∂wz
∂x

x+
∂wz
∂y

y +
∂wz
∂x1

x1 +
∂wz
∂y1

y1

+
∂2wz
∂x2

x2 +
∂2wz
∂x∂y

xy +
∂2wz
∂x∂x1

xx1 +
∂2wz
∂x∂y1

xy1 +
∂2wz
∂y2

y2

+
∂2wz
∂y∂x1

yx1 +
∂2wz
∂y∂y1

yy1 +
∂2wz
∂x21

x21 +
∂2wz
∂x1∂y1

x1y1 +
∂2wz
∂y21

y21 (10)

Going through these terms we observe:

• The longitudinal monopole wake (wz,0), which does not depend on dis-

placement.

• Terms that are linear in the displacement of the leading particle (x1, y1),

or trailing particle (x, y). These will be nonzero only if we don’t have

top/down or left/right symmetry.

• Higher order terms, which we can neglect for now (though they are im-

portant for calculating the transverse wake).

Plugging Eq. 10 into Eq. 7 gives us:

1

c

∂

∂τ
~w⊥(~r, ~r1; τ) =

(
∂wz
∂x

+ 2
∂2wz
∂x2

x+
∂2wz
∂x∂y

y +
∂2wz
∂x∂x1

x1 +
∂2wz
∂x∂y1

y1

)
x̂

+

(
∂wz
∂y

+ 2
∂2wz
∂y2

y +
∂2wz
∂x∂y

x+
∂2wz
∂y∂y1

y1 +
∂2wz
∂y∂x1

x1

)
ŷ (11)

Note that there are actually four general types of transverse wake:

• A “transverse monopole wake” (e.g. ∂wz

∂y ), which is not dependent on

position. This is caused by a lack of top/down or left/right symmetry.

• A “quadrupolar” or “detuning” wake (e.g. 2∂
2wz

∂y2 y), proportional to the

displacement of the trailing particle. This comes from a lack of axial

symmetry.

• The familiar “dipole” transverse wake (e.g. ∂2wz

∂y∂y1
y1), proportional to the

displacement of the leading particle.
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• Scary looking coupling terms (e.g. ∂2wz

∂y∂x1
x1), which appear when we have

neither top/down nor left/right symmetry.

Fortunately, in CESR we do have approximate top-down and left-right sym-

metry for most elements. Therefore wz(x, y, x1, y1, τ) = wz(−x, y,−x1, y1, τ)

and wz(x, y, x1, y1, τ) = wz(x,−y, x1,−y1, τ). So Eq. 10 simplifies to:

wz(x, y, x1, y1, τ) = wz,0 +
∂2wz
∂x2

x2 +
∂2wz
∂x∂x1

xx1 +
∂2wz
∂y2

y2

+
∂2wz
∂y∂y1

yy1 +
∂2wz
∂x21

x21 +
∂2wz
∂y21

y21 (12)

Plugging this expression into Eq. 7 gives us:

1

c

∂

∂τ
~w⊥(~r, ~r1; τ) =

(
2
∂2wz
∂x2

x+
∂2wz
∂x∂x1

~x1

)
x̂+

(
2
∂2wz
∂y2

y +
∂2wz
∂y∂y1

y1

)
ŷ (13)

The only terms that survive are the “dipole” and “quadrupolar” terms.

If we assume left/right but not top/down symmetry (e.g. for the lump

pumps), we get:

1

c

∂

∂τ
~w⊥(~r, ~r1; τ) =

(
2
∂2wz
∂x2

x+
∂2wz
∂x∂x1

x1

)
x̂

+

(
∂wz
∂y

+ 2
∂2wz
∂y2

y +
∂2wz
∂y∂y1

y1

)
ŷ (14)

So the first three types of transverse wake listed above are significant.

2.2. Calculating Transverse Wakes

So how do we determine ~w⊥ from T3P? The first two terms in Eq. 13 can be

determined simply by varying the witness position for a given on-axis wake. The

last two terms are more difficult. If we displace both the leading and trailing

charge by an amount ∆y and subtract the on-axis wake, we get:

wz(0,∆y, 0,∆y)− wz,0 =

(
∂2wz
∂y2

+
∂2wz
∂y∂y1

+
∂2wz
∂y21

)
∆y2 (15)
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If the leading and trailing are displaced in the opposite direction, we get:

wz(0,∆y, 0,−∆y)− wz,0 =

(
∂2wz
∂y2

− ∂2wz
∂y∂y1

+
∂2wz
∂y21

)
∆y2 (16)

The T3P method of using an electric boundary in the center of the chamber

is equivalent to having a positive charge at ∆y and a negative charge at −∆y:

wz(0,∆y, 0,∆y)− wz(0,∆y, 0,−∆y) =

(
∂2wz
∂y2

+
∂2wz
∂y∂y1

+
∂2wz
∂y21

)
∆y2(17)

−
(
∂2wz
∂y2

− ∂2wz
∂y∂y1

+
∂2wz
∂y21

)
∆y2

= 2
∂2wz
∂y∂y1

∆y2

Note that, if we had cylindrical symmetry, ∂2wz

∂y2 = ∂2wz

∂y21
= 0, and all of

these methods would be equivalent. But, since we don’t, the electric boundary

method is preferred for determining the transverse wake.
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