EXPANSION OF MAGNETIC FIELD IN CYLINDRICAL COORDINATES.

D. RUBIN

In order to incorporate measurements of the azimuthal dependence of vertical and radial fields into a tracking program, we

- Write the general solution to LaPlace's equation in cylindrical coordinates, $\nabla^{2} \psi(\rho, \theta, z)=$ 0
- Compute $\nabla \psi=\mathbf{B}$
- Fit $B_{\rho}\left(\rho=\rho_{0}, \theta, z=0\right)$ to the measured radial field data to determine coefficients
- Fit $B_{z}\left(\rho=\rho_{0}, \theta, z=0\right)$ to the measured vertical field data the rest of the coefficients The general solution is
$\psi=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(k_{m n} \rho\right)\left(\sinh \left(k_{m n} z\right)\left(A_{m n} \sin m \phi+B_{m n} \cos m \phi\right)+\cosh \left(k_{m n} z\right)\left(C_{m n} \sin m \phi+D_{m n} \cos m \phi\right)\right)$
Then

$$
\begin{aligned}
B_{z}= & -\frac{\partial \psi}{\partial z} \\
= & \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(k_{m n} \rho\right) k_{m n}\left(\cosh \left(k_{m n} z\right)\left(A_{m n} \sin m \phi+B_{m n} \cos m \phi\right)\right. \\
& \left.\quad-\sinh \left(k_{m n} z\right)\left(C_{m n} \sin m \phi+D_{m n} \cos m \phi\right)\right)
\end{aligned}
$$

At $\rho=\rho_{0}, z=0$,

$$
\begin{aligned}
& B_{z}\left(\rho_{0}, \phi, 0\right)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(k_{m n} \rho_{0}\right) k_{m n}\left(A_{m n} \sin m \phi+B_{m n} \cos m \phi\right) \\
& B_{\rho}=-\frac{\partial \psi}{\partial \rho} \\
& =\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{\partial J_{m}}{\partial \rho}\left(k_{m n} \rho\right)\left(\sinh \left(k_{m n} z\right)\left(A_{m n} \sin m \phi+B_{m n} \cos m \phi\right)\right. \\
& \left.+\cosh \left(k_{m n} z\right)\left(C_{m n} \sin m \phi+D_{m n} \cos m \phi\right)\right) \\
& B_{\rho}\left(\rho_{0}, \phi, 0\right)=\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \frac{\partial J_{m}}{\partial \rho}\left(k_{m n} \rho_{0}\right)\left(C_{m n} \sin m \phi+D_{m n} \cos m \phi\right)
\end{aligned}
$$

Write the measured fields along the magic radius

$$
\begin{aligned}
B_{z}^{m} & =\sum_{m}\left(a_{m} \cos m \phi+b_{m} \cos m \phi\right) \\
B_{\rho}^{m} & =\sum_{m}\left(c_{m} \cos m \phi+d_{m} \cos m \phi\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
a_{m} & =\sum_{n=1}^{\infty} J_{m}\left(k_{m n} \rho_{0}\right) k_{m n} A_{m n} \\
b_{m} & =\sum_{n=1}^{\infty} J_{m}\left(k_{m n} \rho_{0}\right) k_{m n} B_{m n} \\
c_{m} & =\sum_{n=1}^{\infty} \frac{\partial J_{m}}{\partial \rho}\left(k_{m n} \rho_{0}\right) k_{m n} C_{m n} \\
d_{m} & =\sum_{n=1}^{\infty} \frac{\partial J_{m}}{\partial \rho}\left(k_{m n} \rho_{0}\right) k_{m n} D_{m n}
\end{aligned}
$$

Define

$$
\begin{aligned}
A_{m n}^{\prime} & =J_{m}\left(k_{m n} \rho_{0}\right) k_{m n} A_{m n} \\
B_{m n}^{\prime} & =J_{m}\left(k_{m n} \rho_{0}\right) k_{m n} B_{m n} \\
C_{m n}^{\prime} & =\frac{\partial J_{m}}{\partial \rho}\left(k_{m n} \rho_{0}\right) k_{m n} C_{m n} \\
D_{m n}^{\prime} & =\frac{\partial J_{m}}{\partial \rho}\left(k_{m n} \rho_{0}\right) k_{m n} D_{m n}
\end{aligned}
$$

And

$$
\sum_{n} A_{m n}^{\prime}=a_{m}
$$

etc. It appears that since I have no information at nonzero z or $\rho \neq \rho_{0}$ that all of the $k_{m n}$ are degenerate. So I might as well only include $n=1$ in the sum. The result is a perfectly good solution although perhaps not the most general. At least it will obey Maxwell and
be consistent with the boundary conditions. Then

$$
\begin{aligned}
a_{m} & =J_{m}\left(k_{m 1} \rho_{0}\right) k_{m 1} A_{m 1} \\
b_{m} & =J_{m}\left(k_{m 1} \rho_{0}\right) k_{m 1} B_{m 1} \\
c_{m} & =\frac{\partial J_{m}}{\partial \rho}\left(k_{m 1} \rho_{0}\right) k_{m 1} C_{m 1} \\
d_{m} & =\frac{\partial J_{m}}{\partial \rho}\left(k_{m 1} \rho_{0}\right) k_{m 1} D_{m 1}
\end{aligned}
$$

Let's drop the subscript n
Assume that $|\mathbf{B}|=\mathbf{B}_{\mathbf{z}} . a_{m}, b_{m}$ and c_{m}, d_{m} are the coefficients of the fits to the measured B_{z} and B_{r} respectively. Define

$$
\begin{aligned}
A_{m} & =a_{m} /\left(J_{m}\left(k_{m 1} \rho_{0}\right) k_{m 1}\right) \\
B_{m} & =b_{m} /\left(J_{m}\left(k_{m 1} \rho_{0}\right) k_{m 1}\right) \\
C_{m} & =c_{m} /\left(\frac{\partial J_{m}}{\partial \rho}\left(k_{m 1} \rho_{0}\right) k_{m 1}\right) \\
D_{m} & =d_{m} /\left(\frac{\partial J_{m}}{\partial \rho}\left(k_{m 1} \rho_{0}\right) k_{m 1}\right)
\end{aligned}
$$

Then the fields

$$
\begin{array}{r}
B_{z}=\sum_{m=0}^{\infty} J_{m}\left(k_{m} \rho\right) k_{m}\left(\cosh \left(k_{m} z\right)\left(A_{m} \sin m \phi+B_{m} \cos m \phi\right)\right. \\
\left.\quad-\sinh \left(k_{m} z\right)\left(C_{m} \sin m \phi+D_{m} \cos m \phi\right)\right) \\
B_{\rho}=\sum_{m=0}^{\infty} \frac{\partial J_{m}}{\partial \rho}\left(k_{m} \rho\right)\left(\sinh \left(k_{m} z\right)\left(A_{m} \sin m \phi+B_{m} \cos m \phi\right)\right. \\
\left.+\cosh \left(k_{m} z\right)\left(C_{m} \sin m \phi+D_{m} \cos m \phi\right)\right) \\
B_{\phi}=\sum_{m=0}^{\infty} \frac{J_{m}\left(k_{m} \rho\right)}{\rho} m\left(\sinh \left(k_{m} z\right)\left(A_{m} \cos m \phi-B_{m} \sin m \phi\right)\right. \\
\left.\quad+\cosh \left(k_{m} z\right)\left(C_{m} \cos m \phi-D_{m} \sin m \phi\right)\right)
\end{array}
$$

