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1 Introduction

Muons injected into the g-2 storage ring execute betatron oscillations about a closed orbit. The
closed orbit is defined by the magnetic and electric fields and the muon energy. If the magnetic field
is uniform and the quadrupole electric field linear in the displacement of the muons from the closed
orbit, then all muons oscillate with the same betatron frequencies, independent of amplitude. How-
ever, in the g-2 ring, the fields of the electrostatic quadrupoles have significant nonlinearity. The
result is that the betatron frequency depends on the amplitude of the oscillations. A distribution
that is initially executing coherent centroid motion, or coherent modulation of its width, will even-
tually decohere on a time scale that depends on the nonlinearity and the emittance (distribution of
amplitudes). We will show how the decoherence time is related to oscillation amplitude and quad
multipoles.

In addition, the closed orbit, the betatron tunes, and the revolution frequency are all energy
dependent. As a result of this energy dependence, muons in a distribution with finite energy spread
will execute betatron oscillations about their respective closed orbits with a spread of frequencies.
Again the frequency spread evolves a decoherence of the betatron motion. The amplitude of the
motion of the centroid of the distribution, as well as the modulation of the beam width, will “damp”
over this decoherence time. We will show how the chromaticity (energy dependence of betatron
tunes) is related to the focusing index in the g-2 ring.

Conversely, we find that because of the momentum dependence of the cyclotron period, and the
dispersion mismatch at the inflector exit, coherent centroid motion can emerge from an initially
incoherent distribution. The “fast rotation” analysis takes advantages of the correlation of cyclotron
frequency and momentum to measure the distribution of momenta. The “fast rotation” signal is a
measure of the time dependence of the intensity of the distribution, where intensity is proportional
to the number of muons per unit time. The coherent betatron oscillation is a measure of the time
dependence of the position of the centroid of the distribution. We will develop analytic expressions
for both.

Evidently, particles that oscillate coherently at the start of the fill, will decohere due to both
amplitude and energy dependence of the betatron tunes. The amplitude of the modulation of the
width of the injected beam, results from the mismatch of the twiss parameters at the inflector exit.
The intial amplitude of the oscillations of the beam centroid will depend on the quality of the fast
kicker pulse. As the betatron frequency depends on the amplitude and energy of the particles, the
modulation of the width, as well as the oscillations of the centroid, will decohere after some number
of turns. We also find that the dispersion mismatch leads to a coherent betatron oscillation that
persists for more than 1000 turns.

2 Amplitude Dependent Tune

In this section the we show how amplitude dependence of the tune is related to the quadrupole
multipoles. The multipole expansion of the quadrupole field in the midplane of the ring can be
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written[1]
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bnn
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The effective focusing of the quadrupoles is proportional to the field gradient

Gx =
∂Ex
∂x

=
∑
n=1

n(n− 1)bn
xn−2

rn0

In a perfect quadrupole, only b2 is non-zero and Gx = 2bn
1
r2
0
, independent of displacement x. In

our imperfect quadrupole, the gradient depends on the amplitude. We write an effective amplitude
dependent gradient

〈Gx〉 =
∑
n=1

n(n− 1)bn
〈xn−2〉
rn0

where 〈xn−2〉 is the average of xn−2. Let’s assume that x = x0 cos(ωcbot), a reasonable assumption
in our ring where β(s) is very nearly constant. Then

〈Gx〉 =
∑
n=1

n(n− 1)bn
xn−2

0

rn0
〈cosn−2(ωt)〉 (1)

(2)

and the contribution from all odd n is zero. The effective gradient is then given by

GA(x0) =

N∑
n=1

n(n− 1)bn
xn−2

0

rn0
cn−2

where cn−2 = 〈cosn−2 ωt〉 and x0 is the amplitude. The multipoles for the g-2 ring quadrupoles are
summarized in Table 1.

The tune shift due to an electric field gradient error G(s) is

∆Q =
1

4π

∮
βq
Ex(s)

dx

1

pv
ds

Table 1:

Multipole (n) Value [V/mn] cn−2 ∆Qx/m
n

2 26331.0 0 0
4 43.06 1/2 1.26× 108

6 -59.90 3/8 −1.08× 1011

8 -7.18 5/16 −8.96× 1012

10 -510.63 35/128 −4.22× 1017

12 -8.48 63/256 −4.44× 1018

14 68.25 231/1024 2.19× 1022
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where q, p, and v are the muon charge, momentum and velocity respectively. Using R = γmv/qB
the tune shift becomes

∆Q =
1

4π

∮
β
Ex(s)

dx

1

RBv
ds

Then the amplitude dependent tune shift is

∆Q(x, s) =
1

4π

∮
β
GA(x, s)

RBv
ds

The gradient GA(s) is given by Equation 1 in the quads and is zero everywhere else. Since the
quads extend over a length L = 4(2π 39

360 (7.112)) we write

∆Q(x, s) =
1

4π
β
GA(x, s)

RBv
L (3)

The contribution to the horizontal tune shift from each of the multipoles is shown in Table 1 and
in Figure 1.
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Figure 1: Tuneshift as a function of betatron amplitude (Equation 3 for each of the quadrupole
multipoles (lines) and as computed in tracking simulation (squares) for three different amplitudes.

3 Tune spread and decoherence

The analytic calculation of the amplitude dependent tune shifts can be checked in simulation. The
simulation is built from routines in the BMAD accelerator library. The fields of the electrostatic-
quadrupoles are represented in terms ofthe multipoles expansion described above.
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Suppose the tunes for two different muons are split by ∆Q. The sum of the displacements of
the two muons at Q and Q+ ∆Q on turn n is

x(n) = A sin(2πQn) +A sin(2π(Q+ ∆Q)n)

where Q̄ is the average of the tunes. Note that if n∆Q = 1
2 then the particles are 180◦ out of phase.

The decoherence time (in units of turns) is T = 1
2∆Q . Track two particles with initial amplitudes

of about 4 cm. For one of the particles, turn off all multipoles n > 2 so that the guide field is linear
and tune is independent of amplitude. For the other, restore all quad multipoles. The oscillation
of the two particles is shown superimposed in Figure 2.
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Figure 2: Horizontal displacement vs turn num-
ber. The green line is with purely linear
quadrupole fields, (no multipoles). The red line
is with all quad multipoles included. The am-
plitude of the oscillation is about 3.9 cm.
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Figure 3: Sum of displacements with and with-
out quad multipoles when the oscillation ampli-
tude is 4.4 cm. The beat frequency corresponds
to the tune difference.

The sum of the displacements of the two particles is

x1(n) + x2(n) = A
(
sin(2π(Q̄+ ∆Q/2)n) + sin(2π(Q̄−∆Q/2)n)

)
= A

(
sin(2π(Q̄+ ∆Q/2)n) + sin(2π(Q̄−∆Q/2)n)

)
= 2A sin(2πQ̄n) cos(2π∆Qn)

and shown in Figure 3. The signal at Q̄ is modulated at the tune difference. From Figure 3, we see
that ∆Q(44mm) is 1/340 turns.

We use the same strategy to determine the tune shift for amplitudes of 39 mm and 34 mm.
The turn by turn sum of trajectories with and without quad nonlinearities are shown in Figures 4
and 5 respectively. The amplitude dependence of the tune shift as determined by tracking is plotted
in Figure 1 along with the analytic calculation. Analytic and numerical results are in reasonable
agreement.
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Figure 4: Sum of displacements with and with-
out quad multipoles (nonlinearities) when the
oscillation amplitude is 3.9 cm as in Figure 2.
∆Q = 1/838 turns.
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Figure 5: Sum of displacements with and with-
out quad multipoles when the oscillation ampli-
tude is 3.4 cm. ∆Q = 1/2470 turns.

4 Decoherence in a distribution

Consider a distribution of 1000 muons with 95% horizontal and vertical emittance of 40mm-mrad.
Suppose the residual coherent betatron oscillation amplitudes are 10mm horizontally and about
1mm vertically. Due to the beta mismatch the width of the distribution varies from 6 to 13 mm
and the height from 8 to 16mm. As described above, the effect of the quadrupole nonlinearity is
to introduce an amplitude dependent tuneshift. Vertical and horizontal centroid and width over
the first 2000 turns are shown in Figure 6. Here the quad nonlinearity is turned off so there is no
decoherence. The decoherence is evident in the evolution of the distribution with quad nonlinearity
restored as shown in Figure 7. The amplitude of the coherent horizontal betatron oscillation shrinks
by a factor of two in 2000 turns. The variation in the width and height of the distribution also
“damps” on a time scale of 1000 turns. Note that the particles remain bunched, as they all have
the same energy.
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Figure 6: With no quad nonlinearities, average horizontal (bottom-left) and vertical (top-left)
centroid motion versus turn. Horizontal and vertical beam width versus turn is at right.
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Figure 7: With quad linearities, average horizontal (bottom-left) and vertical (top-left) centroid
motion versus turn. Horizontal and vertical beam width versus turn is at right. Decoherence of
centroid motion and modulation of beam width is evident.
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5 Momentum spread

The energy dependence of the betatron tunes and the revolution frequency, contribute to the evolu-
tion and decoherence of betatron motion due to the finite energy spread in the beam. In a cyclotron
with electrostatic focusing distributed uniformly around the ring, the tune depends on the focusing
index n according to

Qx =
√

1− n
Qy =

√
n

where

n =

(
r

vsB

)
∂Er
∂r

r is the radius of curvature of the on momentum muon in magnetic field B and vs is the azimuthal
velocity, that is r = γmvs

qB = p
qB . The dependence of betatron tune on energy, (chromaticity) follows

from

n(δ) =
p(1 + δ)

qvsB2

∂Er
∂r

so that

∂Qx
∂δ

= −1

2

1√
1− n

∂n

∂p
= − n

2
√

1− n
=

Q2
y

2Qx
= −0.103

∂Qy
∂δ

=
n

2
√
n

=
1

2
Qy = 0.215

evaluated for n = 0.185. An important assumption in the above is that the electrostatic quadrupoles
extend continuously around the circumference of the ring which is not the case in the g-2 ring. To
understand the implications for chromaticity it is useful to distiguish three contributions; energy
dependence of quadrupole focal length, energy dependence of pathlength and effect of quad curva-
ture.

The horizontal and vertical tunes are written in terms β-function

Qh/v =
1

2π

∮
1

βh/v
ds

(4)

In a ring with constant β (dβds = 0), we have that K = 1/β2 and the tunes are

Qh/v =
1

2π

∮ √
Kx/yds

Qh/v =
√
Kx/yR (5)

where

Kx =
1

ρ2
− q

mv2

∂E

∂r
=

1

ρ2
− J

Ky =
q

mv2

∂E

∂y
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where for convenience we define J ≡ q
mv2

∂E
∂r = n and note that Qy =

√
J .

The three distinct contributions to the chromaticity are enumerated.

1. The effective gradient (K) decreases with energy, increasing horizontal and decreasing the
vertical tune.

∂K
1/2
x

∂δ
=

1

2
K−1/2 ∂K

∂δ
= −

(ρ−2 − 1
2J)

√
K

= −
√
K − J√

K
= −Qx −

Q2
y

2Qx

∂K
1/2
y

∂δ
= −1

2

√
K = −1

2
Qy

where we have assumed rectangular coordinates so that ∂Er

∂r = ∂Ex

∂x = −∂Ey

∂y

2. The path length increases with energy, ∆P = 2πηδ. If the inner and outer quad plates have
equal angular length, then a longer path corresponds to longer quads and more focusing.

∂Qh/v

∂δ
=
√
Kx/yη =

η

R
Qh,v

where R is the magic radius. If the quad plates have equal linear length (rather than equal
angular length), then there is no pathlength dependent focusing. The effect of pathlength will
depend on the details of the fringe field at the ends of the quads.

3. The sextupole component of the quad fields couples to the tune via the dispersion. If the
quad plates have no curvature, then the quadrupole symmetry precludes a sextupole moment.
But there is curvature in the g-2 quads, and solutions to Laplace’s equation in cylindrical
coordinates are guaranteed a sextupole component. In cartesian coordinates the quadrupole
potential

V (x, y) =
1

2
k(x2 − y2)

gives
E = −∇V = −kxx̂ + kyŷ

and ∂Ex

∂x +
∂Ey

∂y = 0. In cylindrical coordinates, a solution (but not a unique solution) to the
Laplace equation with lowest order term linear in displacement, all of the nonlinearity in the
radial coordinate, and a strictly linear vertical dependence is

V = k

(
1

2
(r2 − 1)− r0 ln

r

r0
− y2

)
and

E =
1

2
k

(
(r − r2

0

r
)r̂− 2yŷ

)

With the substitution r = r0 + x, where r0 is the magic radius,

E =
1

2
k

(
(r0 + x− r2

0

r0
[1− x

r0
+

1

2

(
x

r0

)2

+ . . .])r̂− 2yŷ

)

∼ k

(
x− x2

2r0
+ . . .)r̂− yŷ

)
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The closed orbit for an off energy particle is shifted to x→ ηδ + x and the radial component
of the field for an off energy muon becomes

Er = k

(
x+ ηδ − 1

2r0
(x+ ηδ)2

)
∂Er
∂x

→ k(1− 1

r0
ηδ)

∂
√
Kx

∂δ
= −

√
Kx

η

2r0

The contribution to the chromaticity due to the quadratic component of the electric field is

∂Qh
∂δ

= − η

2r0

√
Kx =

η

2r0
Qx

In summary, contributions to chromaticity include

1. the energy dependence of the quad gradient and bend curvature

2. energy dependence of path length

3. nonlinearity associated with the curvature.

Assuming equal angular length of inner and outer plates and strictly linear vertical quad focusing (so
that all of the nonlinearity due to curvature appears in the horizontal) the sum of the contributions
is

∂Qx
∂δ

= −Qx −
Q2
y

2Qx
+Qx

η

r0
−Qx

η

2r0

∂Qy
∂δ

= −Qy
(

1

2
− η

r0

)
It turns out that for continuous focusing,

η =
1

Kr0
=

r0

Q2
x

Then
∂Qx
∂δ

= −Qx −
Q2
y

2Qx
+

1

Qx
(1− 1

2
) =

−1

2Qx
+

1

Qx
(1− 1

2
) = 0

Evidently, if the inner and outer quad plates are equal angular length and if the quadratic correction
to the quad field is restricted to the radial direction so the vertical is linear, then the horizontal
chromaticity is identically zero. And the vertical can be written

∂Qv
∂δ

= −Qy
(

1

2
− 1

Q2
x

)
If, on the other hand, angular length is different for inner and outer plates, and/or Laplace’s
equation in cylindrical coordinates is satisfied by some nonlinearity in the vertical, rather than the
horizontal, the chromatities will be very different. In order to get the chromaticity right, we need
a 3D map of the quad fields that includes end effects as well as curvature.
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Finally, suppose that all of the particles in the initial distribution appear in the ring at the same
point in space and time but with a spread in energy. The particles will execute betatron oscillations
with a frequency that depends on the energy, namely Qx(δ) = Q′xδ and Qy(δ) = Q′yδ, where δ is

the fractional energy offset. The particles will circulate with cyclotron frequencies 1
ω(δ) = 1+δ

ω0
. The

betatron frequency

ωβ = Qω becomes

ωβ → (Q+Q′∆)
ω0

1 + ∆

6 Fast Rotation

Imagine that the initial distribution has zero emittance, zero energy spread and zero bunch length.
The particles share a common revolution period T and the time dependence of the intensity signal
at a fixed point in the ring (a fiber harp for example), is

I(t) = δ(t− nT )

where n is any non negative integer. A particle with energy offset ∆ will have revolution period
T (1 + ∆), so that

I(t,∆) = δ(t− nT (1 + ∆))

The signal in the fiber harps is given by

S(t) =

∞∑
n=0

∫
ρ(∆)δ(t− nT (1 + ∆))d∆

where ρ(∆) is the distribution of momenta offsets. If the energy distribution is Gaussian with width
∆0, then

S(t) =

∞∑
n=0

∫
e−∆2/(2∆2

0)

√
2π∆0

δ(t− nT (1 + ∆))d∆

=

∞∑
n=0

∫
e−∆2/(2∆2

0)

√
2π∆0

δ(∆− ( t
nT − 1)

nT
d∆

=

∞∑
n=0

e−( t
nT −1)2/(2∆2

0)

√
2π∆0nT

(6)

For energy spread ∆0 = 0.0012, which is just about the acceptance of the g-2 ring, S(t) from
Equation 6 is shown in Figures 8, 9, and 10. Figures 9, and 10 are the same data as 8 on expanded
horizontal scale. The intensity asymptotically approaches that of the average stored current 〈I〉 =
eNµ/T . (Note that there is no muon decay in Equation 6 or the accompanying plots).
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Figure 8: Fast rotation signal 0-20µs. (See script for plotting with gnuplot in Appendix.)
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Figure 9: Fast rotation signale from 5µs to 10µs
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Figure 10: Fast rotation signal from 15µs to
20µs.
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6.1 Momentum distribution from fast rotation signal 7 BUNCH LENGTH

6.1 Momentum distribution from fast rotation signal

An established method for extracting the energy (or equivalently frequency) distribution is to take
the real part of the fourier transform of the fast rotation signal[2]. Let’s try that out.

F (ω, t0) =

∫ ∞
0

S(t,∆0) cosω(t− t0)dt

=

∞∑
n=0

∫ ∞
0

e−( t
nT −1)2/(2∆2

0)

√
2π∆0nT

cosω(t− t0)dt

=

∞∑
n=0

∫ ∞
0

e−t
2/(2(nT )2∆2

0)+t/(nT∆2
0)±iωte∓iωt0e−1/(2∆2

0)

√
2π∆0nT

=
1

2

∞∑
n=0

e(1/(nT∆2
0)±iωt)2)((nT )2∆2

0)/2e∓iωt0e−1/(2∆2
0)

=

∞∑
n=0

e(1/(nT∆2
0)2−(ωt)2))((nT )2∆2

0)/2e−1/(2∆2
0) cosω(nT − t0)

=

∞∑
n=0

e(1/(2∆2
0)−ω2(nT )2∆2

0/2)e−1/(2∆2
0) cosω(nT − t0)

F (ω, t0) =

∞∑
n=0

e−ω
2(nT )2∆2

0/2 cosω(nT − t0) (7)

The fourier transform of the fast rotation signal for a distribution with ∆E/E = 0.0012, zero
emittance and zero bunch length is shown in Figures 11– 12. The rotation harmonics out to 200
MHz are shown in Figure 11. The part of the frequency distribution in the band corresponding to
particles inside the vacuum chamber is Figure 12 along with a Gaussian of width ∆f/f = 0.0012.
Sure enough the Fourier transform of the fast rotation signal reproduces the energy spread of the
distribution.

7 Bunch Length

Next introduce finite bunch length. Referring back to Equation 6 it is straightforward to include a
temporal offset t′ into the fast rotation signal as follows

S(t, t′) =

∞∑
n=0

e−( t−t′
nT −1)2/(2∆2

0)

√
2π∆0nT

Suppose the intial temporal (longitudinal) distribution of the muons is Gaussian

ξ(t′) =
1√

2πσt
e−t

′2/(2σ2
t )

Then

S(t) =

∞∑
n=0

∫ ∞
−∞

dt′
e−( t−t′

nT −1)2/(2∆2
0)

√
2π∆0nT

1√
2πσt

e−t
′2/(2σ2

t )
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Figure 11: Real part of fourier transform of fast
rotation signal shown in Figure 8.
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Figure 12: Real part of fourier transform of fast
rotation signal in Figure 8 within the accep-
tance of the vacuum chamber. A Gaussian with
σf/f = 0.0012 is superimposed.

=

∞∑
n=0

1

2π∆0nTσt

∫ ∞
−∞

dt′e−( t−t′
nT −1)2/(2∆2

0)e−t
′2/(2σ2

t )

=

∞∑
n=0

1

2π∆0nTσt
e−t

2/(2(nT∆0)2)

∫ ∞
−∞

dt′e
−( t′2−2tt′

(nT )2
+1− 2(t−t′)

nT )/(2∆2
0)
e−t

′2/(2σ2
t )

=

∞∑
n=0

1

2π∆0nTσt
e−t

2/(2(nT∆0)2)e
t

nT∆2
0

∫ ∞
−∞

dt′ exp(−t′2(
1

2(nT )2∆2
0

+
1

2σ2
t

) + t′(
t

nT
− 1)/(nT∆2

0))e−1/(2∆2
0)

=

∞∑
n=0

1

2π∆0nTσt
e−( t

nT −1)2/2∆2
0

∫ ∞
−∞

dt′ exp
(
−αt′2 + βt′

)
=

∞∑
n=0

1

2π∆0nTσt
e−( t

nT −1)2/(2∆2
0)

√
π

α
eβ

2/4α

where α = 1
2(nT )2∆2

0
+ 1

2σ2
t

and β = ( t
nT − 1)/(nT∆2

0). Finally

S(t) =

∞∑
n=0

1

2π∆0nTσt
e−( t

nT −1)2/(2∆2
0)

√
2πnT∆0σt√

(nT )2∆2
0 + σ2

t

exp(
( t
nT − 1)2

(nT∆2
0)2

(nT )2∆2
0σ

2
t

2(nT )2∆2
0 + 2σ2

t

)

=
1√
2π

∞∑
n=0

e−( t
nT −1)2/(2∆2

0) 1√
((nT )2∆2

0 + σ2
t

exp(
( t
nT − 1)2

∆2
0

σ2
t

2(nT )2∆2
0 + 2σ2

t

)

=
1√
2π

∞∑
n=0

1√
((nT )2∆2

0 + σ2
t

exp(
−( t

nT − 1)2

2∆2
0

(
1− σ2

t

(nT )2∆2
0 + σ2

t

)
) (8)
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8 ENERGY AND DISPERSION

Let’s look at a couple of examples. Figure 13 shows the first 20 µs of the fast rotation signal of a
distribution with Gaussian energy spread ∆E/E = 0.0012 and pulse length σt =20ns. This is to
be compared with Fig. 8 with σt = 0. Figure 14 is the fast rotation signal for a distribution with
the same energy spread but pulse length σt = 60ns, closer to what we will see in E989.
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Figure 13: Fast rotation signal from a muon
pulse with Gaussian energy spread ∆E/E =
0.0012 and Gaussian temporal spread σt =
20ns.
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Figure 14: Fast rotation signal from muon pulse
with ∆E/E = 0.0012, and σt = 60ns.

It will turn out to be convenient to rewrite Equation 8 as

S(t) =
1√
2π

∞∑
n=0

1√
((nT )2∆′0

2
exp(

−( t
nT − 1)2

2∆′0
2 ) (9)

where

∆′0
2

=
(nT∆0)2 + σ2

t

(nT )2

Then it is easy to see that the Fourier transform has the same form as Equation 7 and

F (ω, t0,∆
′
0) =

∞∑
n=0

e−ω
2(nT )2∆′0

2/2 cosω(nT − t0) (10)

Examples of fourier transforms (Equation 9) of the fast rotation signal for distributions with energy
width ∆E/E = 0.0012 and lengths σt = 20ns and σt = 60 ns respectively are shown in Figure 15
over the frequency range consistent with the chamber aperture. For both cases the distribution
is Gaussian with width ∆f/f = 0.0012 so that the Fourier transform does indeed reproduce the
energy spread independent of pulse length. The effect of the bunch length is to reduce the amplitude
of the signal. At what point the signal is dominated by statistical noise remains to be determined.

8 Energy and dispersion

The final focus of the M5 line is designed with zero dispersion at the exit of the inflector[3] so muons
entering the ring with fractional energy offset ∆, will oscillate transversely about the corresponding

15



8 ENERGY AND DISPERSION
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Figure 15: Fourier transform of fast rotation signal for distributions with pulse length σt = 20ns
and σt = 60ns. (See script for plotting with gnuplot in Appendix.)

closed orbit (xc(∆) = η∆) with amplitude x(∆) = η∆ and frequency

f = Qω0 → (Q+Q′∆)
ω0

1 + ∆

where ω0 is the revolution frequency of the magic momentum muon, and Q and Q′ are the horizontal
betatron tune and chromaticity, (discussed above) respectively. The time dependent transverse
motion of a single muon with energy offset ∆ is

x(t) = η∆(1− cos

(
(Q+Q′∆)

ω0t

1 + ∆

)
Then the position at a fixed point in the ring s, is

x(t,∆)s =
∑
n

η∆

(
1− cos

(
(Q+Q′∆)

ω0

1 + ∆
t

))
δ(t− nT (1 + ∆))

x(t,∆)s =
∑
n

η∆

(
1− cos

(
(Q+Q′∆)

ω0

1 + ∆
t

))
δ(∆− (

t

nT
− 1))

Next consider a distribution with zero emittance and zero length, but finite Gaussian energy spread,

ρ(∆) =
e
−∆2

∆2
0

√
2π∆0

16



8 ENERGY AND DISPERSION

Averaging over all energy offsets we find

N〈x(t)〉 =

∫ ∞
−∞

d∆
∑
n

η∆(

(
1− cos

(
(Q+Q′∆)

ω0

1 + ∆
t

))
e
− ∆2

2∆2
0

√
2π∆0

δ(∆− (
t

nT
− 1))

=
∑
n

η(
t

nT
− 1)

(
1− cos

(
(Q+Q′(

t

nT
− 1))

ω0

t/nT
t

))
e
−

( t
nT
−1)2

2∆2
0

√
2π∆0

=
∑
n

η(
t

nT
− 1) (1− cos ((QnT +Q′(t− nT ))ω0))

1√
2π∆0

e
−

( t
nT
−1)2

2∆2
0

N〈x(t)〉 is the average position at time t, weighted by the number of muons at that time. In order
to extract the average position independent of number, divide by

N =
∑
n

1√
2π∆0

e
−

( t
nT
−1)

2∆2
0

so that

〈x(t)〉 =
1

N

∑
n

η(
t

nT
− 1) (1− cos ((QnT +Q′(t− nT ))ω0))

1√
2π∆0

e
−

( t
nT
−1)2

2∆2
0 (11)

The average centroid displacement at a fixed point in the ring (for example at a fiber harp) is given
by Equation 11 and plotted in Figure 16 at 1ns intervals, for an initial distribution with Gaussian
energy width ∆0 = 0.0012, zero pulse length and zero emittance. The betatron motion begins
to evolve in the first few turns after injection and then decoheres on a time scale of 30µs. The
frequency of the envelope of the turn by turn motion, most apparent in the first 20µs (Fig. 17)
is the betatron tune (fβ = Qω0). A coherent oscillation of the centroid persists beyond 100µs
(Fig. 18.)

We attempt to reproduce the analytic result in a “realistic” tracking simulation. Figures 19– 22
are simulation data with the BMAD model of the storage ring, including collimators and quadrupole
nonlinearity (which are of course not part of the analytic calcuation). The distribution has Gaussian
energy width ∆E/E = ∆0, pulse length σt = 1ns (that is, approximately zero) and zero emittance.
The muon distribution is injected on axis, mimicing a perfect kick. Nevertheless, a coherent betatron
oscillation emerges as the envelope of the fast rotation signal. Immediatelay after injection, there is
zero coherent oscillation. As long as the average momentum is the magic momentum, the average
displacement is zero. The betatron oscillations of the high and low momentum muons are 180
deg out of phase. Coherent oscillations appear as the high momentum muons lag behind the low
momentum particles. Also, because the momentum spread of the distribution at the inflector exit
is greater than the momentum acceptance of the ring, the amplitude of the coherent oscillations
arising from the momentum spread will by definition fill the aperture.

One thing to keep in mind: the time dependence of the centroid motion at a fixed point in
the ring as shown in Figures 19– 22, etc. will depend on the width of the time bin, which here is
1ns. As the width of the time bin increases the average displacement of the distribution decreases,
approaching zero as the time bin approaches the revolution period of 149 ns. Note also that each
point in the Figures will in general correpond to the average of the positions of only those muons in

17



8 ENERGY AND DISPERSION
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Figure 16: Centroid motion of a distribution with Gaussian energy width, ∆E/E = 0.0012, zero
length and zero emittance, from Equation 11 evaluated at 1ns intervals.
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Figure 17: Centroid motion (Equation 11) for
the same distribution as Fig. 16 for the first
20µs after injection. The frequency of the enve-
lope is the betatron tune.

���

���

��

��

��

���

���

��� ��� ��� ��� ��� ��� ����

En
er
gy
D
ec
oh
er
en
ce
.g
nu

�
��
��
���
��
��
��
��

��
���
���

��
���
��
���

�
�

���������

�����������

Figure 18: Centroid motion (Equation 11) for
the same distribution as Fig. 16, 40-100µs after
injection.
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8 ENERGY AND DISPERSION
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Figure 19: Simulated centroid motion for a dis-
tribution with Gaussian energy width ∆E/E =
0.0012, zero length, and zero emittance. The
distribution is injected on axis into the ring, so
that there is initially no coherent betatron oscil-
lation. Centroid motion evolves with time due
to the momentum spread.
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Figure 20: Simulated centroid motion for the
same distribution as Fig. 19 for the first 20µs
after injection. The coherent oscillation of the
centroid is evident. The centroid motion is mod-
ulated at the betatron tune.

that particular time bin. As a result, some points will represent the average of a very few muons.
It is after all, a plot of average position versus time, with no accounting for intensity. It is clear
again in Fig. 22 that a coherent oscillation persists well beyond 100 µs, albeit with relatively small
amplitude of ±5mm.
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Figure 21: Simulated centroid motion for the
same distribution as Fig. 19 from 30-60µs after
injection. The decoherence time is about 30µs.
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Figure 22: Simulated centroid motion for the
same distribution as Fig. 19 130-145µs after in-
jection. Some coherent motion persists well be-
yond 100µs.

9 Put the pieces together

Finally consider a more realistic distribution with finite energy spread, 95% of beam particles within
40mm-mrad emittance, and temporal distribution anticipated for E989[4] as shown in the Appendix
in Figure 34.The simulated centroid motion that would be measured at a thin detector at a fixed
point in the ring, with 1ns time bin width is shown in Figures 25– 26. The coherent centroid
motion that arises due to the dispersion mismatch and momentum spread is evident, although here
(as compared to Figures 19– 22) mitigated by the larger emittance and the longer pulse duration.
Some coherent motion persists for more than 1000 turns (149µs). Remember that the distribution
is initialized on the magic radius, as if it were injected with the perfect kick.

Let’s try one more thing. Suppose the kicker pulse is imperfect and there is some displacement
or angle of the injected muons with respect to the closed orbit and a coherent oscillation of the
centroid. The time dependence of the centroid is shown in Figures 27 - 28 for a distribution with
emittance 40 mm-mrad, energy spread ∆E/E = 0.0012, ’W’ shaped pulse, and kick angle error of
2 mrad (out of 10.6 mrad). To see the effect of the kick error, compare Figure 27 to Figure 24.
For times longer than 100µs the coherent centroid oscillation is very nearly independent of the kick
error. (Figure 28 versus Figure 26).

The time dependence of the width of the distribution is shown in Figures 29– 30.

10 Summary

The irreducible momentum spread in the muon distribution emerges as a coherent oscillation of the
distribution centroid. This continues to be the case for the anticipated “W” temporal shape, and
realistic transverse emittance. The CBO associated with the momentum spread persists at some
level beyond 145µs. Coherent centroid motion at t = 0 results from a kicker error. This component
of the CBO decoheres on the time scale of 100µs due to quadrupole nonlinearity.
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Figure 23: Simulation of centroid motion of dis-
tribution with finite emittance (40 mm-mrad)
and ’W’ pulse shape, and energy spread =
0.0012
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Figure 24: Simulation of centroid motion for
distribution with finite emittance and ’W’ pulse
shape, and energy spread =0.0012
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Figure 25: Simulation of centroid motion for
distribution with finite emittance, ’W’ pulse
shape, energy spread = 0.0012
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Figure 26: Simulation of centroid motion for
distribution with finite emittance, ’W’ pulse
shape, and energy spread=0.0012
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Figure 27: Finite emittance and W pulse shape,
energy spread = 0.0012, kick error = 2mrad
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Figure 28: Finite emittance and W pulse shape,
energy spread, kick error = 2mrad
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Figure 29: Finite emittance and W pulse shape,
energy spread = 0.0012, kick error
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Figure 30: Finite emittance and W pulse shape,
energy spread, kick error
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11 APPENDIX

11 Appendix

11.1 Fourier transform of fast rotation signal

As shown above, the real part of the Fourier transform of the fast rotation signal of a Gaussian
distribution of energies with σE/E = 0.0012 is given by

F (ω,∆0, t0) =

∞∑
n=0

e−ω
2(nT )2∆2

0/2 cosω(nT − t0) (12)

At the moment that the muons enter the ring, there is presumably no correlation between muon
momentum and time. The measurement of the fast rotation signal necessarily begins at some time
ts > t0 after some energy-time correlation has already evolved. We measure S(t) but we are forced
to estimate t0. The symmetry of the fourier transform F (ω,∆0, t0) is sensitive to the error in t0.
According to the algorithm described by Orlov et.al.[2], we can refine our estimate of t0 by finding
the value that best symmetrizes F (ω). F (ω,∆0, t0) for a various values of the start time offset t0
are shown in Figures 31 - 33, demonstrating the dependence of the symmetry of the transform to
t0.
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Figure 31: Real part of fourier
transform of fast rotation sig-
nal shown in Figure 8. Gaus-
sian with width ∆f/f = 0.0012
is superimposed. t0 = 0.
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Figure 32: Same as Figure 32
but with t0 = 2ns (see Equa-
tion 12).
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Figure 33: Same as Figure 33
but with t0 = 5ns.

11.2 Gnuplot plotting scripts

The script for plotting the analytic form of the fast rotation signal and its fourier transform are
included for reference.

gnuplot script for plotting Fast Rotation Signal (Equation 8)

set terminal pdf enhanced fontscale 0.75 size 6.0in, 3.5in

set output ’FastRotation.pdf’

f(x,n) = exp(-(x/n/Trev -1)**2/2/d0**2)/sqrt(2*pi)/d0/n/Trev

g(x,n) = exp(-(x/n/Trev -1)**2/2/d0**2*(1-sigt**2/((n*Trev*d0)**2+sigt**2)))/sqrt(2*pi)/sqrt((n*d0*Trev)**2 + sigt**2)
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11.2 Gnuplot plotting scripts 11 APPENDIX

Trev=149.e-9*1.e6

sigt=20.e-9*1.e6

d0=0.0012

set xrange [0:20]

set samples 5000 #increase sample size to show more detail

set ylabel ’Intensity’

set xlabel ’Time [{/Symbol m}s]’

unset label

set label ’FastRotation.gnu’ at graph 1.02,0.02 rotate left font ’Verdana,6’

delta0 = sprintf("%.4f",d0)

sigmat = sprintf("%3.1f",sigt*1.e3)

set label ’{/Symbol D}_0 = ’.delta0 at graph 0.8,0.95

set label ’{/Symbol s}_t = ’.sigmat.’ ns’ at graph 0.8,0.9

plot ’+’ using 1:(sum [n=1:1000] g($1,n)) w l not

gnuplot script for plotting Fourier Transform of Fast Rotation Signal (Equation 10) as in
Figure 15

set terminal pdf enhanced fontscale 0.75 size 6.0in, 5.0in

set output ’FastRotationFT.pdf’

f(x,n) = exp(-(2*pi*x*n*Trev)**2*((n*Trev*d0)**2+sigt**2)/(n*Trev)**2/2)*cos(2*pi*x*(n*Trev-t0))

Trev=149.e-3

freq=1./Trev

omega=2*pi*freq

d0=0.0012

t0=0.0

sigt=20.e-3

set xrange [0.98*freq:freq*1.02]

#set xrange [-1:200]

unset label

set yrange [0:]

set samples 1000

set ylabel ’F(f))’

set xlabel ’Frequency [MHz]’

set key spacing 1.5 height 1

set label ’FastRotationFT.gnu’ at graph 1.02,0.02 rotate left font ’Verdana,6’

delta0 = sprintf("%.4f",d0)

df=0.008

df0 = sprintf("%.4f",df/freq)

t0w = sprintf("%.1f",t0*1e3)

sigtw = sprintf("%.1f",sigt*1e3)

A=165

set label at graph 0.1,0.9 ’ t_0 = ’.t0w.’ ns’

#set label at graph 0.1,0.85 ’ {/Symbol s}_t = ’.sigtw.’ ns’

set label at graph 0.1,0.85 ’{/Symbol D}_0 = ’.delta0

stats ’+’ using 1:(sum [n=1:1000] f($1,n))
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11.3 Pulse shape 11 APPENDIX

ff(x) = STATS_max_y*exp(-(x-freq)**2/2./df**2)

set multiplot

set yrange [0:120]

plot ’+’ using 1:(sum [n=1:1000] f($1,n)) w l lc 1 t ’{/Symbol s}_t = ’.sigtw.’ ns’

sigt=60.e-3

sigtw = sprintf("%.1f",sigt*1e3)

set key height 2.1

plot ’+’ using 1:(sum [n=1:1000] f($1,n)) w l lc 2 t ’{/Symbol s}_t = ’.sigtw.’ ns’

unset multiplot

11.3 Pulse shape
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Figure 34: ’W’-shaped temporal distribution of
the muon pulse
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