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1 Twiss Parameters

Consider propagation of a particle trajectory through a beam line. The phase space 2-vector is

x = (x, px/p) ∼ (x, x′).

x and x′ are offset and angle with respect to some reference orbit, where in the small angle approx-
imation px/p ∼ x′. The Jacobian of the mapping from xi to xf , is

M =


∂xf1
∂xi1

∂xf1
∂xi2

∂xf2
∂xi1

∂xf2
∂xi2


The Jacobian M for a Hamiltonian system is symplectic. In a two dimensional phase space a
symplectic matrix has unit determinant. If the system is linear, then

xf = Mfix
i

1.1 Scalar invariant

Define the scalar
s = xTAx
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Then define A, so that

s =
(
x x′

)(γ α
α β

)(
x
x′

)
= γx2 + 2αxx′ + βx′

2

A can be any 4 parameters that we like. No loss of generality by setting A = AT since we only
need three numbers to define the most general scalar combination of x and x′. α, β, γ are the
twiss parameters. Now let’s assume linearity and propagate xb → xe with the help of M . Then
xe = Mxb and

s = xTbM
T (MT )−1AbM

−1Mxb = xTe (MT )−1AbM
−1xe = xTe Aexe

The matrix s is invariant as long as

Ae = (MT )−1AbM
−1 (1)

Or (
γe αe
αe βe

)
= (MT )−1

(
γb αb
αb βb

)
M−1

We propagate twiss parameters using the transfer matrix. Evidently, once the twiss parameters are
selected at one point in the beam line, they are defined everywhere by the mapping that propagates
the phase space coordinates. Another thing, from Equation 1 we see that |Ae| = |Ab|. The
determinant of the twiss matrix is invariant. We set it to unity for convenience. Then γβ−α2 = 1.
It should be clear that except for the unit determinant requirement, the twiss parameters (α, β, γ)
are totally unconstrained. We assign them whatever values we like at one location along the beam
line and they are determined everywhere else.

The distribution of particles can be characterized in terms of the twiss parameters. The twiss
parameters establish how the phase space coordinates are correlated, how x and x′ are related.
Consider the matrix of second moments. (The average of the first moments is zero).

Σ =

(
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
The matrix is constructed as

xxT =

(
x
x′

)(
x x′

)
and the distribution is propagated along the beam line according to

xex
t
e = Mxbx

T
bM

T

Then
〈xexte〉 = 〈Mxbx

T
bM

T 〉 = M〈xbxTb 〉MT

or (
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
e

= M

(
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
b

MT

which looks almost like the rule for propagating the twiss matrix A. W found that

Ae = (MT )−1AbM
−1.

Then
A−1
e = MA−1

b MT

3



and the matrix A−1
e transforms the same as the Σ matrix. The elements of the two matrices are

clearly related. In particular

A−1 = ε

(
β −α
−α γ

)
=

(
〈xx〉 〈xx′〉
〈xx′〉 〈x′x′〉

)
where ε remains to be determined.

|A−1| = |Σ| → ε2 = 〈xx〉〈x′x′〉 − 〈xx′〉2

Since
σ2 = 〈xx〉, (σ′)2 = 〈x′x′〉

we have that

β =
σ2

ε
, γ =

(σ′)2

ε

The twiss parameters are determined by the distribution of the phase space coordinates of the
trajectories.

2 Computing transfer matrix with tracking

Sometimes it is difficult to construct the transfer matrix from first principles. The matrix conveys
the focusing effect of the element but to build the matrix we essentially need to know all the
gradients etc. Alternatively we can determine the Jacobian directly by particle tracking. Remember
that the transfer matrix is the Jacobian of the map

M =


∂xf1
∂xi1

∂xf1
∂xi2

∂xf2
∂xi1

∂xf2
∂xi2


The strategy is essentially to compute the derivatives numerically. If we know the reference trajec-
tory (uniquely defined in a circular machine, but not so straightforward in a transfer line like the
entrance through the backlog iron and into the inflector), we can calculate trajectories displaced
by ∆x and ∆x′ from the reference and build M . In principle we need only three non degenerate
trajectories to determine the 2X2 matrix for horizontal or vertical motion as well as the reference.
Write

Mi→f (xin − xref ) = xf − xref

Mi→fxin − (Mi→f − I)xref = xf

Mi→fxin − x0 = xf (2)

Next construct

N =

(
Mi→f x0

0 1

)
=

m11 m12 x0

m21 m22 x′0
0 0 1


and Equation 2 becomes

N

(
xin
−1

)
=

(
xf
−1

)
.
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The goal remember is to compute Mi→f and xref . Choose three distinct values for xin, namely
xiin, i = 1, 2, 3, track each to xif and we get

N

(
x1
in x2

in x3
in

−1 −1 −1

)
=

(
x1
f x2

f x3
f

−1 −1 −1

)
Finally

N =

(
x1
f x2

f x3
f

−1 −1 −1

)(
x1
in x2

in x3
in

−1 −1 −1

)−1

Extract M and xref from N as per above. The strategy is readily extended to the full 6 dimensional
phase space where

x→



x
x′

y
y′

z
δ


where δ = ∆E/E. So to determine the evolution of the phase space (that is the twiss parameters)
through the iron and inflector into the ring we simply compute 7 trajectories. We can in principle
use the same 7 trajectories to determine the transfer matrix between any two points along the
reference orbit.

3 Full Turn Map

Consider the full turn map M in a closed ring. The stability of the lattice is indicated by multiturn
behavior. The initial phase space coordinates xin are mapped after n-turns to

xout = Mnxin

3.1 Eigenvalues

It is easy to determine stability if we work in an eigen-basis. The eignenvalues of the 2X2 determi-
nant 1 matrix M are

λ± = e±iφ

where cosφ = 1
2TrM and sinφ =

√
1− 1

2TrM .

In view of the constraint on the trace, the full turn matrix M can be written as

M =

(
cosφ+ x y

z cosφ− x

)
|M | = cos2 φ− x2 − yz = 1→ −x2 − yz = sin2 φ

Next define
x = α sinφ, y = β sinφ, z = −γ sinφ, α2 − βγ = −1

and the most general unit determinant matrix is

M =

(
cos θ + α sin θ β sin θ
−γ sin θ cos θ − α sin θ

)
5



For the time being, α, β, and γ are arbitrary real numbers. The relationship with the twiss param-
eters described above remains to be determined. The normalized eigenvectors are

v± =

√
1

γ + β

( √
β

±i−α√
β

)
Propagation of the phase space vector through n turns is gives

vn± = Mnv± = e±inθv±.

The linear lattice (as represented by the Jacobian of the map M) is stable if θ is real (|TrM | < 1).

3.2 Decomposition

The similarity transformation to the eigenbasis is

U−1MU = Λ ≡
(
eiθ 0
0 e−iθ

)
where

U = v+v− = N

(√
β

√
β

i−α√
β
− i+α√

β

)
It is convenient to work in a real basis. We note that(

cos θ sin θ
− sin θ cos θ

)
= K−1ΛK

where

K =
eiπ/4√

2

(
i 1
i −1

)
Then

K−1U−1MUK = K−1ΛK =

(
cos θ sin θ
− sin θ cos θ

)
≡ R(θ)

Next define

G ≡ UK =

( √
β 0

− α√
β

1√
β

)
where the constant N is chosen so that detG = 1. In summary

G−1MG = R(θ)

In an earlier section we defined the parameters α, β, γ in terms of scalar invariant. Are the two
definitions consistent? The twiss parameters transform according to

MTAM = A′

where

A =

(
γ α
α β

)
If the definitions are consistent then the β, α, γ of G are the same as the α, β, γ that are the
components of A and

MTAM = (GRG−1)TAGRG−1 = (G−1)TRT
(
GTAG

)
RG−1

But GTAG = I, and we have that
A′ = GRTRGT = A

as claimed.
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3.3 Propagation of Twiss Parameters

Now suppose that the full turn matrix at point 1 is written as a product of the matrices of each
individual element (quadrupole, drift, dipole, etc.) in the ring.

M1 = T12T23 . . .

The full turn matrix at point 2 is
M2 = T23T34 . . . T12

and
M2 = T−1

12 M1T12

The twiss parameters at 2 are given by M2. In particular,

cos θ =
1

2
TrM, α2 =

1

2
(m11 −m22)/ sin θ, β2 = m12/ sin θ, γ2 =

1 + α2
2

β2

and the same for point 1. We would like to write T12 in terms of the twiss parameters at 1 and 2.
We have that

M2 = T−1
12 M1T12 = G2R(θ)G−1

2 = T−1
12 G1RG

−1
1 T12

→ R(θ) =
(
G−1

2 T−1
12 G1

)
R
(
G−1

1 T12G2

)
R = W−1RW

For an orthogonal matrix R
[R,W ] = 0 ⇐⇒ W−1 = W T

If W is orthogonal we can write

W = R(φ) =

(
cosφ sinφ
− sinφ cosφ

)
=

(
cosφ sinφ
− sinφ cosφ

)

and then

T12 = G2R(φ)G−1
1 (3)

=

(√
β2 0
α2√
β2

1√
β2

)(
cosφ sinφ
− sinφ cosφ

)( 1√
β1

0

− α1√
β1

√
β1

)

=

(√
β2 0
α2√
β2

1√
β2

)(
cosφ−α1 sinφ√

β1
sinφ
√
β1

− sinφ−α1 cosφ√
β1

cosφ
√
β1

)

=

 √
β2
β1

(cosφ− α1 sinφ)
√
β2β1 sinφ

(α2−α1) cosφ−(α2α1+1) sinφ√
β2β1

√
β1
β2

(α2 sinφ+ cosφ)

 (4)

Therefore (
x(s)
x′(s)

)
= T12

(
x(s)
x′(s)

)
(5)
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x(s) =

(√
β(s)

β1
(cosφs0 − α1 sinφs0

)
x0 +

(√
β(s)β1 sinφs0

)
x′0 (6)

x′(s) =

(
(α(s)− α1) cosφs0)− (α(s)α1 + 1) sinφs0√

β(s)β1

)
x0 +

√
β1

β(s)
(α(s) sinφs0 + cosφs0)x′0(7)

where φs0 is some phase advance from point 0 to s. How are α and β related? How is φs0 defined?
Since x′ = dx

ds we have that

x′(s) =
dx

ds
=

[
1

2

β′(s)√
β(s)

(√
1

β1
(cosφs0 − α1 sinφs0

)
+

√
β(s)

β1
(− sinφs0 − α1 cosφs0)φ′s0

]
x0

+

[
1

2

β′(s)√
β1

sinφs0 +

√
β(s)

β1
cosφs0φ

′
s0

]
x′0 (8)

3.4 Connection to Differential Equation

Comparing Equations 7 and 8 we see that

α(s) =
1

2
β′ =

1

2

dβ(s)

ds
, φ′(s) =

dφ

ds
=

1

β

The phase advance

φs0 =

∫ s

0

ds

β(s)

3.4.1 Propagation of β-function

As noted in an earlier section there is an invariant

S = γx2 + 2αxx′ + βx2 ≡ ~β · ~X (9)

where

~β =

γα
β

 , ~X =

 x2

xx′

(x′)2


Consider propagation from 1 to 2 by matrix M .

x2 = m11x1 +m12x
′
1

x′2 = m21x1 +m22x
′
1

Then
~X2 =M ~X1

and

M =

 m2
11 2m11m12 m2

12

m11m21 m12m21 +m11m22 m12m22

m2
21 2m21m22 m2

22

 (10)

8



We would like to determine the corresponding matrix N that propagates the 3-vector ~β. Since
~β2 · ~X2 = ~β1 · ~X1 = ~β1 ·M−1M ~X1 = ~β1M−1 ~X2, it follows that

~β2 = (M−1)T ~β1

N = (M−1)T . (11)

N is constructed by replacing the elements of M with those of its inverse in Equation 10 and
transposing, yielding

N =

 m2
22 −m22m21 m2

21

−2m22m12 m11m22 +m12m21 −2m21m11

m2
12 −m12m11 m2

11

 (12)

Consider for example propagation of the twiss parameters through a field free region. The
elements of M in a field free region of length s are

M =

(
1 s
0 1

)
Then

N =

 1 0 0
−2s 1 0
s2 −s 1

 .

At a waist (minimum β,α = 0), ~β0(γ0, α0, β0) = (1/β0, 0, β0). At a distance s from the waist,

~β(s) = N ~β0 = (1/β0,−2s/β0, β0 + s2/β0).

We find that β increases quadratically with distance from the minimum.

Using 11, we write N in terms of twiss parameters ~β0 and ~β(s) and the phase advance ∆φ =
φ(s)− φ0. Suppose that β at 0 is perturbed by a mismatch or quad error, so that

~β0 →

γ0 + ∆γ0

α0

β0 + ∆β0

 =

γ0 − γ0
∆β0
β0

α0

β0 + ∆β0


∆~β0 =

γ0
∆β0
β0

0
∆β0


In view of Equations 11 and 12

∆β(s) = −m2
12γ0

∆β0

β0
+m2

11∆β0

= −(β(s)β0 sin2 ∆φ)γ0
∆β0

β0
+
β(s)

β0
(cos ∆φ− α0 sin ∆φ)2∆β0

= β(s)
∆β0

β0
(cos2 ∆φ− sin2 ∆φ)− 2α0 cos ∆φ sin ∆φ)

= ∆β0
β(s)

β0
(cos 2∆φ− α0 sin 2∆φ)

The β error propagates as the square of the phase advance

9



3.5 Closed Ring

In a closed ring, where s = C, and β(C) = β0, the change in β on the nth turn is

∆β(n) = ∆β0(cos 2µ− α0 sin 2µ)

where µ = 2πQ and Q is the tune.

3.5.1 Quadrupole error

Suppose that there is a focusing error at s, with focal length f . Then

M →MQ

where the transfer matrix for a thin lens is

Q =

(
1 0
−1/f 1

)
Then

M =

(
cosµ+ α sinµ− 1

f β sinµ β sinµ

−γ sinµ+ 1
f (cosµ− α sinµ) cosµ− α sinµ

)

=

(
cosµ′ + α′ sinµ′ β′ sinµ′

−γ′ sinµ′ cosµ′ − α′ sinµ′
)

Then cosµ′ = cos(µ+ ∆µ) = 1
2TrM = cosµ− 1

2
β
f sinµ If f � β,

cos(µ+ ∆µ) = cosµ−∆µ sinµ = cosµ− β

f
sinµ→ ∆µ =

β

2f

4 Dispersion

The formalism developed so far describes a 2 dimensional phase space. It can be used to account
for motion independently in the horizontal, vertical or longitudinal direction. Now we consider
systems with coupling between transverse (horizontal) and longitudinal degrees of freedom. The
phase space vector

x→


x
px
p

z

pz = p−p0
p0


where in the small angle limit x′ = px/p and p0 is the reference energy. The Jacobian of the
mapping from xi to xf is

Tij =
∂xfj
∂xi1

(13)

As noted above, the Jacobian for a Hamiltonian system is symplectic. A matrix is symplectic if

T TST = S

10



where

S =

s 0 . . .
0 s . . .
...

...
. . .


and

s =

(
0 −1
1 0

)
In a system with no coupling of horizontal and longitudinal motion

T =

(
Mx 0
0 Pz

)
where Mx and Pz are 2× 2 and |Mz| = |Pz| = 1.

4.1 Coupling of Longitudinal and Transverse Motion

A bending magnet couples changes in energy (pz) with a change in horizontal angle x′ and position
x so that m12 and m22 are in general non zero. The symplectic condition then requires that p11

and p12 are also finite and the Jacobian will have the form

T =

 Mx
0 m12

0 m22

p11 p12

0 0
Pz

 (14)

The dispersion is the dependence of transverse position and angle on energy offset δ, that is(
η
η′

)
=

(
∂x
∂δ
∂x′

∂δ

)
The dispersion is defined at every point s along the beamline or ring so that the horizontal position
can be written in terms of a combination of betatron and energy components.

x(s) = xβ(s) + xδ(s).

Suppose that at some location along the beam line there is zero betatron amplitude. Then x1 =
x1,δ = η1δ and from 14

x2 = Mη1δ +

(
m12

m22

)
δ

⇒ η2 = Mη1 +m12 (15)

⇒
(
m12

m22

)
= η2 −Mη1

Note that in a beam line without RF accelerating cavities there is no mechanism to couple longitu-
dinal offset (z) and transverse position. Equation 14 is therefore a good representation of transport
in such a beam line.

It is easy to show that if

m =

(
0 m12

0 m22

)
11



then the symplectic condition implies that |Mz| = 1. We learned all about the formalism for a unit
determinant matrix in a previous section and how to can express Mz in terms of ~β and ∆φ. We
find (

m12

m22

)
= η2 − T12η1 (16)

where T12 given in Equation 4. The linear mapping from point 1 to point 2 can be written entirely
in terms of ~β, η at the end points and the betatron phase advance ∆φ12. We learned that the
dispersion function is propagated according to Equation 15. If η1 and η2 are the closed ring
dispersion at 1 and 2, then dispersion errors, perhaps due to some mismatch, propagate according
to

∆η2 = M∆η1

=

 √
β2
β1

(cosφ− α1 sinφ)
√
β2β1 sinφ

(α2−α1) cosφ−(α2α1+1) sinφ√
β2β1

√
β1
β2

(α2 sinφ+ cosφ)

∆η1

4.2 Closed Ring

In a closed ring with circumference C, η(s) = η(s+ C) and full turn matrix

T =

(
M m
p P

)
Equation 14 gives the closed ring dispersion

η = Mη +

(
m12

m22

)
→ (I −M)η =

(
m12

m22

)
→ η = (I −M)−1

(
m12

m22

)

5 Symplectic Transformation

Consider the canonical transformation from generalized coordinates q,p to Q,P where q = (q1, q2, . . . , qN )
and p = (p1, p2, . . . , pN ). We aim to show that the Jacobian matrix

J =
∂(Q,P)

∂(q,p)

is symplectic. We recall that the time evolution operator, (namely the Hamiltonian), has the form of
a generator of canonical transformations. Therefore, the transformation of phase space coordinates
from point η along a beam line to another point ξ is canonical and the transfer matrix is symplectic.

Suppose that the phase space vectors at two distinct points along the beam line are

~η =


x
px
y
py
...

 and ~ξ =


X
Px
Y
Py
...


12



and

K(~ξ) = H(~η) +
∂F

∂t

where H and K are the Hamiltonian in terms of the coordinates ~η and K in terms of ~ξ. F is the
generator of the transformation. The generalized Hamilton’s equations are

η̇i = Sij
∂H

∂ηj
where S =


0 1 0 0 . . .
−1 0 0 0 . . .
0 0 0 1 . . .
0 0 −1 0 . . .
...

...
...

...
. . .


Similarly

ξ̇i = Sij
∂K

∂ξj
= Sij

∂

∂ξj

(
H(~η) +

∂F

∂t

)
(17)

We could also write

ξ̇i =
∂ξi
∂ηj

η̇j +
∂ξi
∂t

=
∂ξi
∂ηj

Sjk
∂H

∂ηk
+
∂ξi
∂t

(18)

Combining Equations 17 and 18

Sij
∂

∂ξj

(
H(~η) +

∂F

∂t

)
=

∂ξi
∂ηj

Sjk
∂H

∂ηk
+
∂ξi
∂t

Sij

(
∂H

∂ξj
+
∂

∂t

∂F

∂ξj

)
=

∂ξi
∂ηj

Sjk
∂H

∂ηk
+
∂ξi
∂t

Sij

(
∂H

∂ηk

∂ηk
∂ξj

+
∂

∂t

∂F

∂ξj

)
=

∂ξi
∂ηj

Sjk
∂H

∂ηk
+
∂ξi
∂t

(19)

(20)

If the generating function F is type 2, then ∂F
∂ξj

= Sjkξk and Equation 19 becomes

Sij

(
∂H

∂ηk

∂ηk
∂ξj
− Sjkξ̇k

)
=

∂ξi
∂ηj

Sjk
∂H

∂ηk
+
∂ξi
∂t

→ Sij
∂H

∂ηk

∂ηk
∂ξj

=
∂ξi
∂ηj

Sjk
∂H

∂ηk

since SijJjk = −δik. Then

Sij
∂ηk
∂ξj

=
∂ξi
∂ηj

Sjk (21)

We recognize ∂ξi
∂ηj

= Mij as the Jacobian of the mapping from η to ξ and ∂ηk
∂ξj

= M−1 as the inverse.

Then

SijM
−1
kj = Sij(M

−1)
T
jk = MijSjk = MijSjk

S(M−1)T = MS

→ S = MSMT

which is the definition of a symplectic matrix. The Jacobian of a canonical transformation is a
symplectic matrix.

13



6 Coupling

Let’s begin with transverse coupling. The Jacobian is a 4X4 symplectic matrix M such that
MSMT = S. A 4X4 symplectic matrix

M =

(
A B
C D

)
has the property that

|A|+ |B| = |C|+ |D| = 1(show).

Diagonalizing gives us M = UEU−1 where E is a 4X4 diagonal symplectic matrix (show that the
diagnonal matrix is symplectic). Then if

E =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


it follows that

λ1λ2 = λ3λ4 = 1

We know that
M~ui = λi~ui

where ~ui is the eigenvector with eigenvalue λi. Then the phase space evolves after n turns according
to

Mn~ui = λni ~ui

If the magnitude of any of the eigenvalues (λi) is greater (or less) than 1, then the motion grows
exponentially. The eigenvalues for the full turn coupled matrix for a stable system with dimension
2NX2N are unimodular, complex conjugate pairs.

7 Normal Mode Decomposition of 2N × 2N symplectic matrices

Normal mode decomposition of a 4X4 symplectic matrix is a standard technique for analyzing
transverse coupling in a storage ring. We generalize the decomposition to any 2NX2N symplectic
matrix T and derive the transformation W from lab coordinates to normal mode coordinates U .
That is

T = WUW−1 (22)

where U is block diagonal and real and we construct the real matrix W with the form

W =


γ1I C1 C2 . . .
C ′1 γ2I C3 . . .
C ′2 C ′3 γ3I . . .

...
...

...
. . .

 (23)

I is the 2x2 identity, and C1, C2, C
′
1 etc are 2x2. (If for example, n = 2, then γ1 = γ2 and

C ′ = −C†).

14



7.1 Normal Modes

The block diagonal matrix

U =

A 0 . . .
0 B . . .
...

...
. . .


can be further decomposed as

U = Y ZY −1 (24)

where

Z(θ1, θ2, . . . , θn) =

R(θ1) 0 . . .
0 R(θ2) . . .
...

...
. . .

 (25)

with

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(26)

and

Y =

G1 0 . . .
0 G2 . . .
...

...
. . .

 , (27)

and Gi =

(√
βi 0
αi√
βi

1√
βi

)
.

Since standard techniques exist for diagonalizing square matrices and identifying eigenvalues and
eigenvectors, we begin by doing just that.

T = V DV −1, (28)

where T is the 2N x 2N symplectic matrix, D is the diagonal matrix of eigenvalues, and V is the
matrix constructed from the eigenvectors. Since T is symplectic, the eigenvalues and eigenvectors,
as noted above, appear as unimodular, complex conjugate pairs, λi, λ

∗
i and ~vi and ~v∗i . Then D can

be written in the form

D =


d(θ1) 0 0 . . .

0 d(θ2) 0 . . .
0 0 d(θ3) . . .
...

...
...

. . .

 where d(θ) =

(
eiθ 0
0 e−iθ

)
. (29)

The n columns of the matrix V are the n eigenvectors vi. The eigenvectors are not unique, but
may be multiplied by an arbitrary complex number. That is, ~vi → ρie

iφi~vi and ~v∗i → ρie
−iφi~v∗i . If

V0 = ~v1 ~v
∗
1 ~v2 ~v

∗
2 . . . ~vn ~v

∗
n, then

V (~ρ, ~φ) = V0D(ρ1, ρ2, . . . ρn, φ1, φ2, . . . , φn)

= V0


ρ1d(φ1) 0 0 . . .

0 ρ2d(φ2) 0 . . .
0 0 ρ3d(φ3) . . .
...

...
...

. . .


Note that V (~ρ, ~φ) effects the transformation of Equation 28 for any real numbers ρi and φi.
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7.2 Real Basis

We transform from a complex to a real basis with K where the real matrix Z (Equation 25) is
related to the complex matrix D (Equation 29) by the similarity transformation

Z(θ2, θ2, θ3) = KD(θ1, θ2, θ3)K−1 (30)

where

K =

k 0 0
0 k 0
0 0 k

 (31)

and

k =
1√
2

(
1 1
i −i

)
(32)

7.3 W-matrix

To construct W and U from V and D, we use Equations 22, 24 and 30 to write

T = WUW−1 = V DV −1

= V0D(~ρ, ~φ)
(
K−1K

)
D(~θ)

(
K−1K

)
D−1(~ρ, ~φ)V −1

0

= V0

(
K−1K

)
D(~ρ, ~φ)

(
K−1K

)
D(~θ)

(
KK−1

)
D−1(~ρ, ~φ)

(
KK−1

)
V −1

0

=
(
V0K

−1
)
Z(~ρ, ~φ)Z(~θ)Z−1(~ρ, ~φ)

(
K−1V −1

0

)
= V ′(~ρ, ~φ)Z(~θ)V ′

−1
(~ρ, ~φ)

Now since the columns of V0 are complex conjugate pairs, V0K
−1 is real. The Z matrices are

similarly constructed to be real and therefore V ′ is real.

So far we have

WUW−1 = V ′ZV ′
−1

WY Z(~θ)Y −1 = V ′Z(~θ)V ′
−1

→ V ′ = WY

where we have used Equation 24.

Next we determine the parameters ~ρ and ~φ. We choose ~ρ so that V ′ will be symplectic. In
particular, if we write V ′ in terms of the 2X2 matrices V j

i then

V ′ =

V
′

1
1 V ′1

2 . . .

V ′2
1 V ′2

2 . . .
...

...
...


=

V0
1
1 V0

2
1 . . .

V0
1
2 V0

2
2 . . .

...
...

. . .


ρ1R(φ1) 0 . . .

0 ρ2R(φ2) . . .
...

...
. . .


=

ρ1V0
1
1R(φ1) ρ2V0

2
1R(φ2) . . .

ρ1V0
1
2R(φ1) ρ2V0

2
2R(φ2) . . .

...
...

. . .


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Symplecticity constrains the sums of determinants of V ′i
j so that

1 =
n∑
i=1

|V ′i
j |

=
n∑
i=1

|ρjV0
j
iR(φj)|

=
n∑
i=1

ρ2
j |V0

j
i |

→ ρj =
1√∑n
i=1 |V0

j
i |

In order to determine the order of the conjugate columns of V ′, and finally the paramters ~φ we
expand

V ′ = WY (~G)

V ′ =

V
′

1
1 V ′1

2 . . .

V ′2
1 V ′2

2 . . .
...

...
. . .

 =

γ1I C . . .
C ′ γ2I . . .
...

...
. . .


G1 0 . . .

0 G2 . . .
...

...
. . .


ρ1V0

1
1R(φ1) ρ2V0

2
1R(φ2) . . .

ρ1V0
1
2R(φ1) ρ2V0

2
2R(φ2) . . .

...
...

. . .

 =

γ1G1 CG2 . . .
C ′G1 γ2G2 . . .

...
...

. . .


Then the diagonal blocks are required to have the form

V ′i
i

= γiGi

ρiV0
i
iR(φi) = γi

(√
βi 0
αi√
βi

1√
βi

)

A real solution requires that |V ′ii| > 0. We are free to choose the order of the conjugate columns of
V ′ to ensure that this is true. (Note that if we reverse the order of the columns V ′i,j → V ′j,i, then
the sign of the determinant of the 2 X 2 blocks is reversed.) If we reverse the order of eigenvectors
in V ′, then we also reverse the order of eigenvalues in D(~θ) or equivalently θi → 2π− θi. To find ~φ
we proceed with our expansion of V0

ii and R(φi) and write

ρi

(
V0

ii
11 V0

ii
12

V0
ii
21 V0

ii
22

)(
cosφi sinφi
− sinφi cosφi

)
) = γi

(√
βi 0
αi√
βi

1√
βi

)

We choose φi so that Gi22 = 0, or

tanφi =
V0

ii
11

V0
ii
12

The ambiguity in φi, (tanφi = tan(2π−φi)) is resolved with the condition that Gi11 = V0
ii
11 cosφi−

V0
ii
12 sinφ > 0.
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7.4 Summary

1. Find eigenvectors and eigenvalues

2. Transform eigenvectors to a real basis

3. Construct V . The columns of V are the eigenvectors. The eigenvectors appear as complex
conjugate pairs since T is symplectic.

4. Choose the normalization for each pair of eigenvectors so that W will be symplectic. In
particular if

V =

c1V1,1 c2V1,2 . . .
c1V2,1 c2V2,2 . . .

...
...

. . .


where Vi,j are 2X2 matrices, and ci = ρeiφi then choose ρ1 so that

ρ2
1 (|V1,1|+ |V2,1|+ |V3,1|+ . . .) = 1

5. Adjust the order of complex conjugate pairs so that |Vi,i| > 0. That is, if |Vi,i| < 0, than swap
the order of the columns.

6. Choose the phases φi so that

Gi = Vi,iRθ)

has the form

=

(√
β 0
α√
β

1√
β

)

8 Interpretation of the Coupling Matrix

Consider two dimensional coupling, that is horizontal and vertical, or horizontal and longitudinal.
The full turn matrix T is written in terms of normal modes

T = V UV −1

where

T =

(
M m
n N

)
and

U =

(
A 0
0 B

)
As before (section on propagating twiss parameters), we can write

A = G−1
a R(µa)Ga, B = G−1

b R(µb)Gb

where

Ga =

(√
βa 0
αa√
βa

1√
βa

)
, R(µ) =

(
cosµ sinµ
− sinµ cosµ

)

18



Now

Un = G

(
R(nµa 0

0 R(nµb)

)
)G−1

where

G =

(
Ga 0
0 Gb

)
The real phase space vector ~x is related to the normalized normal mode vector ~u according to

~x = V G−1~u =

(
γI C
−C† γI

)
G−1~u

where for a 4X4 matrix, V has the form defined in Equation 7, and C is 2X2. Then after propagation
through n turns, we have

~xn = Tn~x0 = TnG−1V ~u0 = (V G−1RGV −1)n(V G−1)~u0

= V G−1R(nµa)~u
0 = G(G−1V G−1)R(nµa)~u

0 = GV̄ ~un

where
V̄ = GV G−1

is the normalized coupling matrix.

In the limit of vanishing coupling between horizontal and vertical planes, the normal mode
emittances εa and εb reduce to εx, εy as

εa lima→0 εx

εb limb→0 εy

In electron storage rings typically εb � εa. So let’s suppose that εb = 0. Then in general in the
normal mode coordinates

~u =


ua
ua′

0
0

 .

The normal mode coordinates propagate from one turn to the next as a rotation.

~un =

(
R(nµa) 0

0 R(nµb)

)
u0
a

u0
a′

0
0

 =


u0
a cos(nµ) + u0

a′ sin(nµ)
−u0

a sin(nµ) + u0
a′ cos(nµ)

0
0


It is convenient to define our starting point so that u0

a′ = 0.

Now the laboratory frame phase space coordinates on turn n are related to the normal mode
coordinates according to

~xn = GV̄ Rn~u0

= GV̄


cos(nµ)
− sin(nµ)

0
0

u0
a = G


γ cos(nµa)
γ sinnµa

−C̄22 cos(nµa)− C̄12 sin(nµa)
C̄21 cos(nµa) + C̄11 sin(nµa)

u0
a
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Now we have parameteric equations for the real space trajectory

xn =
√
βaγ cos(nµa)u

0
a

yn =
√
βb(−C̄22 cos(nµa) + C̄12 sin(nµa))u

0
a

tanθ = (βb/βa)
1/2 C- 22/γ

w = (βb/βa)
1/2 C- 12/γ

θ
w

9 Equations of motion

For a relativistic charged particle in a static magnetic field

d~p

dt
= e~v × ~B

The field is static, so energy does not change and γm is independent of time and

d~p

dt
= mγ

d~v

dt
= e~v × ~B

→ ~̇v =
e~v × ~B

γm
(33)

Now we have to compute ~̈R = ~̇v in the curvilinear coordinate system. We define ρ as the curvature.
The coordinates of the particle at any position along the path s are ~R = (ρ+ x)x̂+ yŷ.

~̇R = ẋx̂+ r ˙̂x+ ẏŷ

= ẋx̂+ (rθ̇)ŝ+ ẏŷ

where ˙̂x = θ̇ŝ. The second derivative

~̈R = ẍx̂+ ṙθ̇ŝ+ rθ̈ŝ+ rθ̇ ˙̂s+ ÿŷ

= ẍx̂+ ṙθ̇ŝ+ rθ̈ŝ− rθ̇2x̂+ ÿŷ
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where ˙̂s = −x̂θ̇. We know that ds = ρdθ = ρvsr dt. So we can write that θ̇ = vs
r and

ds

dt
= ρ

vs
r

and

~̈R = (ẍ− v2
s

r
)x̂+ (ṙθ̇ + rθ̈)ŝ+ ÿŷ

Next change dependent variable from t to s.

d

dt
=

ds

dt

d

ds
=
ρvs
r

d

ds
d2

dt2
=

(
ρ
vs
r

)2 d2

ds2

Then

~̈R =
(
ρ
vs
r

)2
~R′′

= (x′′
(
ρ
vs
r

)2
− v2

s

r
)x̂+ (r′

vs
r

+ rθ′′)ŝ+ r2θ′′
(
ρ
vs
r

)2
ŝ+ y′′

(
ρ
vs
r

)2
ŷ

Comparison with equation 33 gives

x′′ − r

ρ2
=

e

γm
(vyBz − vsBy)

(
r

vsρ

)2

x′′ − r

ρ2
∼ − e

γmvs
By

(
r

ρ

)2

x′′ ∼ − e

γmvs
By

(
r

ρ

)2

+
r

ρ2

x′′ ∼ − 1

Bρ

(
By(0) + y

dBy
dy

+ x
dBy
dx

)(
r

ρ

)2

+
r

ρ2

x′′ ∼ −
(

1

ρ
+ xK

)(
r

ρ

)2

+
r

ρ2

x′′ ∼ −
(

1

ρ
+ xK

)(
x+ ρ

ρ

)2

+
x+ ρ

ρ2

x′′ ∼ −
(
x

ρ2
+ xK

)
y′′ =

e

γm
(vsBx − vxBz)

(
r

vsρ

)2

y′′ ∼ eBx
γmvs

(
1 +

x

ρ

)2

y′′ ∼ e

γmvs
(Bx(0) +

dBx
dx

x+
dBx
dy

y)

(
1 +

x

ρ

)2

y′′ ∼ 1

Bρ
(Bx(0) +

dBx
dy

y)

y′′ ∼ Ky
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where we have only kept first order terms in x and y and we assume that Bx(0) = 0,and By(0)/Bρ =
1/ρ.

10 Solution to equation of motion

If K(s) is periodic with period C, such that K(s) = K(C + s) then the general solution to the
equations of motion is

x = Aw(s) cos[ψ(s) + δ]

with w(s) periodic in C. Substitution into the equation of motion

x′′ = −Kx (34)

gives

0 =
d

ds

(
w′ cos(ψ + δ)− wψ′ sin(ψ + δ)

)
+Kw cos(ψ + δ)

= w′′ cos(ψ + δ)− 2w′ψ′ sin(ψ + δ)− w(ψ′)2 cos(ψ + δ)− wψ′′ sin(ψ + δ) +Kw cos(ψ + δ)

If that last is true for any phase δ then

0 = 2w′ψ′ + wψ′′ (35)

Define β ≡ w2 and

0 = β′β−
1
2ψ′ + β

1
2
(
ψ′′
)

→ β′

β
= −ψ

′′

ψ′

βψ′′ + β′ψ′ = 0

→ 1

ψ′
d

ds
ψ′ = − 1

β

d

ds
β

→ dψ′

ψ′
= −dβ

β

Also

0 = w′′ − w(ψ′)2 +Kw

0 = (
√
β)′′ − 1

β3/2
+Kβ

1
2

0 =
1

2

d

ds

β′

β
1
2

− 1

β3/2
+Kβ

1
2

0 =
1

2

(
β′′

β
1
2

− 1

2

β′2

β3/2

)
− 1

β3/2
+Kβ

1
2
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11 Floquet transformation

Let φ = ψ/ν, where ν = 1
2π

∫
ds
β(s) and ξ = x

β
1
2

. Then

x(s) = Aβ(s)
1
2 cos(ψ(s) + δ)

→ x

β
1
2

= A cos(νφ+ δ)

→ ξ = A cos(νφ+ δ)

dξ

dφ
=

dξ

ds

ds

dφ
= νβ

(
x′

β1/2
− 1

2

xβ′

β3/2

)
= ν

(
x′β1/2 − 1

2

xβ′

β1/2

)
d2ξ

dφ2
= ν2β

(
x′′β

1
2 +

1

2

x′β′

β1/2
− 1

2

x′β′

β1/2
− 1

2

xβ′′

β1/2
+

1

4

xβ′2

β3/2

)

= ν2

(
x′′β3/2 − 1

2
xβ′′β1/2 +

1

4

xβ′2

β1/2

)

= ν2

(
x′′β3/2 − 1

2
x

(
β′′β1/2 − 1

2

β′2

β1/2

))

Substitution from above gives

d2ξ

dφ2
= ν2

(
x′′β3/2 + x

(
Kβ3/2 − 1

β1/2

))
d2ξ

dφ2
= ν2 x

β1/2

= ν2ξ

And if there are contributions to the equation of motion, for example from magnetic fields B(s)
that do not scale linearly with displacement, then refeq:eom becomes

x′′ +K(s)x = −qcB(s)

Bρ
(36)

and
d2ξ

dφ2
+ ν2ξ = −ν2β

3
2

∆B(ξ, φ)

Bρ
(37)
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12 Field errors

12.1 Linear Quadrupole Resonance

Suppose there is a thin quad error field k at φ = φ0. Then Equation 37 becomes

d2ξ

dφ2
+ ν2ξ = −ν2β

3
2k′β1/2ξδ(φ− φ0)

= −ν2β2k′ξ
∞∑

n=−∞
ei(nφ−φ0)

In the limit where the error is small the perturbation expansion is

= −Aν2β2k′ cos νφ
∞∑

n=−∞
e−iφ0einφ

= −Aν2β2k′
∞∑

n=−∞
e−iφ0ei(nφ+iνφ) + ei(nφ−iνφ)

The system will respond at the frequency of the driving force, which is nφ ± νφ. Near resonance,
that is when (n± ν) ∼ ν the solution is

ξ ∼ ν2β2k′
A

ν2 ± (n− ν)2

with resonance at ν = n/2, when the tune ν is half integer or integer.

12.2 Matrix Method

Recall the full turn map

M =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
Insert a thin quadrupole with focal length f and matrix representation

Q =

(
1 0
−1/f 0

)
Then the perturbed full turn matrix is

M ′ = QM =

(
cosµ+ α sinµ β sinµ

− 1
f (cosµ+ α sinµ)− γ sinµ − 1

f β sinµ+ cosµ− α sinµ

)
The perturbed tune

cosµ′ =
1

2

(
2 cosµ− β

f
sinµ

)
Stability requires that

| cosµ′| = | cosµ− β

2f
sinµ| ≤ 1
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12.3 Sexupole resonance

A single sextupole with field proportional to k2 =
∂2By

∂y2
1
Bρ scales quadratically with horizontal

displacment leads to the equation of motion

d2ξ

dφ2
+ ν2ξ = −ν2β

5
2k2ξ

2δ(φ− φ0)

= −ν2β
5
2k′ξ2

∞∑
n=−∞

ei(nφ−φ0)

∼ −A2ν2β
5
2k′ cos2 νφ

∞∑
n=−∞

ei(nφ−φ0)

∼ −A2ν2β
5
2k′

∞∑
n=−∞

e−iφ0
(
ei(nφ+2φν) + ei(nφ−2φν) + ei(nφ)

)
The system responds resonantly when ν2 − (±2ν + n)2 = 0 or ν2 ± n2 = 0, or ν = 1

3n, ν = 2
3n, or

ν = n.

13 Hamiltonian dynamics

Hamilton’s equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p

13.1 Point transformation

Consider the generating function

F = F3(p,Q, t) = ~p · (ρx̂+ xx̂+ yŷ)

Then

q = −∂F3

∂p
, P = −∂F3

∂Q

So

Ps = − ∂

∂s
F3 = −~p · ρ(1 +

x

ρ
)
∂x̂

∂s
= −~p ·

(
1 +

x

ρ

)
ŝ = −ps

(
1 +

x

ρ

)
Px = − ∂

∂x
= −px

Py = − ∂

∂y
= −py

Define canonical vector potential

As = ~A · ŝ
(

1 +
x

ρ

)
Ax = ~A · x̂
Ay = ~A · ŷ
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The new hamiltonian is just the original expressed in the new coordinates. The original hamiltonian
is

H =

√
(~p− e ~A)2c4 +m2c4 + eV

The new Hamiltonian (z → s) is

H ′ = c

 1(
1 + x

ρ

)2 (ps − eAs)2 + (px − eAx)2 + (py − eAy)2 +m2c2


1
2

+ eV

13.2 Poincare invariants

Consider a 2-dimensional region of phase space and define the area of any surface in the space

J1 =
∑
i

∫
S

∫
dpidqi

is invariant with respect to canonical transformations of the phase space variables q, p. That is

J1 =
∑
i

∫
S

∫
dpidqi =

∑
i

∫
S

∫
dPidQi (38)

where Pi, Qi are related to pi, qi by a canonical transformation. Any point on the surface can be
identified by two coordinates u, v. Then on the surface pi(u, v), and qi(u, v). The area element
dpidqi transforms to the area element dudv by the Jacobian determinant

∂(qi, pi)

∂(u, v)
=

∣∣∣∣∣∣
∂qi
∂u

∂pi
∂u

∂qi
∂v

∂pi
∂v

∣∣∣∣∣∣ (39)

so that

dqidpi =
∂(qi, pi)

∂(u, v)
dudv

Then Equation 38 becomes

J1 =
∑
i

∫
S

∫
∂(qi, pi)

∂u, v
dudv =

∑
i

∫
S

∫
∂(Qi, Pi)

∂u, v
dudv (40)

Since the surface is arbitrary, Equation 40 and the invariance of J is equivalent to the statement
that ∑

i

∣∣∣∣∣∣
∂qi
∂u

∂qi
∂v

∂pi
∂u

∂pi
∂v

∣∣∣∣∣∣ =
∑
i

∣∣∣∣∣∣
∂Qi

∂u
∂Qi

∂v

∂Pi
∂u

∂Pi
∂v

∣∣∣∣∣∣ (41)

where (q, p) → (Q,P ) is a canonical transformation. (u, v) can be anything. If we choose u → qj
and v → pj , then Equation 41 becomes

∑
i

∣∣∣∣∣∣∣
∂qi
∂qj

∂qi
∂pj

∂pi
∂qj

∂pi
∂pj

∣∣∣∣∣∣∣ =
∑
i

∣∣∣∣∣∣∣
∂Qi

∂qj
∂Qi

∂pj

∂Pi
∂qj

∂Pi
∂pj

∣∣∣∣∣∣∣ =
∑
i

δij = 1 (42)
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Now let’s suppose that qi, pi are the phase space coordinates of a particle at time t, and Qi, Pi the
coordinates at a later time t′. The two sets of coordinates are related by a canonical transformation.
Therefore, the elements of the Jacobian matrix relating (q, p) to (Q,P ) satisfy the relationship of
Equation 42

There is one other invariance that we will need to demonstrate symplecticity of the Jacobian.
It turns out that Equation 38 can be generalized for a 4-dimensional surface, or a 6-dimensional
surface, etc. In particular the integral

J2 =
∑
i

∫ ∫
S

∫ ∫
dpidqidpkdqk (43)

is invariant with respect to canonical transformations. Then as before we conclude that the Jacobian
determinant

∂(qi, pi, qk, pk)

∂u, v, w, z)
(44)

is also invariant and that
∂(Qi, Pi, Qk, Pk)

∂(qi, pi, qk, pk)
= 1 (45)

14 Transfer Matrices

Consider a quadrupole magnet. The magnet is consists of 4 poles with alternating pole tip field. If
the magnet is very long, then far from the ends the field is purely transverse. Expand the vertical
component of the field in the horizontal plane.

By = B0
y + x

∂By
∂x

+ . . . (46)

By symmetry Bx(y = 0) = 0,

Consider a magnet with 4 poles with alternating pole tip field. Place the center of each pole on
the diagonals. By symmetry

By(θ) = Bx(θ + π/2) = −By(θ + π) = −Bx(θ + 3π/2)

Bx(θ) = By(θ + π/2) = −Bx(θ + π) = −By(θ + 3π/2)

In the two-dimensional limit, Bz = 0.

∇ ·B = 0→ ∂By
∂y

= −∂Bx
∂x

∇×B = 0→ ∂Bx
∂y

=
∂By
∂x

Then

By = x
∂By
∂x

+ . . .

Bx = y
∂Bx
∂y

+ . . .
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15 Quadrupole

The linear equations of motion for a magnet with quadrupole symmetry are

∂~p

∂t
= e~v × ~B =

e

γm
~p× ~B

∂~p

∂s

∂s

∂t
=

e

γm
~p× ~B

∂~p′⊥
∂s

vz =
e

γm
pz ~B⊥

The total momentum is constant and

pz =
√
p2 − p2

x − p2
y ∼ p−

1

2

(
px
p

)2

− 1

2

(
py
p

)2

= p− 1

2
x′

2 − 1

2
y′

2

Substituting into the above

~x′
1

γm
(p− 1

2
x′

2 − 1

2
y′

2
) =

e

γm
(p− 1

2
x′

2 − 1

2
y′

2
) ~B⊥

For small angles ~x′ � 1

1

p

∂~p⊥
∂s

vz =
e

γm
ŝ× ~B⊥

x′′⊥ =
e

p
ŝ× ~B⊥

For the quadrupole

x′′ =
e

p

∂By
∂x

x = Kx

y′′ =
e

p

∂Bx
∂y

y = −Ky

where K = ep
∂By

∂x and K has dimensions of L−2. The solutions to the equations of motion are

x = A cos
√
Ks+B sin

√
Ks

y = C cos
√
−Ks+D sin

√
−Ks

If x(s = 0) = x0 and x′(s = 0) = x′0 then A = x0 and B = x′0/
√
K and similary C = y0 and

D = y′0/
√
K. If K > 0 the quadrupole is horizontally focusing and vertically defocusing and The

matrix for the transverse phase space becomes

M =


cos
√
Kl 1√

K
sin
√
Kl 0 0

−
√
K sin

√
Kl cos

√
Kl 0 0

0 0 cosh
√
Kl 1√

K
sinh
√
Kl

0 0
√
K sinh

√
Kl cosh

√
Kl

 (47)
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and

M


x0

x′0
y0

y′0

 =


x(l)
x′(l)
y(l)
y′(l)


15.1 Tilted quadrupoles

The 4 × 4 transfer matrix for a horizontally focusing quad with strength k and length l can be
written as ??.

Mquad =

[(
Kf 0
0 Kd

)]
(48)

where Kf,d are appropriate 2× 2 matrices. The matrix for a quad rotated by an angle θ about the
z-axis is

Qrot = R−1(θ)MquadR(θ) (49)

where

R(θ) =

[(
I cos θ I sin θ
−I sin θ I cos θ

)]
(50)

15.2 Skew quadrupoles

A skew quad is rotated by θ = 45◦,

Qskew =
1

2

[(
Kf + Kd −Kf + Kd

−Kf + Kd Kf + Kd

)]
(51)

For a thin skew quad, l→0 and
√
k sin(

√
kl)→ 1

f ,

Qthin =

[(
I Kt

Kt I

)]
, Kt =

[(
0 0
1
f 0

)]
(52)

16 Solenoids

16.1 Longitudinal fields

In the longitudinal field of a solenoid

1

p

∂~p⊥
∂s

vz =
e

γm

p⊥
p
ŝ× ~Bz (53)

x′′ = y′
e

p
Bz = ksy

′

y′′ = −x′ e
p
Bz = −ksx′ (54)

The coupled equations are solved by substituting one into the other

x′′′ = −k2
sx
′

y′′′ = −k2
sy
′
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The solutions are

x′ = A cos ksl +B sin ksl

→ x =
1

ks
(−A sin ksl +B cos ksl) + a

y′ = C cos ksl +D sin ksl

→ y =
1

ks
(−C sin ksl +D cos ksl) + b

Substitution into 54 gives

−ks(A sin ksl −B cos ksl) = ks(C cos ksl +D sin ksl)

→ A = −D, B = C

The boundary conditions fix the constants.

x′0 = A, x0 =
B

ks
+ a

y′0 = B, y0 = −A
ks

+ b

→ A = x′0, B = y′0, a = x0 −
y′0
ks
, b = y0 +

x′0
ks

The transfer matrix for the motion through a longitudinal field is

Mlong =

[(
Ms

1 Ms
2

−Ms
2 Ms

1

)]
(55)

where ks = e
2pcBz and

Ms
1 =

[(
1 1

ks
sin ksz

0 cos ksz

)]
(56)

Ms
2 =

[(
0 1

ks
(cos ksz − 1)

0 − sin ksz

)]
(57)

16.2 Radial fringe

The fringe field of a solenoid is radial, of equal magnitude and opposite direction at each end. The
elements of the transfer matrix for the radial fringe are

(x|x0) = cosχ coshχ

(x|x′0) = 1√
2kr

(sinχ coshχ+ sinhχ cosχ)

(x|y0) = sinχ sinhχ

(x|y′0) = 1√
2kr

(sinχ coshχ− sinhχ cosχ)

(y|x0) = −(x|y0)

(y|x′0) = −(x|y′0)

(y|y0) = cosχ coshχ

(y|y′0) = 1√
2kr

(sinχ coshχ+ cosχ sinhχ) (58)
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where χ =
√

kr
2 a, kr = 1

2a
e
pcBz, and a is the length (along z) of the pole tips, that is, the effective

length of the radial field. [(x′|x0), (x′|x′0), etc. are obtained by differentiating (x|x0), (x|x′0), etc.
with respect to z.] In the limit of a thin radial fringe a→ z → 0 and krz = ksz

2a →
ks
2 , the transfer

matrix becomes

Mfringe =

[(
I Ks

−Ks I

)]
, where Ks =

[(
0 0
ks
2 0

)]
(59)

16.3 Symplecticity of solenoid maps

Eqs.(55), (58) are not symplectic, but the solenoid matrix Msol = MfringeMlongM
−1
fringe is symplectic.

See Eq.(??), Sec.??.

Solenoid lens Msol can also be written as a combination of rotations of an angle θ = ksl/4 and
a thick lens that focuses in both planes with focusing strength k = (ks/2)2, where ks = e

pcBz and l
is the solenoid length,

Msol = R
(
ks
4 l
)
F
(
k2s
4 , l
)

R
(
ks
4 l
)

(60)

F =

[(
Kf (k, l) 0

0 Kf (k, l)

)]
Kf is as in Eq.(48).

17 Superimposed solenoid and quadrupole fields

The matrices MQL and MQR are given for superimposed quadrupole and longitudinal fields and
for superimposed quadrupole and radial fields. The elements of MQL are

(x|x0) = − 1
fkq

(g+θ2− cos θ+z − g−θ2+ cosh θ−z)

(x|x′0) = 1
fkq

(−g+θ− sin θ+z + g−θ+ sinh θ−z)

(x|y0) =
kqks
f |kq| (−θ− sin θ+z + θ+ sinh θ−z)

(x|y′0) = ks
f (cos θ+z − cosh θ−z)

(y|x0) = (x|y0)

(y|x′0) = −(x|y′0)

(y|y0) = 1
f (g− cos θ+z − g+ cosh θ−z)

(y|y′0) = 1
fkq

(g−θ+ sin θ+z + g+θ− sinh θ−z) (61)

The focusing strength of the quadrupole is kq, ks = e
pcBz, f =

√
k4
s + 4k2

q , θ± = |
√

1
2(k2

s ± f)|, and

g± = kq − 1
2(k2

s ± f). Elements (x′|x0), (x′|x′0), etc. are obtained by differentiating (x|x0), (x|x′0),
etc. with respect to z.
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If k2
q > k2

r (where kr = ks/(2a)), elements of MQR are

(x|x0) = 1
h (g+ cosφz − g− coshφz)

(x|x′0) = 2φ
h2 (g+ sinφz − g− sinhφz)

(x|y0) = kr
h (coshφz − cosφz)

(x|y′0) = 2krφ
h2 (sinhφz − sinφz)

(y|x0) = −(x|y0)

(y|x′0) = −(x|y′0)

(y|y0) = 1
h (g+ coshφz − g− cosφz)

(y|y′0) = 2φ
h2 (g+ sinhφz − g− sinφz) (62)

If k2
r > k2

q , then

(x|x0) = 2
h (φ2 cos ζ cosh ζ + kq sin ζ sinh ζ)

(x|x′0) = 2α
hφ2 (−g− sin ζ cosh ζ + g+ sinh ζ cos ζ)

(x|y0) = 2kr
h (sin ζ sinh ζ)

(x|y′0) = −2krα
hφ2 (cos ζ sinh ζ − sin ζ cosh ζ)

(y|x0) = −(x|y0)

(y|x′0) = −(x|y′0)

(y|y0) = 2
h (φ2 cos ζ cosh ζ − kq sin ζ sinh ζ)

(y|y′0) = 2α
hφ2 (g+ cosh ζ sin ζ − g− sinh ζ cos ζ) (63)

where φ = |k2
q − k2

r |
1
4 , h = 2φ2, g± = ±φ2 − kq, α = φ/

√
2 and ζ = αz. Again (x′|x0), (x′|x′0), etc.

are obtained by differentiating (x′|x0), (x′|x′0), etc. with respect to z. Matrices MQL and MQR are
not symplectic, but the combination Mthin

QR MQL(Mthin
QR )−1 is symplectic in the limit of zero length

fringe. (Mthin
QR is MQR in the limit of zero length.) See Eq.(59).

18 Dipole

Sextupoles When there is a vertical closed orbit y0 at a sextupole, the sextupole behaves as a
skew quad with strength k = 2eB0

pcr20
, where B0 and r0 are the field and the radius at the pole tip.

The sensitivity of the luminosity in e+e− colliders to the details of the vertical orbit is related to
this property.

19 Cyclotron Equations of Motion

In cylindrical coordinates

F = m
d2r

dt2

dr

dt
=

d

dt
rr̂ = ṙr̂ + r ˙̂r = ṙr̂ + rθ̂θ̇

d2r

dt2
= r̈r̂ + ṙ ˙̂r + ṙθ̂θ̇ + r

˙̂
θθ̇ + rθ̂θ̈

= r̈r̂ + ṙθ̂θ̇ + ṙθ̂θ̇ − rr̂θ̇2 + rθ̂θ̈

= r̈r̂ + 2ṙθ̂θ̇ − rr̂θ̇2 + rθ̂θ̈
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where we used ˙̂r = θ̇θ̂ and
˙̂
θ = −r̂θ̇.

The Lorentz force is
F = q (v ×B + E)

In a cyclotron with uniform vertical magnetic field and electrostatic focusing

Fr = −qvsB + q
∂Ex
∂r

(r − r0)

where 1
r0

= qB
mvs

, and vs is the velocity in the azimuthal direction. The radial force

Fr = −qvsB + q
∂Er
∂r

(r − r0) = m(r̈ − rθ̇2) (64)

Let r = r0 + x and Equation 64 becomes

ẍ− rθ̇2 =
1

m
(−qvB + q

∂Er
∂r

x)

ẍ =
1

m
(−qvsB + q

∂Er
∂r

x) + r
(vs
r

)2

ẍ =
1

m
(−qvsB + q

∂Er
∂r

x) +
v2
s

x+ r0

ẍ ∼ −v
2
s

r0
+

q

m

∂Er
∂r

x+
v2
s

r0
(1− x

r0
)

ẍ ∼ −(
v2
s

r2
0

− q

m

∂Er
∂r

)x

→ ω2
x = ω2(1− n)

Qx =
ωx
ω

=
√

1− n

where ω = qvsB
mr0

and

n =

(
r0

vs

)2 q

m

∂Er
∂r

=
r0

vsB

∂Er
∂r

.

The vertical force

Fz = q
∂Ez
∂z

z = mz̈

→ z̈ − q

m

∂Ez
∂z

z = 0

→ ω2
z = − q

m

∂Ez
∂z

z

Since ∇ ·E = 0, ∂Ez
∂z = −∂Er

∂r and

ω2
z =

q

m

∂Er
∂r

=

(
vs
r0

)2

n = ω2n

→ Qz =
ωz
ω

=
√
n
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