# Wakefield Notes 

Joe Calvey

## 1. Longitudinal Wakes

We want to obtain the monopole, longitudinal, single particle (or "delta function") wake. From Palumbo, Eq. 25:

$$
\begin{equation*}
W_{z}(\mathbf{r}, \tau)=\frac{1}{q_{1}} \int_{-\infty}^{\infty} i_{b}\left(\tau^{\prime}\right) w_{z}\left(\mathbf{r}, \tau-\tau^{\prime}\right) d \tau^{\prime} \tag{1}
\end{equation*}
$$

Here $W_{z}$ is the wake produced by a bunch (obtained from T3P), sampled at transverse position $\mathbf{r}$ and time $\tau . q_{1}$ is the total bunch charge, $i_{b}$ is the instantaneous beam current, and $w_{z}$ is the single particle wake. Note that both $W_{z}$ and $w_{z}$ have units of $\mathrm{V} / \mathrm{C}$. We want to solve for $w_{z}$.

First, let's rewrite everything in terms of discrete quantities. Eq. 1 becomes:

$$
\begin{equation*}
W_{z}(\tau)=\frac{1}{q_{1}} \sum_{\tau^{\prime}=0}^{\tau} i_{b}\left(\tau^{\prime}\right) w_{z}\left(\tau-\tau^{\prime}\right) \Delta \tau \tag{2}
\end{equation*}
$$

Here we have broken up the bunch into discrete chunks of length $\Delta \tau$, and charge $i_{b}\left(\tau^{\prime}\right) \Delta \tau$. We define $\tau^{\prime}=0$ as the "head" of the bunch (typically $4 \sigma$ before the center), and enforce causality by truncating the sum at $\tau^{\prime}=\tau$ are defined as where the bunch "starts" and "ends". We have also dropped $\mathbf{r}$, since the monopole wake has no transverse dependence.

Using the convolution theorem, we obtain:

$$
\begin{equation*}
W_{z}(\tau)=\frac{\Delta \tau}{q_{1}} \mathbf{F}^{-\mathbf{1}}\left[\hat{\hat{i}_{b}}(\omega) \hat{w}_{z}(\omega)\right] \tag{3}
\end{equation*}
$$

where $\mathbf{F}^{-\mathbf{1}}$ is the (discrete) inverse Fourier transform, and a $\hat{i_{b}}$ and $\hat{w}_{z}$ are transformed quantities. Taking the Fourier transform of both sides and solving for $\hat{w}_{z}$ gives us

$$
\begin{equation*}
\hat{w}_{z}(\tau)=\frac{q_{1}}{\Delta \tau} \frac{\hat{W}_{z}(\omega)}{\hat{i}_{b}} \tag{4}
\end{equation*}
$$

Taking the inverse transform, we end up with

$$
\begin{equation*}
w_{z}(\tau)=\frac{q_{1}}{\Delta \tau} \mathbf{F}^{-\mathbf{1}}\left[\frac{\hat{W}_{z}(\tau)}{\hat{i_{b}}}\right] \tag{5}
\end{equation*}
$$

## 2. Transverse Wakes

The Panofsky-Wenzel theorem states that

$$
\begin{equation*}
\frac{1}{c} \frac{\partial}{\partial \tau} \overrightarrow{w_{\perp}}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right)=\nabla_{\perp, r} w_{z}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right) \tag{6}
\end{equation*}
$$

If we expand to first order in $\overrightarrow{r_{1}}$ (assuming a small displacement for the leading particle), this becomes (P92):

$$
\begin{equation*}
\frac{1}{c} \frac{\partial}{\partial \tau} \overrightarrow{w_{\perp}}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right)=\nabla_{\perp, r}\left(w_{z}(\vec{r}, 0, \tau)+\left.\left[\nabla_{\perp, r_{1}} w_{z}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right)\right]\right|_{r_{1}=0} \cdot \overrightarrow{r_{1}}\right) \tag{7}
\end{equation*}
$$

In an axially symmetric structure, $w_{z}$ expanded to 2 nd order is:

$$
\begin{equation*}
w_{z}(\vec{r}, \vec{r} ; \tau) \approx w_{z, 0}(\tau)+r r_{1} \cos (\phi) \overline{w_{z, 1}}(\tau) \tag{8}
\end{equation*}
$$

So Equation 7 simplifies to:

$$
\begin{equation*}
\overrightarrow{w_{\perp}}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right)=-c r_{1} \int_{-\infty}^{\tau} \overline{w_{z, 1}}\left(\tau^{\prime}\right) d \tau^{\prime} \tag{9}
\end{equation*}
$$

Note that the transverse dipole wake depends only on the displacement of the leading particle.

### 2.1. Without symmetry

Unfortunately, in CESR we don't have axial symmetry. Instead, let's write out $w_{z}$ to second order in cartesian coordinates:

$$
\begin{align*}
w_{z}(x, y, & \left.x_{1}, y_{1}, \tau\right)=w_{z, 0}+\frac{\partial w_{z}}{\partial x} x+\frac{\partial w_{z}}{\partial y} y+\frac{\partial w_{z}}{\partial x_{1}} x_{1}+\frac{\partial w_{z}}{\partial y_{1}} y_{1} \\
& +\frac{\partial^{2} w_{z}}{\partial x^{2}} x^{2}+\frac{\partial^{2} w_{z}}{\partial x \partial y} x y+\frac{\partial^{2} w_{z}}{\partial x \partial x_{1}} x x_{1}+\frac{\partial^{2} w_{z}}{\partial x \partial y_{1}} x y_{1}+\frac{\partial^{2} w_{z}}{\partial y^{2}} y^{2} \\
& +\frac{\partial^{2} w_{z}}{\partial y \partial x_{1}} y x_{1}+\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}} y y_{1}+\frac{\partial^{2} w_{z}}{\partial x_{1}^{2}} x_{1}^{2}+\frac{\partial^{2} w_{z}}{\partial x_{1} \partial y_{1}} x_{1} y_{1}+\frac{\partial^{2} w_{z}}{\partial y_{1}^{2}} y_{1}^{2} \tag{10}
\end{align*}
$$

Going through these terms we observe:

- The longitudinal monopole wake $\left(w_{z, 0}\right)$, which does not depend on displacement.
- Terms that are linear in the displacement of the leading particle $\left(x_{1}, y_{1}\right)$, or trailing particle $(x, y)$. These will be nonzero only if we don't have top/down or left/right symmetry.
- Higher order terms, which we can neglect for now (though they are important for calculating the transverse wake).

Plugging Eq. 10 into Eq. 7 gives us:

$$
\begin{array}{r}
\frac{1}{c} \frac{\partial}{\partial \tau} \overrightarrow{w_{\perp}}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right)=\left(\frac{\partial w_{z}}{\partial x}+2 \frac{\partial^{2} w_{z}}{\partial x^{2}} x+\frac{\partial^{2} w_{z}}{\partial x \partial y} y+\frac{\partial^{2} w_{z}}{\partial x \partial x_{1}} x_{1}+\frac{\partial^{2} w_{z}}{\partial x \partial y_{1}} y_{1}\right) \hat{x} \\
+\left(\frac{\partial w_{z}}{\partial y}+2 \frac{\partial^{2} w_{z}}{\partial y^{2}} y+\frac{\partial^{2} w_{z}}{\partial x \partial y} x+\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}} y_{1}+\frac{\partial^{2} w_{z}}{\partial y \partial x_{1}} x_{1}\right) \hat{y} \tag{11}
\end{array}
$$

Note that there are actually four general types of transverse wake:

- A "transverse monopole wake" (e.g. $\frac{\partial w_{z}}{\partial y}$ ), which is not dependent on position. This is caused by a lack of top/down or left/right symmetry.
- A "quadrupolar" or "detuning" wake (e.g. $2 \frac{\partial^{2} w_{z}}{\partial y^{2}} y$ ), proportional to the displacement of the trailing particle. This comes from a lack of axial symmetry.
- The familiar "dipole" transverse wake (e.g. $\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}} y_{1}$ ), proportional to the displacement of the leading particle.
- Scary looking coupling terms (e.g. $\frac{\partial^{2} w_{z}}{\partial y \partial x_{1}} x_{1}$ ), which appear when we have neither top/down nor left/right symmetry.

Fortunately, in CESR we do have approximate top-down and left-right symmetry for most elements. Therefore $w_{z}\left(x, y, x_{1}, y_{1}, \tau\right)=w_{z}\left(-x, y,-x_{1}, y_{1}, \tau\right)$ and $w_{z}\left(x, y, x_{1}, y_{1}, \tau\right)=w_{z}\left(x,-y, x_{1},-y_{1}, \tau\right)$. So Eq. 10 simplifies to:

$$
\begin{align*}
w_{z}\left(x, y, x_{1}, y_{1}, \tau\right)= & w_{z, 0}+\frac{\partial^{2} w_{z}}{\partial x^{2}} x^{2}+\frac{\partial^{2} w_{z}}{\partial x \partial x_{1}} x x_{1}+\frac{\partial^{2} w_{z}}{\partial y^{2}} y^{2} \\
& +\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}} y y_{1}+\frac{\partial^{2} w_{z}}{\partial x_{1}^{2}} x_{1}^{2}+\frac{\partial^{2} w_{z}}{\partial y_{1}^{2}} y_{1}^{2} \tag{12}
\end{align*}
$$

Plugging this expression into Eq. 7 gives us:

$$
\begin{equation*}
\frac{1}{c} \frac{\partial}{\partial \tau} \overrightarrow{w_{\perp}}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right)=\left(2 \frac{\partial^{2} w_{z}}{\partial x^{2}} x+\frac{\partial^{2} w_{z}}{\partial x \partial x_{1}} \overrightarrow{x_{1}}\right) \hat{x}+\left(2 \frac{\partial^{2} w_{z}}{\partial y^{2}} y+\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}} y_{1}\right) \hat{y} \tag{13}
\end{equation*}
$$

The only terms that survive are the "dipole" and "quadrupolar" terms.
If we assume left/right but not top/down symmetry (e.g. for the lump pumps), we get:

$$
\begin{align*}
& \frac{1}{c} \frac{\partial}{\partial \tau} \overrightarrow{w_{\perp}}\left(\vec{r}, \overrightarrow{r_{1}} ; \tau\right)=\left(2 \frac{\partial^{2} w_{z}}{\partial x^{2}} x+\frac{\partial^{2} w_{z}}{\partial x \partial x_{1}} x_{1}\right) \hat{x} \\
& \quad+\left(\frac{\partial w_{z}}{\partial y}+2 \frac{\partial^{2} w_{z}}{\partial y^{2}} y+\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}} y_{1}\right) \hat{y} \tag{14}
\end{align*}
$$

So the first three types of transverse wake listed above are significant.

### 2.2. Calculating Transverse Wakes

So how do we determine $\overrightarrow{w_{\perp}}$ from T3P? The first two terms in Eq. 13 can be determined simply by varying the witness position for a given on-axis wake. The last two terms are more difficult. If we displace both the leading and trailing charge by an amount $\Delta y$ and subtract the on-axis wake, we get:

$$
\begin{equation*}
w_{z}(0, \Delta y, 0, \Delta y)-w_{z, 0}=\left(\frac{\partial^{2} w_{z}}{\partial y^{2}}+\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}}+\frac{\partial^{2} w_{z}}{\partial y_{1}^{2}}\right) \Delta y^{2} \tag{15}
\end{equation*}
$$

If the leading and trailing are displaced in the opposite direction, we get:

$$
\begin{equation*}
w_{z}(0, \Delta y, 0,-\Delta y)-w_{z, 0}=\left(\frac{\partial^{2} w_{z}}{\partial y^{2}}-\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}}+\frac{\partial^{2} w_{z}}{\partial y_{1}^{2}}\right) \Delta y^{2} \tag{16}
\end{equation*}
$$

The T3P method of using an electric boundary in the center of the chamber is equivalent to having a positive charge at $\Delta y$ and a negative charge at $-\Delta y$ :

$$
\begin{aligned}
w_{z}(0, \Delta y, 0, \Delta y)-w_{z}(0, \Delta y, 0,-\Delta y)= & \left(\frac{\partial^{2} w_{z}}{\partial y^{2}}+\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}}+\frac{\partial^{2} w_{z}}{\partial y_{1}^{2}}\right) \Delta y^{2}(17) \\
& -\left(\frac{\partial^{2} w_{z}}{\partial y^{2}}-\frac{\partial^{2} w_{z}}{\partial y \partial y_{1}}+\frac{\partial^{2} w_{z}}{\partial y_{1}^{2}}\right) \Delta y^{2} \\
= & 2 \frac{\partial^{2} w_{z}}{\partial y \partial y_{1}} \Delta y^{2}
\end{aligned}
$$

Note that, if we had cylindrical symmetry, $\frac{\partial^{2} w_{z}}{\partial y^{2}}=\frac{\partial^{2} w_{z}}{\partial y_{1}^{2}}=0$, and all of these methods would be equivalent. But, since we don't, the electric boundary method is preferred for determining the transverse wake.

