Multiple scattering in Inflector end coils

D.Rubin

April 4, 2014

Ring Acceptance

The effect of the multiple scattering in the inflector end coils is to distort the phase space of the muon distribution. The emittance is increased, and the effective β is decreased. The β_{inf} at the inflector exit is related to the peak β_{ring}^{max} in the ring according to

$$\beta_{ring-max} \sim \frac{\beta_{match}^2}{\beta_{inf}}$$

where β_{match} is the matching value of the β -function. Using

$$\begin{aligned} \epsilon &= \sigma' \sigma \\ \beta &= \frac{\sigma}{\sigma'} \\ \sigma &= -\sqrt{\epsilon\beta} \\ \beta_{ring-max} &\sim \frac{\beta_{match}^2}{\beta_{inf}} \end{aligned}$$

where σ is the beam width (height), σ' its divergence and ϵ the emittance. The effect of the multiple scattering is to increase the divergence with no change to the width.

$$\sigma_f' = \sqrt{\sigma_i' + \theta_{rms}^2}$$

where σ_i' and σ_f' are the divergence before and after the scattering. Then

$$\epsilon_f = \sigma_f' \sigma = \sigma \sqrt{\sigma_i' + \theta_{rms}^2}$$

and

$$\beta_{f}^{inf} = \frac{\beta_{i}^{inf}}{\sqrt{1 + \theta_{rms}^{2}/\sigma_{i}^{\prime 2}}}$$

Finally, the maximum beam width(height) in the ring is

$$\sigma = \sqrt{\epsilon_f \beta_{ring-max}} = \sqrt{\epsilon_f \frac{\beta_{match}^2}{\beta_f^{inf}}}$$

And we can write σ in terms of the initial parameters ϵ_i , β_i^{inf} , $\beta_{ring-match}$ and θ_{rms}

Figure 1: Dependence of maximum beam width(height) in muon storage ring on multiple scattering in inflector end coils