
g2MIGTRACE Tutorial:
Storing Output

Kevin Lynch
June 2011

Outline

● What already gets output
● Users:

● Getting g2MIGTRACE to output something
● Doing something useful with it all

● Developers:
● How it all works
● How to add output

So, what does get output?

● Short answer:
● Nothing!

● Longer answer:
● If you exert de minimis effort, there are a few

things you can get...

Longest answer

● Simulation Metadata
● Run Level Data

● Collected Event Level Data
● Particle Level Data

S

R

S
E P

P

P

Simulation Metadata

● SVN Revision
● Git revision
● Build time
● External library revisions

Run Level Data

● Physical Object Manager
● Configuration Parameters

Event Level Data

● Particle ID Data
● Final Event Status Data
● Inflector Tracking Data
● Ring Tracking Data

● Spin Tracking Data
● Energy Loss Data
● Calorimeter Hit Data
● Hodoscope Hit Data
● Wire Chamber Hit Data

What does this look like

Inside the Root file

Users

● Getting g2MIGTRACE output
● Doing something useful with it

● Aigh! There's the rub....

Getting some output

Let's enable Root output

1

2

3
4

What do you actually get now?

● A Root File
● with a long name!

● g2MIGTRACE metadata
● svn_revision

● The object manager
● G2UniqueObjectManager ... on which more

later
● Particle Data Holder

● TrackTree
● Event Status Data Holder

● EventStatusTree
● More on all of these later...

If you want more, you must

● Enable it!
● Write it ... then enable it!

What can you enable?

● Beam Tracking output
● Ring tracking
● Inflector tracking

● “Energy Loss” output
● Generic energy loss

● Ring hits
● Specialized energy loss

● Calorimeter hits
● Wire chambers
● Hodoscope tiles

Ring trackers

Ring trackers

Ring Trackers

● TTree trackerTree
● std::vector<trackerRecord>

● What's a trackerRecord?

trackerRecord

The coordinate system

● In trackerRecord, we have a hybrid
cylindrical/toroidal system

● r and z should be obvious
● The angle ... well, not so much

● The angle is defined as “downstream” from a
convenient reference point

● Almost all objects are located within vacuum
chamber sections by relative measurements

● Hence, the global angle is defined on the
arc0/arc11 boundary ... slightly downstream of
the nominal inflector aperture

To whit...

There's a pattern here...

● A somethingRecord is the unit of storage of a
single particle Step in the Event

● somethingRecords are generally stored in a
std::vector<somethingRecord>

● That vector is a leaf in the somethingTree
● Entries in parallel somethingTrees are all

from the same simulation Event

trackerRecord

Volume identifiers

● Between runs, volumes can be
moved/added/removed!

● At BeginOfRun (such as /run/beamOn), the
geometry is frozen and voxelized ... from then
on, it can't change until EndOfRun

● Root files are stored per run, hence, a
reference database of all volumes is built and
stored without work on your part!

● But!!! Physical Volume Names must be unique
for this scheme to work!

● The DB is called g2UniqueObjectManager
and provides a useful set of services

g2UniqueObjectManager

g2UniqueObjectManager

trackerRecord

Track Identifiers

● In every Event, every the birth of every particle
is recorded

● trackRecord ->
std::vector<trackRecord> ->
trackTree

trackRecord

Doing something useful

● Enable what you want
● Run
● Write some analysis code

Writing some analysis code

● Currently, you'll have to do a manual build/link
step on your analysis code ... the build system
provides you no assistance.

● You'll need to augment your include path so
the headers in
g2MIGTRACE/trunk/include are found

● You'll need to link against $G4WORKDIR/tmp/
$G4SYSTEM/libROOTRecords.so

● Then you can open the TFile and analyze
away!

● There's no code in the repository, but some can
be provided on request.

For developers

● How it all works
● How to add output

How it all works

● The runtime component
● rootStorageManager
● g2UniqueObjectManager
● Sensitive Detectors and the TTrees

● The build component
● Dictionaries
● File naming conventions

rootStorageManager

● A singleton esponsible for all Root specific
operations

● Activate/Deactivate sensitive detectors
associated with data types to be stored

● Opening TFiles
● Storing Metadata
● Booking/branching/writing TTrees
● Converting from Geant4 implementations to

Root storable types
● Writing and closing TFiles

g2UniqueObjectManager

● Bidirectionally maps the Physical Volume Name
to a (much much!) shorter UUID (the 64bit
linear address of the instantiation)

● UUIDs are stored in various places in lieu of
Volume Names

● Provides lookup services
● By name (regular expressions!)
● By UUID

Sensitive Detectors and the Trees

● All step-by-step data collection is done within
Sensitive Detectors

● SDs are Activated by the same code within
the rootStorageManager that books the
Trees

● They are also Deactivated if the trees aren't
booked!

● Trees are sorted, translated, and written to the
Root file by rootStorageManager when
EventAction::EndOfEvent fires

SD Translation

● The Geant4 classes traffic in Geant4 classes
(duh)

● The Root persistence framework traffics in Root
persistable classes (duh)

● These are not the same code!
● You can't easily store Geant4 data in Root

classes
● rootStorageManager provides a translation

layer ... you write a converter, and the manager
does the rest

● trackerHit -> trackerRecord

The build component
● Standard set of makefiles

● DAGs! Learn to do it right!
● Persistable types must follow these rules to

produce a working dictionary:
● Class declaration in

include/newRecord.rhh
● Class definition in src/newRecord.rcc

● Even if “trivial”/empty!
● LinkDef header in include/newLinkDef.h

● Again, even if empty ... which it probably
shouldn't be

● New Sensitive Detector hit types should be
called newHit.{hh,cc}, and a convert
function should be written as in
src/rootStorageManager.cc

