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Abstract 

Mutually driven transverse oscillations of an electron beam 
and residual gas ions may result in a fast transverse instability. 
This effect arises either during a single pass of a train of electron 
bunches or it is caused by ionization electrons oscillating within 
a single positron bunch. In both cases, the beam oscillations 
grow exponentially with an exponent proportional to the square 
root of time. In this report, instability rise times are calculated 
analytically and compared with computer simulations. The ef- 
fect considered could be a significant limitation in many future 
designs. 

I. INTRODUCTION 
The effect we describe arises during the passage of a single 

electron bunch train or a single positron bunch; ions (or ionized 
electrons) created by the head of the train (bunch), via ionization 
of the residual gas, perturb the tail. Under certain conditions 
a fast transverse beam-ion instability can develop. The insta- 
bility mechanism is the same in linacs and storage rings where 
we assume that the ions are not trapped from turn to turn. It 
differs from instabilities previously studied [4], where the ions, 
usually treated as being in equilibrium and trapped over many 
tums, interact with a circulating electron or antiproton beam. By 
contrast, the instability discussed in this report occurs in a trans- 
port line, linac, or a storage ring with a clearing gap to prevent 
ion trapping. In this paper we outline the basic ideas. For more 
details we refer to Refs. [l] and [2]. 

In Section 11, instability rise times are calculated analytically. 
Section I11 compares the results of computer simulations with the 
analytical prediction. In Section IV rise times are evaluated for 
several operating or proposed storage rings and linear acceler- 
ators. Section V is devoted to a brief discussion of possible 
remedies. A summary is given in Section VI. 

11. ANALYTICAL TREATMENT 
The vertical motion of the beam and the ions or electrons 

that are generated during the beam passage via ionization may, 
in linear approximation, be described by two equations of motion. 
The first equation reads: 

The coordinates denotes the longitudinal position along the beam 
line or storage ring. Equation (1) represents the vertical motion 
of the beam centroid yb(s ,  z )  at a distance z from the bunch (or 
bunch train) center. In our convention positive values of z refer 
to trailing particles. The motion is a combination of a betatron 
oscillation due to extemal focusing, represented by a harmonic 
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oscillator of frequency we x l / B y ;  and a driving force that is 
proportional to the distance of beam and ion centroids, and also to 
the number of generated ions and thus to an integral over the beam 
density, T(z) = J:m p(z’)dz’, normalized such that r(m) = 1. 
Here, and in the following, the term “ions” is understood as “ions 
or electrons, respectively.” Finally, the coefficient K is 

where y denotes the relativistic factor y = E / ( m c 2 )  for the 
beam, re is the classical electron radius, and is 
the sum of the squares of rms ion-cloud size and beam size o ; , ~ .  
Assuming a cross section for collisional ionization of about 2 
Mbarns (corresponding to carbon monoxide at 50 GeV) the den- 
sity hion of ions per meter at the end of the bunch (or bunch train) 
is hion FZ 6Np,,,[torr], where N is the total number of particles 
in the beam and pgas the residual gas pressure in torr. The second 
equation, 

describes the oscillation of a transverse slice of ions inside the 
beam. It is here written as an equation in time t for a fixed 
position s. The variable j f  (s, t )  is the vertical centroid of the 
transverse slice of ions.. For convenience, here and in the fol- 
lowing, the time t is quoted in units of length obtained from the 
actual time by multiplication with the velocity of light c. At a cer- 
tain time t ,  beam particles at a distance z = t - s from the bunch 
center reach the location s. Their centroid position is therefore 
Y b  (s, t - s). The oscillation frequency wi (t - s) = wi ( z )  is pro- 
portional to the square root of the beam density p .  In the case of 
electrons oscillating inside a single positron bunch, wi is given 
by (4Np(z)re/(30;(ax +cy)))’. Forionsandanelectronbunch 

train we have mi = ( ( 4 N ~ r p / ( 3 L s e p ~ y ( ~ x  + c y ) A ) ) ’  where A 
designates the atomic mass number of the ions, N b  the number of 
particles per bunch, L,, the bunch spacing, and rp  the classical 
proton radius. 

The solution to Eq. (3) for a slice of ions generated at time 
t’ = s + Z’ is denoted as j; ,  (s, t 1s + z’). The centroid of the ions 
yi (s, t )  (or electrons) used in w. (1) is obtained by averaging 
j t  (s, s + z‘) over all possible creation times: 

Several approximations have been made so far. For instance, 
the force between beam and ions is assumed to be linear. Any 
Landau damping caused by the lattice is ignored. It is supposed 
that inside a bunch train the ions are not overfocused, but that they 
are lost between different trains. Ions generated by synchrotron 
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radiation are ignored. To further simplify the calculations, we 
will now approximate the longitudinal bunch density p(z) by a 
homogeneous rectangular distribution of length 2zo. The oscilla- 
tion frequency wi is then constant inside the bunch (or along the 
bunch train). Equations (I), ( 3 ) ,  and (4), can be combined into 
a single integral equation for the beam centroid y b ( S ,  z )  alone. 
The latter can be solved either as a perturbation series in K/wp 
[ 11 or by an averaging method [2]. The asymptotic solution for 
large distances s is 

where j is the initial Fourier component at frequency wi in 
the longitudinal beam distribution, and v(x, z )  denotes the di- 
mensionless function ~ ( s ,  z )  e (Kwi ( z  -t z ~ ) ~ s / ( w s  16~0) )  . 
Asymptotically, the oscillation amplitude grows roughly as 
e x p ( , / G ) ,  where rusym is the time at which the exponent 
2 f i  in Eq. (5)  equals one. Note that rUsym is not an e-folding 
time because the exponent is proportional to the square root of 
time. In the multi-bunch case, the asymptotic rise time tusym 
for trailing bunches can be expressed in terms of more basic 
parameters as [I] 

r 1 I 1 - 1  

where N b  denotes the number of particles per bunch and nb is 
the number of bunches. All quantities, except for the pressure, 
are given in SI units. A similar expression can be found for a 
single positron bunch. [ I ]  In the asymptotic limit, ion and beam 
motion are of similar amplitude and in phase. 

111. COMPUTER SIMULATIONS 
To study this instability, we have written a computer simu- 

lation. The simulation treats the beam, the ions, and the ionized 
electrons as collections of macroparticles whose distributions 
are allowed to evolve self-consistently. Each bunch in the beam 
is divided into slices in z. Each slice is then represented by 
macroparticles whose number is chosen to reflect a Gaussian 
distribution between f3uz. The initial macroparticle coordi- 
nates are random with Gaussian distributions. At four locations 
in each FODO cell, calculations are performed using a grid in n 
and y centered at the bunch train centroid. As each beam slice 
passes, macroparticles are created at the grid points representing 
the ions and ionized electrons generated by collisional ionization. 
The beam and ion fields are mapped onto the grid and then inter- 
polated to the macroparticle positions. Ref. [ 11 presents details 
of the simulations. 

Simulations have been performed for the PEP-I1 IIER, the 
SLC Positron Arc and the NLC Damping Ring, typically using 
about 160 000 macroparticles. The results are consistent with 
the analytical calculation, and confirm the expected scaling of the 
amplitude growth with time, pressure, ion mass, and longitudinal 
position z .  The absolute rise times found in the simulations 
agree with the analytical result to within a factor 2 or 3, which is 
smaller than the spread of values obtained for different random 
seeds. The analytical solution, E$. (9, does not include the 
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Figure. 1. Action of the vertical centroid as a function of distance 
for every twentieth bunch of ii train of 90 bunches in the NLC-DR 
with a pressure of lop8 torr. 

filamentation of ions: due, for instance, to the variation of the ion 
oscillation frequency with horizontal position. An approximative 
analytical solution which takes this ion-decoherence into account 
[2] predicts a rise time which is about a factor 2 or 3 larger than 
that of Eq. (6). 

Figure 1 shows a simulation result for the NLC Damping 
Ring (DR). The average action < Jy(s ,  z )  > is depicted as a 
function of the distance s for every twentieth bunch in the train 
of 90 bunches and a pressure of torr. The initial amplitudes 
are due to the finite number of macroparticles. From this figure, 
the rise time for the trailing bunches is about 170 ns; within the 
uncertainty of the simulation this is close to the estimate of 47 
ns obtained from w. (6). In the NLC-DR an average vacuum 
pressure of or below IOp9 torr has to be maintained, in order to 
sufficiently reduce the growl h rate of the beam-ion instability; 
emittance dilutions due to other gas or ion effects do not require 
a pressure below IO-* torr. 

IV. RISE TIMES FOR SOME ACCELERATORS 
Table I shows basic parameters and the asymptotic rise times 

for several accelerators proposed or under construction at SLAC 
and KEK: namely for the NLC Electron Damping Ring, the NLC 
main linac, the PEP-I1 HER, and for the ATF Damping Ring. 
Due to its much higher vacuum pressure, the smallest rise time 
is expected for the ATF Damping Ring. Values for the NLC 
systems vary between 40 ns and 1 ws. If the initial perturbation 
is purely due to Schottky noise, it takes about 200 rise times 
until the bunches oscillate at an amplitude comparable to the 
beam size. Even with the additional factor 200, the growth times 
are still very short. 

A similar evaluation indicates that the beam-ion instability 
is not expected to occur in most of the existing accelerators [ 11. 
For instance, the estimated rise time for the SLC e+ Damping 
Ring, is much larger than the synchrotron period, in which case 
the instability cannot develop, while the predicted rise time in the 
HERA electron ring at DESY is about a factor 1-2 larger than the 
damping time of the transverse multi-bunch feedback. From all 
the existing machines considered, only the ALS at LBL should 
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show a significant fast beam-ion instability with a rise time of 
about 2 p s  for an average pressure of torr. Experience so 
far is unclear. Transverse instabilities are observed, but these are 
not necessarily caused by ions. 

I accelerator I NLC e-  DR I NLC ML I HER I ATF I 

I x m y m  I 465 ns I 46ns I 6 ~ s  I 2911s I 
Table I 

Parameters and rise times for some future accelerators 

synchrotron motion on the growth rate, the rise time in the pres- 
ence of different ion species, the possible damping due to the 
nonlinearity of the beam-beam interaction in circular colliders, 
and the study of coherent oscillation modes of higher order. 

We thank A. Chao and S. Heifets for helpful discussions. 
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V. POSSIBLE CURES 

If the oscillation amplitude of the trailing electron bunches, 
or positrons, saturates at about 1 ay due to the nonlinear character 
of the coupling force-not included in the analytical treatment- 
a reduction of the design vertical emittance by a factor of 2 results 
in about the desired projected final emittance after filamentation 
[8]. However, it is not yet known if the beam will continue 
to blow-up (though with decreasing growth rate) after partial 
filamentation. A second possibility is to use an optical lattice in 
which the product of the horizontal and vertical beta functions, 
and thus mi, vary substantially. Third, if additional gaps are 
introduced in the bunch train, the ions are over-focused between 
the shorter trains [9]. As an example, 10 additional bunch gaps 
in PEP-I1 increase the instability rise time from 5 ps to 0.5 ms, 
which is inside the bandwidth of the feedback system. Finally, 
in linear accelerators the trailing bunches might be realigned by 
use of fast kickers and feed-forward. 

VI. SUMMARY AND ACKNOWLEDGMENT 
The interaction of an electron bunch train or a single positron 

bunch with ions or ionization electrons can cause a fast transverse 
instability, which is characterized by an exponential growth of the 
vertical amplitude. The exponent is proportional to the position 
along the bunch train (or bunch) and to the square root of time, 
and is inversely proportional to the 3/4th power of the beam sizes. 

The expected rise time of the instability is exceedingly short. 
For instance, for the various NLC rings and linacs, it varies be- 
tween 40 ns and 800 ns, while, for the PEP-I1 HER, it is estimated 
at 5 ps. 

The analytical model used is a linearized approximation and 
does not include nonlinearities of the ion-beam force or the lat- 
tice. However, these nonlinearities are included in the simula- 
tions which, for the parameter regimes compared, yield rise times 
that are in good agreement with the analytical model. In Ref. [2] 
the linear model is extended to include Landau damping due to 
the nonlinearity of the beam-ion force; this decreases the growth 
rate by a factor of two. A large number of questions remain to 
be answered; among them are the emittance growth due to fila- 
mentation and detuning as the oscillation saturates, the effect of 
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