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Kadanoff and Shenker introduced a renormalisation approach to invariant circles in area-preserving maps. This paper 
makes more precise the connection between invariant circles and the renormalisation operator. Restricting attention to noble 
rotation numbers, the stability of a simple fixed point of the renorrnalisation is analysed, corresponding to a linear twist map. 
It is found to be essentially attracting, so that noble circles persist under perturbation, giving a new view on KAM theory. 
Shenker and Kadanoff found evidence for another fixed point, corresponding to a map with a non-smooth noble circle. Further 
evidence is given in this paper. It has essentially only one unstable direction, and its stable manifold is believed to give the 
boundary of the set of twist maps with a noble circle. Finally, noble circles are shown to be locally most robust, in an important 
sense. 
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I. Area-preserving twist maps 

N o n l i n e a r  s tabi l i ty  in m a n y  c o n s e r v a t i v e  sys tems  

is e q u i v a l e n t  to exis tence  o f  i n v a r i a n t  circles fo r  

re la ted  a r e a - p r e s e r v i n g  maps .  I will m o t i v a t e  this 

pape r  wi th  a s imple  bu t  s ignif icant  e x a m p l e  f r o m  

p l a s m a  physics,  namely ,  f low a l o n g  m a g n e t i c  field 

lines. T o  a first a p p r o x i m a t i o n ,  cha rged  par t ic les  in 

a m a g n e t i c  field fo l low the field lines in t ight  helices. 

t Present address: Department of Applied Mathematics, 
Queen Mary College, Mile End Road, London E1 4NS, 
England. 

T h e  idea  o f  fus ion  devices  such  as the  t o k a m a k  is to 

conf ine  t h e m  by a m a g n e t i c  field wh ich  is largely  

to ro ida l .  I f  the  field lines r e m a i n  conf ined  wi th in  the 

device,  there  is a c h a n c e  tha t  the par t ic les  will too.  

Fie ld  line f low can  be r educed  to i t e r a t ion  o f  a 

return map  F on  a po lo ida l  sect ion,  g iven  by  fo l low-  

ing the field lines once  a r o u n d  the device.  Fig.  1 

shows  s o m e  orb i t s  o f  such  a re tu rn  m a p  fo r  a real  

m a g n e t i c  field (Sincla i r  et al. [ 1 ]) (see a lso  W h i t e  et al. 

[2]). Since m a g n e t i c  flux is conse rved ,  this r e tu rn  m a p  

prese rves  the  a rea  f o r m  B • (¢ x r/), where  ¢, t / a r e  

t angen t  vec to r s  to the po lo ida l  sect ion.  By D a r -  

0167-2789 /83 /0000-0000 /$03 .00  © 1983 N o r t h - H o l l a n d  
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Fig. 1. Some orbits of a return map for a stellarator field (from 
Sinclair et al. [1]). The upper figure was produced by following 
a low energy electron beam injected paralel to the field. The 
lower figure was produced by integrating the field com- 
putationally. 

boux ' s  theorem [3], coordinates  can be chosen to 
make  it preserve the usual area. 

Typically, a t o k a m a k  has a magnetic  axis, that  is, 
a field line which closes after one revolution. This 
corresponds to a fixed point  of  the return map.  
Also, the field is designed to have rotational trans- 
form, i.e. the other  field lines twist a round  this axis. 
So in the poloidal  section orbits rotate  a round  the 
fixed point. Finally, t okamaks  generally have mag- 

netic shear, that  is, the rota t ion rate varies with dis- 
tance f rom the magnetic  axis. 

Thus we are led to consider area-preserving twist 
maps, that  is, maps  

(0', z') = F(O, z). (1.1) 

with 0 an angle variable,  det D F  = 1, and OO'/c?z 
of  constant  sign. 

For  the field line problem (and many  others), 
(0, z) are some sort  of  polar  coordinates  centred on 
a fixed point,  and there is a coordinate  singularity 
there. Removing  the fixed point  gives a m a p  which 

can be regarded as acting on a cylinder. Maps  of  
the cylinder derived in this way, however,  have 
some special properties.  Firstly, they are end- 
preserving. Secondly, given an area-preserving map  
of  a cylinder, and a set U containing all points 
below some level z~, and no points  above some 
other level z> the difference between the areas of  
U and F(U) is independent  o f  U, and is called the 
Calabi invariant of  F. For  maps  of  the cylinder 
derived f rom a map  of  the plane by removing a 
fixed point,  the Calabi  invariant  is clearly zero. 
Thus I will restrict a t tent ion to the class A of  
end-preserving, area-preserving twist maps  of  a 
cylinder with zero Calabi  invariant.  

Often I will want  to consider a lift of  F, rather  
than the map  F itself. This means  0 is regarded as 
a coordinate  on a line rather  than a circle, so we 
get a periodic m a p  (of  period 1, say), i.e. 

0 '(0 + I, z) = 0'(0, z) + 1. (1.2) 

Maps  of  class A are relevant to many  other 
conservative problems,  for instance, all H a m -  
iltonian systems with two degrees of  freedom, or 
with one degree of  f reedom and periodic t ime 
dependence. This includes other  examples  f rom 
plasma physics, such as the mot ion  of  a charged 
particle in a 2-D field, guiding centre mot ion  in 
3-D, and ray tracing for waves in 2-D. They also 
have applicat ions in other fields such as celestial 
mechanics,  and solid-state physics (e,g. Aubry,  this 
volume).  
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2. lnvariant circles 

If a map of  class A has an invariant circle 
encircling the cylinder, then the circle traps every- 
thing below it. Conversely, Birkhoff (1932) [4] 
showed that an encircling invariant circle is neces- 
sary for confinement of  any connected open set 
containing all points below some level. In all that 
follows I will restrict attention to this class of  
invariant circles. Note that zero Calabi invariant is 
necessary for existence of  any such circle. 

Next I introduce an important quantity for an 
invariant circle. Poincar6 (Nitecki [5]) showed that 
for a homeomorphism g of a circle (or really, for 
a lift of  g to a periodic homeomorphism of the 
line), the limit: 

o9 =lim gq(O°) (2.1) 
q ~  q 

(2.2) has an invariant circle for every rotation 
number in a range, including rationals, but gener- 
ically there are no rational circles. Nevertheless, 
conditions close to integrable are very common. 
For  example, a map is arbitrarily close to integra- 
ble near enough to any typical elliptic point. A 
remarkable theory, due to Kolmogorov, Arnold 
and Moser, shows that systems close enough to an 
integrable one possess an arbitrarily large fraction 
of the invariant circles of the integrable system. 
The particular result most relevant to this paper is 
a corollary (Mather, private communication) of 
the Moser twist theorem (Moser, [6]). First, let us 
introduce some terminology, o9 is called a Diop- 
hantine number (Niven, [7]), if 

3 C > O , r  such that o g - P  >>.~Vp, q ~ Z , q > O .  

(2.3) 

exists and is the same for all 00. It is called the 
rotation number of g. In the case that g is the 
restriction of  an area-preserving map to an invari- 
ant circle, o9 is called the rotation number of the 
circle. 

There are systems which have an invariant circle 
for every rotation number is some range. A map of 
a surface is said to be integrable if it possesses a 
differentiable invariant function which is not con- 
stant on any open set. For  example, an axisym- 
metric magnetic field has a flux function. An ex- 
tremum of the invariant is typically surrounded by 
many circles on which the invariant is constant. 
They are invariant under some power of the map, 
and so is the region between any two. Liouville 
(Arnold, [3]) showed that if the derivative of the 
invariant is non-zero on a compact connected 
invariant set, then there exist angle-action coordi- 
nates (0, z), in which the map takes the standard 
integrable form 

(0', z ') = (0 + og(z), z). (2.2) 

So the set is foliated by invariant circles. 
Integrable maps are very special. For  example, 

An invariant circle is called smooth if the motion 
on it is sufficiently differentiably conjugate to 
rotation (the number of  derivatives depending on 

for a Diophantine rotation number), i.e. if there 
is a sufficiently differentiable coordinate function ~, 
on the circle, with differentiable inverse, such that 
the map sends ~ to ~k + o9. Then the result is that: 

Smooth Diophantine circles persist, for small 
enough perturbation in class A. 

On the other hand, here are maps of  class A with 
no encircling invariant circles. For example, the 
standard map, 

k 
z '  = z - ~ sin 2rcO, 

O' = 0 + z', (2.4) 

has no invariant circles for [k[ i> 2n, because then 
it has an accelerator mode (Chirikov [8]),and even 
for Ikl > 4/3 (Mather [9]). 

The size of  the perturbations allowed by the 
Moser twist theorem depends only on C and r in 
the Diophantine condition, and the local twist. It 
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is largest for ~ small and C large. In any interval, 
the number(s) for which z can be taken smallest 
and C largest (excluding a finite set of q) is always 
a noble number (terminology due to Percival [10]). 
These are the numbers whose continued fraction 
expansion, 

1 
o) = m0 + = [m 0, rnl, m 2 . . . .  ] ,  

1 
rn~-~ 

m2 + " " " 

ms ~ Y-, mi >I 1 for i >~ 1, (2.5) 

has mi = 1 for all large enough i. They satisfy a 
Diophantine condition with r = 2, the smallest 
possible. The noblest of them all is the golden ratio : 

=[(l, )~l -~/5+ l 
2 ' (2.6) 

which has the largest possible value for C (for 

r = 2) of l/y 2 (Prasad, [33]). This leads one to 
suspect that typically noble circles may be the most 
robust, in the sense that the last circle to break up 
in any region, as a parameter varies, will be a 
noble. For this ,reason I will concentrate almost 
entirely on nobles. 

The proofs in KAM theory generally give unre- 

alistically low estimates of the perturbation sizes 
sufficient for persistence of invariant circles. In this 
paper, I develop a new approach to KAM theory 
which, I believe, gives the boundary of the set of 
twist maps with an invariant circle of  given rota- 
tion number. 

generate an area-preserving map T: (x, y ) ~ ( x ' ,  y') 
(where subscript i refers to the derivative with 
respect to the ith argument). It satisfies the twist 

condition (section 1), since 

8x '  1 
-- (3.2)  

8y ~2(x, X')" • 

Conversely, every area-preserving twist map can be 
generated in the above fashion. In a given coordi- 
nate system, the generating function is unique up 
to addition of a constant. I call it the action 
generating function. 

The rule" for composition of action generating 
functions (where defined) is that of  stationarity, i.e. 
the generating function for the composition TU of 
two maps T, U with generating functions r, v, is 

v ® ~(x, x") = v(x, x ' )  + z (x ' ,  x"),  (3.3) 

where x'(x,  x ' )  is chosen to make the sum station- 
ary with respect to variations in x ' ,  i.e. 

o = v2(x, x ' )  + ~,(x', x"). (3.4) 

That v ® z generates TU can be seen immediately 
from (3. l). 

Note for a periodic map, that since 
~(0 + 1 ,0 '  + 1) generates the same map as ~(0, 09, 
they can differ only by a constant. This constant 
can easily be shown to be the Calabi invariant. 

3. Act ion  representat ion 

Before I describe the renormalisation approach 
to invariant circles, I will need an important  repre- 
sentation for area preserving twist maps. As this 
representation does not require periodicity, I use 
coordinates (x, y)  in place of  (0, z). Given a func- 
tion ~(x, x ') ,  with ~2(x, x ' )  of  constant sign, the 

relations 

y '  = z2(x, x ' ) ,  

y = - ~,(x,  x 9 ,  
(3.1) 

4. Renormal i sa t ion  

Now I will motivate the renormalisation. Rota- 
tion number can be generalised to other orbits than 
those on an invariant circle. I say that (the orbit of) 
(0, z) has rotation number 

niFq(O, z) 
lim (4.1) 
q ~  q 

if the limit exists (which it need not) ,  where n~ is 
the projection onto the first coordinate. Without 



R.S. MacKay/Noble circles 287 

loss of  generality, consider the orbit of  the origin 
0. If it has rotation number ~o, then 

n~FORV(0) = qo) - p + o(q) ,  

where 

R(0 ,  z )  = (0 - 1, z ) .  

as q ~ oo, (4.2) 

(4.3) 

If 0 belongs to a circle on which F is topologically 
conjugate to rotation then we have the stronger 
statement 

lz~Fq"RP"(O)---~O, if q,~o - p,--*0. (4.4) 

In the case of  differentiable conjugacy to rotation, 
one can say even more: 

z t i F q . R P . ( O ) ~ K ( q ,  o J - p , )  as q, o g - p , ~ 0 .  (4,5) 

This suggests that we consider the sequence of 
maps 

pair (T,  T ~ U )  in some sense, for which I will not 
make a specific choice here. Then it follows from 
the definition of  convergents that 

N~° . . . Nmo(F, R )  

= (BnF q" 'g  p" - ' B n  l, BnFq.RP.Bn 1), (4.9) 

where B, is the composition of the successive 
coordinate changes B. This is essentially the same 
renormalisation as that introduced by Kadanoff  
[11] and Shenker [12], and applied to the dissipative 
case by Feigenbaum et al. [13] and Rand et al. [14] 
(see also the articles by Shenker and by Siggia, in 
this volume). It is also closely related to the 
approximate renormalisation of  Escande and 
Doveil [15] for Hamiltonians. 

An apparent problem with the renormalisation 
is that in looking on successively smaller scales one 
loses the periodicity of the map in 0. In the next 
section, I will show how the essence of  the period- 
icity can be saved, by generalising the class of 
periodic maps to that of commuting pairs of maps• 

B,  Fq, RP, B~ - I, (4.6) 

where the B, are coordinate changes, looking on 
successively smaller scales. 

A choice ofpn, q. for which q,~o - p ~  is particu- 
larily small is given by the convergents  of co. They 
are the successive truncations 

p,  1 
- -  = m0 + --- [m0, ml . . . . .  mn] (4 .7 )  
q, i 

m~ + ~ - - - i -  
• ' " " t - - -  

mn 

of its continued fraction expansion. For this 
choice, there is a systematic way to generate the 
sequence (4.6). Define the renormal isat ion operator 

N m (for m e Z), acting on the pairs (U, T) of maps, 
by 

N "5 U" = B T B  - I, 
'n'~T,__ - B T m U B - t  (4.8) 

B is a coordinate change, chosen to renormal ise  the 

5.  C o m m u t i n g  pa ir s  

To say that F is periodic in 0 is equivalent to 
saying that F commutes with R (4.3). So let us 
generalise the important concepts for periodic 
maps, in particular, rotation number and Calabi 
invariant, to commuting pairs (U, T). I use coordi- 
nates x = (x, y)  in place of  (0, z) to indicate that 
there is not necessarily any periodicity in x. 

Firstly I generalise orbits and invariant circles. 

Definit ions.  The orbit  of  x under a commuting pair 
(U, T) is { U q T P x : p , q ~ _ } .  

A point x is periodic  if 3 (p,q)EY2\{0} so that 
UqTPx = x .  It has type  ( p , q )  if these are the 
smallest such integers (q ~> 0). 
An invariant curve is a curve from x = -  ~ to 
4- oo, invariant under both U and T. 

Next, I generalise rotation number. If (0, z) has 
rotation number ~o under a periodic map F, then 

7~IFq RP( O, Z) p 
= o 9 - - + o ( 1 ) ,  a s q ~ o o ,  (5.1) 

q q 



288 R.S. MacKay, /Noble circles 

This tends to zero for a sequence p,, q, iffp,/q,~09. 
So generalise (and also allow 09 = or, i.e. consider 
rotation number as belonging to the projective 
line): 

x has rotation number 09e~P under (U, T) 
if for all sequences p , , q , ~ Y  so that 

ro = max(Ipnl ,  Iq, I ) - - , ~ ,  then 

P. lqUU"Te"x "~0 i f f - -~09.  (5.2) 
r, q, 

Poincar6's theorem (section 2) generalises to 

invariant curves of  a commuting pair, under the 
condition that 

~m, n e 2 ~ , K > 0 s o t h a t ~ U ~ T " x < ~ x - K  (5.3) 

for all points x on the curve (cf. nlR(O, z) = 0 - 1). 
So an invariant curve has a rotation number [19]. 

For the twist condition, I want both U and T to 
have action generating functions, i.e. ~x'/Oy should 
have constant sign. This is probably more re- 
strictive than necessary, and slightly unfortunately 
so, as R does not satisfy the twist condition. I f  U, T 
commute and have generating functions v, r, then 
the generating functions for UT and TU can differ 
by only a constant, so I call it the Calabi invariant 
C(v,z). 

I call the extension of class A to commuting 
pairs class AA. Presumably Moser twist and other 
results like Mather 's  theorem (section 9) would 
generalise under suitable conditions. 

I can now make some nice connections between 

rotation number and the renormalisation: 

x has rotation number 09 under (U, T) iff Bx has 
rotation number 09' under N,,(U, T), where 09, 09' 
are related by 09 = m + 1/09'. 
x has rotation number 090 = [mo, m~,...] under 
(U, T) iff B, j . . . B o x  has rotation number 
09~ = [m . . . . .  ] under N , , . . . .  N,,o(U, T), where the 
Bj are the successive coordinate changes. 
(U, T) has an invariant curve of rotation number 

090 iff Nm, _ ~ . • • Nmo( U, T) has an invariant curve of  
rotation number 09,. 

In particular, a periodic map F has an invariant 

circle of rotation number 090 iff N,,, ~. . .  Nmo(F, R) 
has an invariant curve of rotation number 09,. 

Restricting B to linear diagonal scale changes 
B(x ,y )=(ex , [3y) ,  Nm induces the following 

renormalisation on action generating functions: 

v ' ( x ,  x ' )  = ~/~ ~ , , 

(5.4) 
r ' ( x , x ' ) = ~ / ~ v ® ~ ® ' " ® z  , . 

Note that it preserves zero Calabi invariant. 
The idea of renormalisation is not new to K A M  

theory. Most proofs consist in finding successive 
coordinate changes to make the system look more 
like a linear twist, restricting attention each time to 
a narrower annulus (see, for example, Moser [6], 
Herman [16], Riissmann [17], Gallavotti [18]). So 
scale changes are made in the z-direction. I believe 
that the freedom we have to make scale changes in 
the 0 direction too will make this renormalisation 
more powerful. The only expense is that at each 
st~p one has to change the generators for the group 
{FqR p :p, q e Z}. The main benefit will be that we 
will probably get the boundary in class A of the 
maps with an invariant circle of  given rotation 
number. 

6. Simple fixed point 

Quadratic irrationals have eventually periodic 
continued fraction expansion. So for maps with an 
orbit of  quadratic irrational rotation number, 
[b0 . . . .  bj, (c~ . . . .  ck,)~], this suggests that one 
might find asymptotic behaviour under Nc~ • • • N,.~, 
after removing the aperiodic head by applying 

N ~ j  . . . N b o .  

I will look at the simplest case, namely, nobles, 
for which the repeat pattern [c] = [1]. Nj (4.8) has 
two important  fixed points, the main objects of  
discussion in this paper. I begin with the simple 
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f i xed  point: 

~x ' = x + y + l ,  
T: [ y ,  = Y, 

~ X' = -- TX, 
B: ~ y , =  _ TZy" 

I x , = x + Y - 7 ,  

U: ~; 
[ y '  y, 

(6.1) 

It corresponds to a linear shear, with y = 0 as a 
golden curve. 

One can analyse its stability under N~, 

DNI ~ 6U' = B6TB- t  
:~6T" = B 6 T U B  -1 + BDTus-~"  6UB -2 (6.2) 

Here we are using linearity of  B to identify DB 
with B, for simplicity of notation. Also we are 
ignoring contributions to 6U', 6T '  due to variation 
of B with (U, T), which would depend on the 
particular prescription for renormalising (T, TU). 
These contributions are only in the direction of 
coordinate changes, so they will have no essential 
effect. 

At the simple fixed point, DNt is 

(x 
6U'~(x, y )  = - 76Tx y, 

6T '~(x 'Y)= - Y 6 U ~ (  x 

6) -76r  ? 7 , -  

x 6) 
7 

6Uy(x ,y )  = - 7 2 3  , , 
? 

6T~(x, y )  = - 723 x y 
? 

7 73 7, -- • 

(6.3) 

Let us define an order of  monomials: 

1 < y  < x  < y 2 < x y  < x 2 <  . . .  (6.4) 

and say a polynomial is of rank p, q is its largest 
monomial, with respect to this order, is xPy q. Then 
observe that at the simple fixed point, DN 1 never 
increases the rank of a polynomial perturbation. 
Thus, we can put DN~ into Jordan normal form on 
the space of polynomial perturbations, with poly- 
nomial eigenvectors or generalised eigenvectors. 
What happens on the rest of the space is discussed 
in the next section. Expanding 5Ux, 6Tx, 6U~, 6T,  
in power series, and ordering the coefficients by 
rank, and in the above order within rank, we see 
that DN~ is block upper triangular, with 4 x 4 
diagonal blocks: 

0 - 7  0 0 [ 

-%' -7 -7 0 

1 0 0 0 - 7  2 x 

0 0 - 7  2 - 7 2  

(-- 7)-P(-- 72) -q (6.5) 

for rank p, q. This diagonal block has eigenvalues 

--]22, l, --73,7 X ( - -7 ) - -P( - -72)  -q (6.6) 

with respective eigenvectors 

7 , 1 7/2 7 
, . , 

I 

(6.7) 

npq, Opq, Apq, Cpq. 

For each of  these eigenvectors for the block, one 
can determine coefficients of lower rank to make 
eigenvectors or generalised eigenvectors for DNv 
They span the space of  polynomial perturbations. 
As there is a lot of  degeneracy, the coefficients need 
not be uniquely determined. 

N~ leaves invariant several important spaces, 
namely: 
i) commuting pairs; 
ii) area-preserving pairs; 
iii) commuting area-preserving pairs with zero 
Calabi invariant (class AA); 
iv) symmetric commuting pairs; 
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v) coordinate transforms of the fixed point; 
vi) all intersections of  the above. 
One would like to use the freedom (due to degen- 
eracy) in determining the eigenvectors or gener- 
alised eigenvectors, to choose them to respect these 
invariant subspaces. This can be done, and the 
result is shown in Table I, where they are labelled 
by their terms of maximal rank, as in (6.7). The 
details are described in MacKay  [19]. 

Note with regard to iv) above, that we say T is 
symmetr ic  if ( T S )  2 is the identity, where 

S(x ,  y )  = ( -  x, y) .  (6.8) 

Symmetry alone, however, is not preserved by N~. 
This symmetry property corresponds to the im- 
portant  class of  reversible systems (Devaney [20]), 
but unfortunately there is not room here to discuss 
them. 

al., [21] section 18) imply that the diagonalisation 

of table I is complete, apart  from a component  
with eigenvalue 0. It is clear, incidentally, that table 
I does not cover the whole space, as there are 
arbitrarily small perturbations of  the simple fixed 
point, in class AA, which are not coordinate 
transforms of  the simple fixed point. For example, 
for k = 0 the standard map is equivalent to the 
simple fixed point, and has a whole circle of  points 
of  type (0, 1), but for k 4:0 there are only two. 

To show compactness of  DNj, I show that N~ is 
analyticity improving in a neighbourhood of the 

simple fixed point, on suitable domains. 
Specifically, if T is analytic on the product of  discs 

Ixl ~< X, lYl ~< Y' for some X, Y > 0 with 

Y 
X > y 3 +  - (7.1) 

7 

and U is analytic on Ixl <~ X' ,  lY[ ~< Y', with 

7. Compactness of DN 1 at the simple fixed point 

Next I show that DN~ is a compact operator at 
the simple fixed point, in a suitable norm, and that 
the error in truncating it at finite degree goes to 
zero as the degree goes to infinity. Thus, standard 
results in functional analysis (e.g. Krasnosel'skii et 

X X '  Y Y' -- < < yX, < < y2y, (7.2) 
>, 7 

then (U' ,  T')  is analytic on larger discs, for (U, T) 
close enough to the simple fixed point. Close 
enough means with respect to the 1~ norm for 
power series expansions in the discs (7.1, 7.2). 

Table I 
Decomposition of the spectrum of DN~ at the simple fixed point, according to area preservation (a.p.), 
commutativity (comm), coordinate transforms of the fixed point (c.c), non-zero Calabi invariant (C,I.), and 
symmetry (s). Prefix n- stands for non- 

Classification Eigenvector Eigenvalue Eigenvalues greater 
than or equal to 1 
in modulus 

C.C. L Doq 
comm ns Bpq, p odd 

a.p. C.I. ns A00 
Dpq, p ~ 1 

l_ n-comm ns Cp0 
Apo, p >~ l 

I [ c.c. [ s Apq, q >i 2, p odd 
n-a.p, comm ns A~q, q >/2, p even 

n-c.c, ns hpl 
L n-comm ns Cpq, q >i 1 

_ _ 7 2 ( _ _ ~ )  p ( _ _ ~ 2 )  q , ~ 2  1 , - - I  

(-y:)  q 1 
_~2(_y) e(_y2)-¢ 7 
_73 -73 

?(-Y) p Y, - 1 
-73(-7)  -p 72 , -7, 1 
__ ]~3( __ , ~ ) - p (  __ , ~ : ) - q  

- -  ]33( - -  ' ~ ) - P (  - -  ~22)-q 

r ( -7 )  e y, -1  
y ( -  ~)-~(-72)-q 
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The error in truncating DN l at degree d is less 
than (5;2 d, where 

X Y 

t-x,, 7 max 7Y" YY' X <1 .  

(7.3) 

8. Significance of the simple fixed point 

If  one restricts attention to class AA, table I 
shows that all polynomial directions from the 
simple fixed point are coordinate changes. Taking 
section 7 into consideration, this implies that, 
modulo coordinate changes, the simple fixed point 
attracts a neighbourhood, in fact faster than ex- 
ponentially. This is, of  course, what one should 
expect from KAM theory. Note also that the 
simple fixed point is attracting in the space of 
symmetric commuting pairs, as one expects from 
the reversible version of  Moser's twist theorem [6]. 

NI(U, T) possesses a golden curve iff (U, T) 
does, but I want to show that convergence of 
NT(U, T) to a pair with a golden curve implies that 
(U, T) has a golden curve. For convergence to the 
simple fixed point, this follows from Moser's twist 
theorem (assuming it generalises to commuting 
pairs). It would give a C3+'-neighbourhood of  the 
simple fixed point (for any E > 0), in which all 
commuting pairs have a (smooth) golden curve. 
Convergence of  NT(U, T) to the simple fixed point 
(in the C 3 +' topology) implies that N~o(U, T) is in 
this neighbourhood for some no, and so (U, T) has 
a (smooth) golden curve (cf. Escande and Doveil 

[153). 
It may not be necessary, however, to use Moser's 

twist theorem. Mather [22] proved a necessary and 
sufficient condition for existence of an invariant 
circle, to be discussed in the next section. In section 
12, I will show how one can probably use this 
theorem to prove that convergence of  N'~(F, R) to 
any fixed point, not just the simple one, implies 
that F has a golden circle. I suspect that even use 
of  this theorem is not necessary at the simple fixed 
point. 

Most proofs of results in KAM theory restrict 
one to pretty small perturbations (although Her- 
man (private communication) is obtaining much 
more realistic results) determining a reasonably 
large neighbourhood of  attraction for the simple 
fixed point. The results of  sections 6 and 7 can be 
extended to other rotation numbers than nobles. 
The simple fixed point of  Nl belongs to a simple 
line, invariant and attracting under all of  the Arm. 
Presumably, the size of the basin of attraction 
diminishes to zero as m ~ ,  thus setting a re- 
striction on the growth rate of  mi for convergence 
to the simple line. 

9. Connections between invariant circles and nearby 
periodic orbits 

Now I discuss some connections between invar- 
iant circles and nearby periodic orbits. The first is 
a conjecture of  Greene [23]. The other is Mather's 
theorem referred to in the previous section. This 
section will lead us to another fixed point of  N1. 

I return to the setting of periodic maps. In the 
action representation a periodic orbit of  type (p, q) 
corresponds to a sequence 

0 = 00, 01 . . . .  Oq = 00 -~- p 

for which the action 

q - I  

w(o) = ~ ~(0/, 0,+,) (9.1) 
i=0  

is stationary with respect to variations in 0. 
Birkhoff (1927) [24] showed that a map in class A 
has at least two periodic orbits of type (17, q) for 
each rational p/q in lowest terms, in an appropriate 
interval. If  z~z < 0, the periodic orbits respectively 
minimize and minimaximize the action W(O) over 
an appropriate set of  0. For  ~12 > 0, interchange 
"max" and "rain". I shall restrict attention without 
loss of generality to the former case. 

The linear stability of  a periodic orbit can be 
measured by its residue (Greene [25]): 

R = (2 - Tr  DFq)/4, (9.2) 
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where D F  q is the derivative of F q at any of its 
points. In the action representation, considering 
without loss of  generality the case q = 1, the 
residue of a fixed point is 

d 2 
dO, ~ r(0, 0) 

R - (9.3) 
41:12(0, 0) 

Thus, the minimizing periodic orbits found by 
Birkhoff have non-positive residue R - ,  and the 
minimaximizing orbits have non-negative residue 
R +. They give rise to island chains. Fig. 2 shows 

some island chains for the quadratic map, 

{ ;  ' = p - y - x 2 ' '  = x, (9.4) 

for parameter p = 2.38216325159. For purposes of  

orientation, thin island chains, as when they are 
born by bifurcation from a periodic orbit, have 
residue close to zero. 

Greene [23, 26, 34] suggested a connection be- 
tween existence of invariant circles and the stability 
of nearby periodic orbits. This has also been 
followed up by Schmidt [27] and Bialek [28]. Given 
co irrational, let us restrict attention to the Birkhoff 

Fig. 2. Some orbi ts  of  the quadra t i c  map,  for p 
2.38216325159, and two symmetry lines. 

periodic orbits of type (p,, q,) with p,/q, con- 
vergents of co. Calling their residues R +,  one finds 

numerically one of three cases: 
i) Subcritical. R + -~0, and it looks as if the island 
chains converge to a smooth invariant circle of 

rotation number co. 
ii) Critical. R + are eventually bounded away from 
0 and +_ oe, and it looks as if the island chains 
converge to a non-smooth invariant circle of rota- 

tion number co. 
iii) Supercritical. R + ~ + _  0% and it looks as if 
there is no circle of rotation number co. 

The critical case is shown in fig. 2 for 
co = 1/72 = [0, 2, (1,) ~] for the quadratic map, The 

convergents are 2/5, 3/8, 5/13 . . . . .  and these island 
chains can be seen to be converging to the out- 
ermost invariant circle. It is non-smooth in the 
sense that it has thin spots (smoothness refers to 
the conjugacy, not the graph). 

The conjecture is that under suitable conditions, 
one could replace "and it looks as it" in the above 

by "which implies that". A partial result in this 
direction follows from the Moser twist theorem, 
namely, if there is a smooth Diophantine circle, 
then R + ~ 0  (in fact, faster than exponentially) 

(Mather, private communication), so in the critical 
and supercritical cases there is no smooth circle 
(for Diophantine rotation number). The converse, 
however, is not known. 

A necessary and sufficient condition for exis- 
tence of an invariant circle with irrational rotation 
number has been proved by Mather [22, 29], based 
on another property of  nearby island chains. If  one 
defines A Wp/q to be the difference in actions be- 
tween the two Birkhoff orbits of type (p, q): 

Z~ W = Wminima x - -  Wmin, (9.5) 

then Mather 's  result states that 

There exists an invariant circle of irrational rota- 
tion number co iff A Wp/q--*0 as p/q  ---,co. In the case 
that there is no invariant circle then A Wp/q has a 
positive limit, and there is an invariant Cantor set 
of rotation number co. 
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Similar results in this direction were found by 

Aubry (e.g., this volume). 
In the subcritical and critical cases above I find 

numerically that A Wp./q---~O (faster than ex- 
ponentially in the subcritical case, as Moser twist 

implies for a smooth circle), so there is an invariant 
circle, and in the supercritical case A We,/q, tends to 
a positive limit, so there is no circle, but there is a 
Cantor set. This is shown in fig. 3 for o9 = 1/~ 2, and 

four parameter  values in the quadratic map, one 
subcritical, one critical, and two supercritical. 

Note that existence of  a smooth Diophantine 
circle is stable to perturbation, by Moser twist. 
Also extensions of  Mather 's  theorem [22], show 
that non-existence of an invariant circle of  given 

rotation number is stable to perturbation• So one 
expects, and finds numerically, the subcritical and 
supercritical cases to be open sets in class A. 

These approaches to finding where there are 
invariant circles have the advantage that they 
generalise directly to continuous time systems. 
There is no need to choose a surface of section or 
evaluate a return map. Finding periodic orbits and 
evaluating their residues and actions is a relatively 
straightforward procedure, especially if one takes 

;-. .:. 

\ ',. 

Fig. 3. An orbit of rotation number 1/~ 2 for four parameter 
values in the quadratic map. 

advantage of symmetries the system may possess 
(see, for example, MacKay [19]). 

10. Critical noble circles 

I now wish to concentrate on the critical case of  
the previous section. For reversible maps F in class 
A with a critical quadratic irrational circle, 
Shenker and Kadanoff  [12] found scaling behav- 

iour in the neighbourhood of  certain points. The 
behaviour appears to be the same for all quadratic 
irrationals with the same repeat pattern, in most 

maps. 
In particular, for nobles one obtains fig. 4 in 

critical cases, if one looks on a small enough scale 
and in appropriate coordinates in the neigh- 
bourhood of  the point where the critical noble 
circle crosses a "dominant  symmetry line". In the 
picture, the symmetry line has been transformed to 
the X-axis, and the noble circle crosses it at the 
origin. Note that everything in the picture repeats 
itself on a smaller scale and turned over, in the 
smaller box. Asymptotically, the scaling factors are 

= - 1.4148360 in Y, 
/Y = - 3.0668882 in X. (10.1) 

In summary, it looks as i f ,  for a map with a 

~.~ -~,-~ 

1.0 , ;,:-' ~- -'," ~ ' 

,",i: o i 
0 .8  I.'..',: . ~ ,  "," ; '~ ,  

Y ~ . ~  5~'~',k,~: 

06 ,?. !G>." 

Oo f ii 
0 

~.~.~.~.~'~-~,.~,..," ;, , - % 5  

..... ,,, It ; 4 .  •i, .;, ,~., ,.. , :  ~ [ 

• t , ' 4 ,  

- 2  - I  0 
× 

# 82TOf r l  

/ 2 . ~ . ~  

- ~ "  

,, .~ , f ,  , ~ " _  

• ~; 

2 

Fig. 4. Some orbits of the universal map F*. 
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critical noble there are coordinate changes B,, such 
that the maps 

B,Fq, RP,B£ - ' (10.2) 

converge to some universal map F*, with 

B,+~"BB, asn-- ,oo,  B(Y ,X)=(aY ,~X) .  
(I0.3) 

In terms of the renormalisation, it looks as if 

NTN~...N%(F, R) converges to a fixed point 
(U*, T*), with T* = F*, U* = BF*B- i 

Given a one parameter family passing through a 
critical case, one finds further self-similarity. For 
example, the parameter  values p, at which R + = 1, 
converge asymptotically geometrically to the crit- 
ical value, at rate 1/6 

6 = 1.6280. (10.4) 

This is the way I located critical parameter  values. 
There is a faster way, however. For a critical noble 

R + ~ 0.2500888, 
R,~ ~ - 0.255426. (10.5) 

The convergence is at rate 

eigenvalue 6. The dominating attraction rate on its 

stable manifold is 6'. 
Figs. 5 and 6 show some orbits of F+* for 

/ ~ = - 0 . 3 ,  +0.3,  subcritical and supercritical 
cases. The scale in parameter is chosen to make the 
minimaximizing point of  type (1, 1) (or [1], in con- 

tinued fraction notation) have residue RI~ 1 = 1 at 
# = 1. Fig. 7 shows how R[~/ varies with /t. The 

universal family is the significant object for any 
renormalisation scheme. Further properties are 
given in section 13 and MacKay [19], including 

critical exponents. 

~- ~IT0396 

1.4 U ~ .  ' v]  ~ ~ , / - -  ~ - q ~ - - ~ . - ~  

2: <(<: 
( !, 7 

^ I"- • ~ "  ~ " ~ ~ , . ~ . ~ "  / - ' .  

i 
-2  -I I 2 

× 

Fig.  5. Some  orb i t s  o f  the un iversa l  one  p a r a m e t e r  family  F~,, 

fo r  I~ = - 0.3. 

6 ' =  -0 .6108.  (10.6) 

Thus the parameter  values p ~, where 
R + = 0.2500888 converge at rate 6'/6 = -0 .3752,  
faster than 1/6. 

The self-similarity can be summarised by saying 
that it looks as if there is a reparametrisation #, 
and (parameter dependent) coordinate changes B, 
such that the one-parameter families 

B.Fq"~. R P . B ;  ~ ( 1 0 . 7 )  
laO n 

converge to a universal one parameter family F*, 
with B, scaling as in (10.3). In renormalisation 
language, the fixed point (U*, T*) has an unstable 
manifold of  essentially only one dimension, with 

-~'e 8 i T 0397 

• ." ~-. ,...~-.::~ . • ,  : :~ • . . ,  ~ ,~ : ,~ ,~ ,  . . : - - 1 . . .  " ~  

, ' - . . .- ~,".4,?~.': " - ' . ~ ' t ~  ~ ' :  " 

o . 6  - .  " . . . . .  , . :  - : ,  " . ; . ~ , ' : " ~ , : ~ , .  ,;: 

- 2  - I  0 I 2 
× 

Fig.  6. Some  orb i t s  o f  the un iversa l  one  p a r a m e t e r  fami ly  F*,  

for  ~t = + 0.3. 
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# 

10 

This is the same as N~, restricted to the space of 
symmetric commuting pairs, but permits good 
domains. I determined c~ and fl by 

which forces the normalisation 

v~(0, 1)= 0, v~2(0, l ) =  1. (11.4) 

The domains I used were 

Fig. 7. Dependence of RI~ on p. l x - - c ) < ~ r ,  )x ' --c ' )<<.r ' ,  (11.5) 

with 

11. Critical fixed point 

The results of the previous section strongly 
suggest that there is another fixed point of N~. 
Following the pioneering work of Kadanoff  
[30], I worked in the action represent- 
ation, using the induced renormalisation (5.4). In 
order for the truncation at finite degree to have 
vanishing effect as the degree goes to infinity, it is 
necessary to find domains of expansion in C 2 such 
that v , r  analytic in their domains implies v', z '  
analytic on the same domains and slightly more, 
for v, z close enough to the fixed point in the Ii 
norm. However, I couldn't find any domain of the 
form 

]aux + al2x" -- c I <~ 1, 

la2,x + a22x' -- c'J <~ 1, 
(I 1.1) 

for which this seemed to be satisfied. 
From the previous section, we expect the fixed 

point to be symmetric. So I considered a modified 
renormalisation: 

X' Y ) 
V ' (X ,  2 ' )  = a/~ T , , 

(x x,) 
~' (x ,  x ' )  = ~fl ~ ® v -~ , ~ . 

(11.2) 

c = 0.050707985, 

c ' =  -- 0.655406307, 

r = 0.502060282, 

r ' =  0.329680205, 
( l l .6)  

for r, and its rescaled and reflected version for v. 
This choice is close to optimal, if (11.2) is consid- 
ered as one second order equation, and has an 
analyticity improvement factor of at least 1.1374. 
If regarded as two first order equations, the 
domain for v should be diminished a little. 

Newton's method was used to find a fixed point 
of Ns~, truncating at various degrees. The results 
appear to converge as the degree is increased, and 
are consistent with the findings of section 10. For  
example, the values of a, fl, 6, 6'  for several 
truncation levels are presented in table II. 6 nd 6'  
were found by diagonalising the derivative DNs~. 
The eigenvalues of  DNs~ larger than 0.4 in modulus 
whose eigenvectors are symmetric are shown and 
interpreted in table III. There is only one relevant 
eigenvalue not contained inside the unit circle, 
namely, 6, as expected. For details on the 
identification of the eigenvalues, see MacKay [19]. 

This procedure could in principle be carried to 
arbitrary precision. Also, existence of the fixed 
point and bounds on its spectrum could be proved 
in the same way as Lanford [31] and Eckmann et 
al. [32] did for period doubling in one-dimensional 
and area-preserving maps, respectively. 
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Tab le  I1 
Values  o f  ~, 3, 6, 6 '  for  the fixed po in t s  o f  Nst, t r u n c a t e d  at  several  degrees  

Degree  a fl 6 6 '  

14 - 1 .414836085 - 3 .066888192 1.6279496 - 0 .61083048 

15 - 1.414836021 - 3 .066888344 1.6279506 - 0 .61083021 

16 - 1 .414836072 - 3 .066888224 1.6279499 - 0 .61083040 

17 - 1 .414836052 - 3 .066888269 1,6279502 - 0 .61083026 

18 - 1 .414836062 - 3 .066888246 1.6279500 - 0 .61083028 

T a b l e  III 
S p e c t r u m  o f  DN~ at  the cr i t ical  fixed po in t ,  s h o w i n g  those  e igenvalues  g r ea t e r  

t h a n  0.4 in m o d u l u s  wh ich  have  s y m m e t r i c  e igenvec tors  

E igenva lue  C o m p a r e  wi th  Va lue  I n t e r p r e t a t i o n  

7 .0208826 y~fl 7 .0208826 

- 3 .0668882 3 - 3 .0668882 

- 2 .6817385 - ~3/7 - 2 .6817385 

1,6279500 6 1.6280 

- 1,5320950 fl/~2 - 1.5320951 

1,00O0001 ~/~ I 
1.ooooooo 3/3 1 

- 0 . 7 6 5 3 7 3 6  3 / ~  4 - 0 . 7 6 5 3 7 3 6  

- 0 .6108303 6 '  - 0 . 6 1 0 8  

0 .4995593 ~/~3 0.4995601 

C o n s t a n t  t e rms  in ac t ion  

C o o r d i n a t e  c h a n g e  

C o n s t a n t  t e rms  in ac t i on  

Re levan t  d i rec t ion  (10.4) 

C o o r d i n a t e  c h a n g e  

Scale c h a n g e  

Scale c h a n g e  

C o o r d i n a t e  c h a n g e  

Essent ia l  c o n v e r g e n c e  ra te  (10.6) 

C o o r d i n a t e  c h a n g e  

12. Golden curves for pairs converging to any fixed 
point 

In this section I show how Mather's theorem 
probably implies that if NT(F, R) converges to any 
fixed point with ~fl > 1, then F has a golden circle. 
Let (v*, z*) be the generating functions for the 
fixed point. Commutation and zero Calabi invari- 
ant imply that z*(x, x) has a minimum and max- 
imum, so write At* for their difference. Then, 
provided the domains of convergence are large 
enough to include the relevant Birkhoff periodic 
points, convergence to the fixed point implies that 

(~3). • •. (~3 hzl wt. ,  , 1 - A r *  (12.1) 

from (5.4), where the (~3)j are the successive values 
of ~3. Convergence to the fixed point also implies 
that 

(~[3),~o~ 3 > 1, (12.2) 

SO 

A WIV ' ),j~O (12.3) 

and F has a golden circle, by Mather's theorem. 
Note that the convergence need only be C t for 
Mather's theorem to apply. The same argument 
would imply existence of a circle of any frequency 
if Nm...  Nmo (F, R) remains in a region with Az 
bounded and 0~3 bounded above 1. 

13. Robustness of noble circles 

One of  the most significant features of figs. 4 and 
6 is that in the critical case, the noble circle 
appears to be (locally) the only circle, and in the 
supercritical case there appear to be no circles at 
all. The dots all belong to one orbit. As further 
evidence, I measured residues and differences in 
actions for other periodic orbits than the con- 
vergents of the noble. Given the noble [a, (1,)~],  
where a is a finite sequence of integers, I considered 
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the periodic orbits with rotation number 
[a, (1,)"b], for finite sequences b. Figs. 8 and 9 
show the residues R ÷ in the limit as n--,oo, in the 
critical case. In these figures I have used the natural 
ambiguity 

[b0 . . . . .  b~+ 1]=[b0 , . . . ,  bm, 1] (13.1) 

to group the points into a tree which branches two 
ways at each point. The point to notice is that they 
are all bounded away from 0 (assuming that one 
can extrapolate the trends). For a smooth Diop- 
hantine circle, however, the residues for its con- 
vergent periodic orbits must tend to zero. Thus a 

# 8 ~ T O I I 7  

4.0 I ~ I n I ~ T-  i I 

+ ,  + 

# l e  I 2,2,n 

11,+ Q:: 
II I 

0.5 

0.4 

o.3 3:2,+t~ 
? l , l  I 

0.2 I t+ ~1 1 I I ] I ] 
- I  .0 0.5 0 0.5 1.0 

x 

F ig .  8. Res idues  Rib* ~ o f  p e r i o d i c  o rb i t s  o f  F * ,  p l o t t e d  aga ins t  

posi t ion  X on the d o m i n a n t  half-line. 
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2.0 

I1: 
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~ 8 2 T O l l 6  

I r I ~ I 
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-- 2,[,n + 

_ [ , U , n  

I J ] _ _ n  I L 
-0.8 -0.7 -0.6 

× 

Fig. 9. Inset  to fig. 8. 

critical noble has a neighbourhood containing no 
smooth Diophantine circles. Fig. 10 is the universal 
"fractal diagram" [27] for the neighbourhood of 
any noble. Since it shows all residues increasing 
with the parameter #, there are no smooth Diop- 
hantine circles in the supercritical case either. 

In the subcritical case, of course, we expect to 
have a smooth noble circle. Another corollary 
(Mather, private communication) of Moser twist is 
that a smooth Diophantine circle has others arbi- 
trarily close. In fact each smooth Diophantine 
circle is a density point in the set of smooth 
Diophantine circles. So there are lots of circles in 
the subcritical case. 

Next we consider differences in actions. Fig. 11 
shows (o~fl)"AW[.,~,>.+], in the limit as n--*oo, for 
various b in the critical case. Apart from the 
sequence [(1, )"], converging to ?, we plotted 
points only for b with b0 > 1, as the self-similarity 
allows one to fill in for b0 = 1. They are all bounded 
away from 0, so using Mather's result, there are no 
invariant circles with irrational rotation number 
with continued fraction expansion In, (1,)'b0 . . . .  ], 
b0 > 1]. Thus there are no irrational circles apart 
from the noble [a, (1,)+]. Assuming a conjectured 

-1.5 
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# 8 2 T 0 1 1 5  

X 
- I . 0  - 0 . 5  0 0.5 1.0 

L ] ~';~ i I; 1 i t  i I ~ 1 1  , , , ,  , ,,& 
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Fig. 10. Pos i t ion  X on the d o m i n a n t  half- l ine of  per iodic  po in t s  
o f  F* ,  p lot ted  aga ins t  p, and  ind ica t ing  how thei r  residues 
change.  



298 R.S. MacKay / Noble circles 

~82T0125 

i f - - ~  ~ 1 I I I I ~ I - -  I I I 

2=1,1 

i0.1 f 3=2,1 4=3, i 5 1,2 ~ I,l,I 

z~W 2~- 

1 0 3 [  

iO- I 

IC~ ii 74 -I.I -I.O -0.9 -0.8 -0.7 -06 -0,5 -04 -0.3 -0.2 40,1 0 01 0.2 
X 

Fig. 11. Values of A W for various periodic orbits of F*, plotted against position X on the dominant half-line. 

extension of  Mather 's  work to rational circles, 

there are no rational circles either. 
Thus I conclude that noble circles are robust in 

an important sense, namely, a critical noble has a 
neighbourhood containing no other invariant cir- 
cles, and all narrow enough connected neigh- 
bourhoods of a supercritical noble (Cantor set) 
contain no invariant circles at all. Since nobles are 
dense, one would like to conjecture a stronger 
result, namely, that isolated circles are typically 
nobles, but deducing this from the previous state- 
ment would require estimates on the sizes of the 
neighbourhoods, which I do not have at present. 

14. Conclusion 

In conclusion, I speculate a picture like fig. 12, 
in class AA (modulo coordinate changes). The 

critical fixed point has a codimension 1 stable 
manifold W ~, which, I believe, separates the space, 
at least locally, into pairs with a smooth golden 
curve and those with no golden curve. Any one 
parameter family crossing W s transversally (in 

which I include non-zero speed) will have asymp- 
totically the same behaviour, on a small enough 
scale in space and parameter,  and on a long 
enough timescale, as the "universal" one para- 
meter family given by a natural parametrisation of 
the one-dimensional unstable manifold W u. In 
some sense there is a fixed point at infinity too, as 
I find asymptotic behaviour in the supercritical 
case too. How to express it, however, is not clear, 
as it has infinite actions and residues, and/~ = - 
(although e = - 1). 

One could do exactly parallel analysis for any 
quadratic irrational rotation number, but other 
irrationals will require a modified treatment. We 
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Fig. 12. Schematic of the action of N t in the space of commut- 
ing pairs in class AA (modulo coordinate changes). 
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indicated, however,  that  nobles are p robab ly  the 
most  significant. 

The ideas o f  this paper  also carry  over  directly 
to the p rob lem o f  existence and breakup  of  invar- 
iant tori in dissipative systems. The  simple fixed 
point  is very simple, and analysis o f  its spectrum 
much  simpler than in the area preserving case (e.g. 
see Fe igenbaum et al., 1982). Const ruc t ion  o f  a 
ne ighbourhood  o f  a t t ract ion is also easier [19]. I 
obta ined the critical fixed point  to an accuracy of  
10 -7, working  in power  series o f  degree 19 in x 3 on 
carefully chosen domains  [19] (see also Rand  et al. 
[17], and Fe igenbaum et al. [13]). 

Lastly, the ideas o f  this paper  can be extended 
to invariant  tori o f  a rb i t ra ry  dimension.  For  a 
2n-dimensional  symplectic map ,  for  example,  one 
would consider commut ing  (n + 1)-tuples of  maps.  
Rota t ion  numbers  would lie in ff~P" and the 
renormal isa t ion would generalise in an obvious  
way. 
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