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Twiss Parameters

Consider linear transport in one dimension through a beam line, The phase space 2-vector

x = (x, x′).

x and x′ are offset and angle with respect to some reference orbit. As long as the forces are linear,
(quadrupole, dipole, drift) or nearly so, the vector is propagated through those elements with a
2X2 unity determinant matrix M .

xf = Mfix
i

In general the forces may be nonlinear. Then the matrix M is the Jacobian of the mapping from
xi to xf . If xf (xi) then

M =


∂xf1
∂xi1

∂xf1
∂xi2

∂xf2
∂xi1

∂xf2
∂xi2


The Jacobean, M , has unit determinant.

Scalar invariant

Define the scalar
s = xTAx

Then define A, so that

s =
(
x x′

)(γ α
α β

)(
x
x′

)
= γx2 + 2αxx′ + βx′

2

A can be any 4 parameters that we like. No loss of generality by setting A = AT since we only
need three numbers to define the most general scalar combination of x and x′. Now suppose we
propagate xb → xe with the help of M . Then xe = Mxb and

s = xTbM
T (MT )−1AbM

−1Mxb = xTe (MT )−1AbM
−1xe = xTe Aexe

Evidently s is invariant as long as

Ae = (MT )−1AbM
−1 (1)
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Or (
γe αe
αe βe

)
= (MT )−1

(
γb αb
αb βb

)
M−1 (2)

We use the transfer matrix to propagate the twiss parameters. Another thing, from Equation 1
we see that |Ae| = |Ab|. The determinant of the twiss matrix is invariant. We set it to unity for
convenience. Then γβ−α2 = 1. It should be clear that except for the unit determinant requirement,
the twiss parameters (α, β, γ) are totally unconstrained. We assign them whatever values we like
at one location along the beam line and they are determined everywhere else. But so far not much
there.

In a ring, we typically choose the twiss parameters so that they are single valued. That is
A(s) = A(C + s) where C is the circumference. That way there is a unique set of α and β at each
point around the ring. We have

A = (MT )−1AM−1

where M is the full turn matrix. Turns out that

M =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
where µ = 2πν and ν is the tune.

From the full turn matrix we can determine the stability of the system by extracting the eigen-
values.

M~vi = λi~vi

The behavior after n turns is
Mn~vi = λni ~vi

The system is stable if the eigenvalues are unimodular. (Remember that detM = 1→ λ1λ2 = 1.)
Then λi = eiµ where µ is real. For a ring, we can define twiss parameters by requiring that they be
single valued. Twiss parameters in a transfer line are determined by the distribution of particles.
It is clear from the above, that the twiss parameters will establish how the phase space coordinates
are correlated, how x and x′ are related. Consider the matrix of second moments. (The average of
the first moments is zero).

Σ =

(
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
The matrix is constructed as

xxT =

(
x
x′

)(
x x′

)
and

xex
t
e = Mxbx

T
bM

T

Then
〈xexte〉 = 〈Mxbx

T
bM

T 〉 = M〈xbxTb 〉MT

or (
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
e

= M

(
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
b

MT

which looks almost like the rule for propagating the twiss matrix A. In fact we had that

Ae = (MT )−1AbM
−1.
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Then
A−1e = MA−1b MT

and the matrix A−1e transforms the same as the Σ matrix. The elements of the two matrices are
evidently related. In particular

A−1 = ε

(
β −α
−α γ

)
=

(
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
The ε is some unknown scale factor.

|A−1| = |Σ| → ε2 = 〈xx〉〈x′x′〉 − 〈xx′〉2

Since
σ2 = 〈xx〉, (σ′)2 = 〈x′x′〉

we have that

β =
σ2

ε
, γ =

(σ′)2

ε

The twiss parameters are determined by the distribution of the phase space coordinates of the
trajectories.

Computing transfer matrix with tracking

Sometimes it is difficult to construct the transfer matrix from first principles. The matrix conveys
the focusing effect of the element but to build the matrix we essentially need to know all the
gradients etc. Alternatively we can do tracking. Remember that the transfer matrix is the Jacobian
of the map

M =


∂xf1
∂xi1

∂xf1
∂xi2

∂xf2
∂xi1

∂xf2
∂xi2


The strategy is essentially to compute the derivatives numerically. If we know the reference trajec-
tory (uniquely defined in a circular machine, but not so straightforward in a transfer line like the
entrance through the backlog iron and into the inflector), we can calculate trajectories displaced
by ∆x and ∆x′ from the reference and build M . In principle we need only three non degenerate
trajectories to determine the 2X2 matrix for horizontal or vertical motion as well as the reference.
Write

Mi→f (xin − xref ) = xf − xref

Mi→fxin − (Mi→f − I)xref = xf

Mi→fxin − x0 = xf (3)

Next construct

N =

(
Mi→f x0

0 1

)
=

m11 m12 x0
m21 m22 x′0

0 0 1
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and Equation 3 becomes

N

(
xin
−1

)
=

(
xf
−1

)
.

The goal remember is to compute Mi→f and xref . Choose three distinct values for xin, namely
xiin, i = 1, 2, 3, track each to xif and we get

N

(
x1
in x2

in x3
in

−1 −1 −1

)
=

(
x1
f x2

f x3
f

−1 −1 −1

)
Finally

N =

(
x1
f x2

f x3
f

−1 −1 −1

)(
x1
in x2

in x3
in

−1 −1 −1

)−1
Extract M and xref from N as per above. The strategy is readily extended to the full 6 dimensional
phase space where

x→



x
x′

y
y′

z
δ


where δ = ∆E/E. So to determine the evolution of the phase space (that is the twiss parameters)
through the iron and inflector into the ring we simply compute 7 trajectories. We can in principle
use the same 7 trajectories to determine the transfer matrix between any two points along the
reference orbit.

Description of transfer matrix

We can write the most general 2X2 determinant 1 matrix as

M = eµJ , J =

(
α β
−γ −α

)
and |J | = 1. Then we see that Jn = (−1)nJ and

eµJ = cosµ+ J sinµ.

All well and good. Let’s return to our expression for the invariant

s = xTAx

Suppose we normalize the phase space vector so that

s = uTu = xTGTGx

with x = G−1u, which requires that GTG = A. Then

G =

(
1√
β

0

− α√
β
−
√
β

)
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and

GTG =

(
γ α
α β

)
Recall that

x1 = Mx0

G−11 u1 = MG−10 u0

→ u1 = G1MG−10 u0

But the transformation that preserves the length of u is orthogonal and therefore

G1MG−10 = R(θ)

where R is a two by two rotation. Finally we can write

M = G−11 R(θ)G0

=

( √
β1 0

− α√
β1
− 1√

β1

)(
cos θ sin θ
− sin θ cos θ

)( 1√
β0

0

− α0√
β0
−
√
β0

)

The map from one point to another can always be written in terms of the twiss parameters at each
point and the phase advance between them.

Next include dispersion. Write the 6x6 transfer matrix, assuming zero horizontal vertical coupling
but finite horizontal and/or vertical dispersion

T =

Mx 0 mx

0 My my

nx ny Mz

 .

The dispersion vector with energy offset δ = 1 is (ηx, η
′
x, etay, η

′
y, l, 1). The dispersion vector is

propagated the the transfer matrix T . If there is no RF element(something that changes the
energy), it must be true that

m01 =

(
0 η1
0 η′1

)
−M01

(
0 η0
0 η′0

)
since then

T



η0(x)
η′0(x)
η0(y)
η′0(y)
∼
1

 =


M(x)01

(
η0(x)
η′0(x)

)
+m(x)01

(
∼
δ

)
M(y)01

(
η0(y)
η′0(y)

)
+m(y)01

(
∼
δ

)
∼

 =



η1(x)
η′1(x)
η1(y)
η′1(y)
∼
δ


which gives us all of the pieces we need to construct the transfer matrix from a point with twiss
parameters β1x, α

1
x, β

1
y , α

1
y, η

1
x, η
′
x
1, η1y , η

′
y
1 to β2x, α

2
x, β

2
y , α

2
y, η

2
x, η
′
x
2, η2y , η

′
y
2 with horizontal and vertical

phase advances φ2x − φ1x and φ2y − φ1y.
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Injection through inflector

Consider the mapping of the phase space as the muon beam passes through the hole in the backleg
iron and cryostat, across the gap and through the inflector. The Jacobian of the map captures the
field gradients that correspond to focusing. While the details of the field along the trajectory of
the injected beam are complex, the outstanding feature is that the vertical field is close to zero at
the boundary of the backlog iron and that it increases approximately linearly to 1.45T just inside
the pole gap. The distance from the iron to the gap is about 40 cm. The corresponding gradient

∂By
∂x

=
1.45

0.4
[T/m].

The effect on the horizontal phase space is to defocus. Since ∇ × B = 0, the vertical gradient is
related to the horizontal according to ∂Bx

∂y −
∂By

∂x = 0. We know the gradient so we can compute
the transfer matrix and propagate twiss parameters through the region. Another effect of the field
non uniformity is to steer the beam along a trajectory with increasing curvature towards the center
of the ring until it enters the inflector. In the inflector, we have a superposition of the magnet
fringe and the inflector field. At the upstream end the inflector overcompensates and the beam
curvature is outward. About 1/3 of the way into the inflector, the net field is very nearly zero and
the trajectory straightens out. But the inflector field is uniform and has no effect on the gradient.
We refer to the field map that Nathan extracted from Hugh Brown’s notes. The vertical field along
the path of the injected muons is shown in Figure 1
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Figure 1: Magnetic field along path of injected muons
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Figure 2: Twiss parameters
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