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1 Twiss Parameters

Consider propagation of a particle trajectory through a beam line. The phase space 2-vector is

X = (x,pg/p) ~

(x,2).

x and 2’ are offset and angle with respect to some reference orbit, where in the small angle approx-
imation p,/p ~ 2/. The Jacobian of the mapping from x* to x/, is
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The Jacobian M for a Hamiltonian system is symplectic. In a two dimensional phase space a
symplectic matrix has unit determinant. If the system is linear, then

x! = Mfixi

1.1 Scalar invariant

Define the scalar

s =x' Ax



Then define A, so that
_ n({7 & ry 2 ’ 2
s=(z ) (a 5) (ac’) = vz’ + 2axx’ + fx

A can be any 4 parameters that we like. No loss of generality by setting A = A” since we only
need three numbers to define the most general scalar combination of z and 2’. «,,~ are the
twiss parameters. Now let’s assume linearity and propagate x; — X, with the help of M. Then
X, = Mxp and

s=xi MT (M) T A,M T Mx, = xI(MT) 1 A,M %, = xT Acx.
The matrix s is invariant as long as

Ao = M)y a,m1 (1)

Ye el T\—1 (7% -1
<ae ﬁe>_(M) <Oéb Bb)M

We propagate twiss parameters using the transfer matrix. Evidently, once the twiss parameters are
selected at one point in the beam line, they are defined everywhere by the mapping that propagates
the phase space coordinates. Another thing, from Equation 1 we see that |A.| = |Ap|. The
determinant of the twiss matrix is invariant. We set it to unity for convenience. Then 73 —a? = 1.
It should be clear that except for the unit determinant requirement, the twiss parameters («, 3,7)
are totally unconstrained. We assign them whatever values we like at one location along the beam
line and they are determined everywhere else.

The distribution of particles can be characterized in terms of the twiss parameters. The twiss
parameters establish how the phase space coordinates are correlated, how x and z’ are related.
Consider the matrix of second moments. (The average of the first moments is zero).

== (i &)

xT = (;’) (x o)

and the distribution is propagated along the beam line according to

The matrix is constructed as

x.x\ = Mxyx] MT

Then
(xxt) = (Mxpxi MT) = M (xpx} YMT

(i 65), (i )

which looks almost like the rule for propagating the twiss matrix A. W found that

or

Ag = (MDY tA,ML

Then
A7t =MA T MT



and the matrix A ! transforms the same as the ¥ matrix. The elements of the two matrices are
clearly related. In particular

wr=e(l 7)) (6 )

where € remains to be determined.
|A_1| =X — e = (xz)(z'2") — <£L‘IL‘/>2

Since

we have that ) ( ,)2
o o
/3 = T Y=

€ €

The twiss parameters are determined by the distribution of the phase space coordinates of the
trajectories.

2 Computing transfer matrix with tracking

Sometimes it is difficult to construct the transfer matrix from first principles. The matrix conveys
the focusing effect of the element but to build the matrix we essentially need to know all the
gradients etc. Alternatively we can determine the Jacobian directly by particle tracking. Remember
that the transfer matrix is the Jacobian of the map

Bx{ Bz{

oxy  0xl
M =

8x£ crkcg

ox} ox

The strategy is essentially to compute the derivatives numerically. If we know the reference trajec-
tory (uniquely defined in a circular machine, but not so straightforward in a transfer line like the
entrance through the backlog iron and into the inflector), we can calculate trajectories displaced
by Axz and Az’ from the reference and build M. In principle we need only three non degenerate
trajectories to determine the 2X2 matrix for horizontal or vertical motion as well as the reference.
Write

Mi%f(xin _Xref) = Xf = Xpef
M Xin — (Mg — DXpep = Xy
M ixin —X0 = Xf (2)

Next construct

/
ma1 Ma2 X

mi1 mi2 X
M,; X
N — < ’L—)f 0> —
0 0 1

and Equation 2 becomes



The goal remember is to compute M;_,; and x,.r. Choose three distinct values for x;,, namely
x! ,i=1,2,3, track each to x} and we get

in>
N KN (<
-1 -1 -1 -1 -1 -1

1 2 3 -1
N = Xf Xf Xf len xz2n X?n
-1 -1 -1 -1 -1 -1

Extract M and X,y from N as per above. The strategy is readily extended to the full 6 dimensional
phase space where

Finally

8]

&\

<

X —

~

n <

o

where 6 = AE/E. So to determine the evolution of the phase space (that is the twiss parameters)
through the iron and inflector into the ring we simply compute 7 trajectories. We can in principle
use the same 7 trajectories to determine the transfer matrix between any two points along the
reference orbit.

3 Full Turn Map

Consider the full turn map M in a closed ring. The stability of the lattice is indicated by multiturn
behavior. The initial phase space coordinates x;,, are mapped after n-turns to

n
Xout = M Xin

3.1 Eigenvalues

It is easy to determine stability if we work in an eigen-basis. The eignenvalues of the 2X2 determi-

nant 1 matrix M are
Ay = eTi®

where cos ¢ = %TrM and sin¢g = 4/1 — %TrM.

In view of the constraint on the trace, the full turn matrix M can be written as

M:<cos¢+:c Y )

z cos¢p —x

M| =cos?p —x? —yz=1— —z% — yz =sin’ ¢
Next define
z=asing, y=fsing, z=—ysing, a® — fy=—1
and the most general unit determinant matrix is

(cosﬁ + asind Bsinf >
M = . .
—~ysin 6 cosf — asinf



For the time being, a, 8, and  are arbitrary real numbers. The relationship with the twiss param-
eters described above remains to be determined. The normalized eigenvectors are

Vi:\/il j:\'/B
T+B8\F

Propagation of the phase space vector through n turns is gives

vlii = M"vy = eimevi.

The linear lattice (as represented by the Jacobian of the map M) is stable if  is real (|TrM| < 1).

3.2 Decomposition

The similarity transformation to the eigenbasis is

_ e? 0
U'MU=A= ( w)

0 e
where
U=viv =N (“B _“B>
VB VB
It is convenient to work in a real basis. We note that
co§0 sin 6 CKAK
—sinf cos6
where ‘
K _ €Z7T/4 7/ 1
V2 v —1
Then ‘
KW MUK = KAK = (€0 50) _ pig)
—sinf cosf
Next define
0
G=UK = <\/§ 1)
VB VB
where the constant N is chosen so that det G = 1. In summary

G™IMG = R(9)

In an earlier section we defined the parameters a, 5,7 in terms of scalar invariant. Are the two
definitions consistent? The twiss parameters transform according to

MTAM = A’

_ (7 «
=2 5)
If the definitions are consistent then the 5, a,7y of G are the same as the «, 3,7y that are the
components of A and

MTAM = (GRG"TAGRG™ = (G"Y)"R" (GT AG) RG™!
But GTAG = I, and we have that

where

A'=GRTRGT = A

as claimed.



3.3 Propagation of Twiss Parameters

Now suppose that the full turn matrix at point 1 is written as a product of the matrices of each
individual element (quadrupole, drift, dipole, etc.) in the ring.

M, = T12T23 A

The full turn matrix at point 2 is
My =To3T3y ... T12

and
My = T M Ty

The twiss parameters at 2 are given by Ms. In particular,

1+ a3
Ba

and the same for point 1. We would like to write 715 in terms of the twiss parameters at 1 and 2.
We have that

1 1
cosf = §TrM, Qg = §(m11 —mag)/siné, By =mia/sinb, yo =

My =TL'MTis = GoR(0)G;' = T'GIRGT Tho
— R(0) = (Gy'T1,'G1) R (G ' T12G>)
R = W'RW

For an orthogonal matrix R
[RW]=0 «— W l=wT

If W is orthogonal we can write

_ [ cos¢ sing
W= R<¢)_<—sinq§ cosq§>

- cos¢ sing
~ \—sing coso

and then
Tis = GyR(¢)Gy! (3)
_ \QE (1) < cos¢  sin gb) ﬁ 0
V5 vm) \—sing cos¢ —% VB1
(i e
VB2 VB2 ml cos ¢/B1
B 2 (cos ¢ — a1 sin ) VBB sin ¢ W
. COS\%JEZMH) e % (a2 8in ¢ + cos ¢)
Therefore



x(s) = ( @(COS ¢s0 — a1 8in %0) Zo + (\/msin ¢80) 0 6)

B
- S - + 1) si S .
(s) ((a(S) ) cos ¢ O)B(S)(Z(S)m ) sin ¢ 0> zo + ﬁﬂ(;)(a(s) sin ¢so + cos ¢50) 7Y 7)
1
where ¢4 is some phase advance from point 0 to s. How are o and (8 related? How is ¢4 defined?

Since ' = % we have that

2'(s) = Z—i = [; ﬁ% (\/Z(COS dso — v sin gbso) + Bﬁ(f)(_ sin ¢so — avy €os Pso) P | To
B(s)

L) sin ¢s0 + || —— cos ¢s0¢/so] 0 (8)

+

2B B1

3.4 Connection to Differential Equation

Comparing Equations 7 and 8 we see that

1, 1dBs) o dg 1
als) =50 =5 ds,¢(5)—%—5
The phase advance
p 5 ds
O = —_—
’ o B(s)
3.4.1 Propagation of S-function
As noted in an earlier section there is an invariant
S =n~a? 4 20xx’ + x> =5 X 9)

where

— f}/ —
B=lal|, X=1 z2
B

Consider propagation from 1 to 2 by matrix M.

/
To = Mmp1x1 + miexy
/ /
Ty = M21T1 + M22Ty
Then
Xo = MX,y
and ) )
M = | miimar  miamaor + miimez  Mmiaman (10)
2 2



We would like to determine the corresponding matrix A that propagates the 3-vector 5 Since
,82 - X9 = Bl - X7 = 51 . M_lMX1 = /BIM_]'XQ, it follows that

B = (MNTH

N = (M HT (11)

N is constructed by replacing the elements of M with those of its inverse in Equation 10 and
transposing, yielding

2 2
mao —Mma2Mma1 masq

N = | —2mgamia miimaoe + migmar  —2marma (12)
2 2
mia —mia2mii mn

Consider for example propagation of the twiss parameters through a field free region. The
elements of M in a field free region of length s are

Then
1 0 0
1 0
S —s 1
At a waist (minimum S, = 0), go(vo,ao,ﬁg) = (1/p0,0, 5p). At a distance s from the waist,
B(s) = NBo = (1/Bo, —2s/Bo. Bo + 5°/ Bo)-

We find that 8 increases quadratically with distance from the minimum.
Using 11, we write A in terms of twiss parameters 5y and ((s) and the phase advance A¢ =
@(s) — ¢o. Suppose that 8 at 0 is perturbed by a mismatch or quad error, so that

3 0 + Ao 0 =032
fo — o = a
Bo+ABo Bo+ABo
Aby = 0
Afo
In view of Equations 11 and 12
A
AB(s) = it 4 A
A
— —(B)sin® 860 =2 + B os 20 — ansin A0y
0 0
= pB(s) Aﬂﬁo (cos® Ag — sin® Ap) — 2aq cos A¢sin Ag)
0
B(s)

= AfBy—>(cos2A¢ — agsin 2A¢)
Bo

The  error propagates as the square of the phase advance



3.5 Closed Ring

In a closed ring, where s = C, and 3(C) = f3y, the change in  on the n'" turn is
AB(n) = ABp(cos 2 — oy sin 2p)

where u = 27Q and @ is the tune.

3.5.1 Quadrupole error

Suppose that there is a focusing error at s, with focal length f . Then
M — MQ

where the transfer matrix for a thin lens is

9= <—11/f (1)>

. 1 . .
Mo ( cosu—&—asm,u—?ﬁsmu Bsin )

Then

—ysin pu + %(COS,& —asinpg) cosp — asinp
~ [cosp + o siny B sin !
N —~'sin y/ cos p' — o sin '

Then cos ¢/ = cos(pu + Ap) = %TrM = cosp — %?sinu It f> 3,

cos(p + Ap) :cosuA,usinu:cos,u?sin,u%A,u: 25f

4 Dispersion

The formalism developed so far describes a 2 dimensional phase space. It can be used to account
for motion independently in the horizontal, vertical or longitudinal direction. Now we consider
systems with coupling between transverse (horizontal) and longitudinal degrees of freedom. The
phase space vector

SERT A

X —

— P=Po
V2 Po

where in the small angle limit ' = p,/p and pg is the reference energy. The Jacobian of the
mapping from x* to x7/ is
ax;.”

As noted above, the Jacobian for a Hamiltonian system is symplectic. A matrix is symplectic if

TU'ST = S

10



where

nn
Il
S »
»n O

and
(0 -1
*=\1 o0

In a system with no coupling of horizontal and longitudinal motion

M, O
= (v »)
where M, and P, are 2 x 2 and |M,| = |P.| = 1.

4.1 Coupling of Longitudinal and Transverse Motion

A bending magnet couples changes in energy (p,) with a change in horizontal angle 2’ and position
x so that mjs and mgy are in general non zero. The symplectic condition then requires that pi;
and p1o are also finite and the Jacobian will have the form

0 mio

Mo 0 ma9

r= p p
11 P12
0 0 P

The dispersion is the dependence of transverse position and angle on energy offset ¢, that is

T
n 5

The dispersion is defined at every point s along the beamline or ring so that the horizontal position
can be written in terms of a combination of betatron and energy components.

x(s) = xp(s) + x5(s).

Suppose that at some location along the beam line there is zero betatron amplitude. Then x; =
x1,6 = 170 and from 14

X9 = Mmnd+ <m12> 1)

ma2
= 1My = Mmny +ma2 (15)
mi2
= =1y —M
<m22> M2 T

Note that in a beam line without RF accelerating cavities there is no mechanism to couple longitu-
dinal offset (z) and transverse position. Equation 14 is therefore a good representation of transport

in such a beam line.
—_— 0 mia
o 0 mo2

11

It is easy to show that if



then the symplectic condition implies that |M,| = 1. We learned all about the formalism for a unit
determinant matrix in a previous section and how to can express M, in terms of § and A¢. We

find
<m12> =ny — Tiamy (16)

ma2

where T72 given in Equation 4. The linear mapping from point 1 to point 2 can be written entirely
in terms of E, n at the end points and the betatron phase advance A¢io. We learned that the
dispersion function is propagated according to Equation 15. If m; and n, are the closed ring
dispersion at 1 and 2, then dispersion errors, perhaps due to some mismatch, propagate according
to

Any, = MAn,

%(COS ¢ — a1 sin @) VP21 sin ¢ A
= - T
(a2=a1) COS\%Q(;QMH) b % (g sin ¢ + cos ¢)
4.2 Closed Ring
In a closed ring with circumference C, n(s) = n(s+ C) and full turn matrix
M m
te <p P)
Equation 14 gives the closed ring dispersion
mi2
= Mn+
n = e (n2)
mi2
- I -M =
( )n <m22>
. — (J—M)! m12>
no= (o
5 Symplectic Transformation
Consider the canonical transformation from generalized coordinates q, p to Q, P where q = (¢1, 42, - - ., qn)
and p = (p1,p2,...,pN). We aim to show that the Jacobian matrix
9(q,p)

is symplectic. We recall that the time evolution operator, (namely the Hamiltonian), has the form of

a generator of canonical transformations. Therefore, the transformation of phase space coordinates

from point 17 along a beam line to another point £ is canonical and the transfer matrix is symplectic.
Suppose that the phase space vectors at two distinct points along the beam line are

T X

Dz P,
=¥ | and €=V
Py

12



and OF
K (€)= HO + 5

where H and K are the Hamiltonian in terms of the coordinates 7 and K in terms of €. Fis the
generator of the transformation. The generalized Hamilton’s equations are

0O 1 0 O
Ol -1 0 0 O
i = Sij=— where S=[0 0 0 1
Onj 0 0 -1 0
Similarly
: 0K o . OF
&= Sijaigj = Sija?j <H(n) + 8t> (17)
We could also write
& = o . | 9
o anjn] ot
- > + 5 (18)

on; T om, ot
Combining Equations 17 and 18

0 _OF ot . OH 96
(g - el -4
T 0¢; ( )+ ) on; Sjkank T

Si ot

g, (9H  90F 0% g OH | 0%
TN\og; T ot og; on; *Fom, ot

OH 877k 0 OF 8& OH 852
il m—=—+ =75 | = Sik— + = 19
J (ank T 8€j) on; " om, + ot (19)
(20)
If the generating function F' is type 2, then g—gj = Sj1&k and Equation 19 becomes
OH Oy, o¢ . OH 9§
PP (tutd LA S — G 4 25t
J (am o, J’“&“> on; o " o
OH On 0&; OH
STk g T
Oy O, an; 7" oy
since Siijk = _5ik- Then
o 9§
P pei L N 21
J a§J 577j ik ( )

We recognize gg; = M;; as the Jacobian of the mapping from 7 to { and % = M~ as the inverse.

Then

B _1\T
SiMyt = Si(M™)j, = MiySjn = MijSj
S(M~H'=MS
~ S = MSMT

which is the definition of a symplectic matrix. The Jacobian of a canonical transformation is a
symplectic matrix.

13



6 Coupling

Let’s begin with transverse coupling. The Jacobian is a 4X4 symplectic matrix M such that
MSMT = S. A 4X4 symplectic matrix
A B
v-( o)

|A| 4+ |B| = |C| + |D| = 1(show).

has the property that

Diagonalizing gives us M = UEU~! where E is a 4X4 diagonal symplectic matrix (show that the
diagnonal matriz is symplectic). Then if

M0 0 0
o X 0 0
E=10 0 x o
0 0 0 X\

it follows that
A = A3 =1

We know that
where w; is the eigenvector with eigenvalue A;. Then the phase space evolves after n turns according
to
M"™i; = N\,
If the magnitude of any of the eigenvalues (J;) is greater (or less) than 1, then the motion grows

exponentially. The eigenvalues for the full turn coupled matrix for a stable system with dimension
2N X2N are unimodular, complex conjugate pairs.

7 Normal Mode Decomposition of 2N x 2N symplectic matrices

Normal mode decomposition of a 4X4 symplectic matrix is a standard technique for analyzing
transverse coupling in a storage ring. We generalize the decomposition to any 2NX2N symplectic
matrix T and derive the transformation W from lab coordinates to normal mode coordinates U.
That is

T=wuw! (22)

where U is block diagonal and real and we construct the real matrix W with the form

wnwl Ci O
C't vl Cs

W = 0/2 0/3 73[ L. (23)

I is the 2x2 identity, and Ci,C9,C] etc are 2x2. (If for example, n = 2, then 73 = 72 and
C'=-Ch).

14



7.1 Normal Modes

The block diagonal matrix
A 0
U = 0 B

can be further decomposed as

U = vzy™! (24)
where
R(6,) 0
Z(01,05,....0,)=| 0 R(6:) (25)
with
cosf sinf
R(0) = (— sinf cos 6) (26)
and
Gy 0 ...
y=|0 G2 ... |, (27)

vBi 0
and Gz = ( a? 1 )
VB VBi
Since standard techniques exist for diagonalizing square matrices and identifying eigenvalues and

eigenvectors, we begin by doing just that.
T=VDV (28)

where T is the 2N x 2N symplectic matrix, D is the diagonal matrix of eigenvalues, and V is the
matrix constructed from the eigenvectors. Since T is symplectic, the eigenvalues and eigenvectors,
as noted above, appear as unimodular, complex conjugate pairs, A;, A} and ¥; and ¢;. Then D can
be written in the form

d6r) 0 0
0 d#) 0 ... it
D=1 , (02) don | where d(0):(0 29). (29)

e

The n columns of the matrix V' are the n eigenvectors v;. The eigenvectors are not unique, but
may be multiplied by an arbitrary complex number. That is, ¥; — p;e’®¥; and Ul — pie_iqbiff;‘ L If
Vo =1 17{ Ug 17; ..Uy, 777*1, then

-,

V(ﬁ? ¢) = %D(pl?p% . 'pn7¢17¢27 s >¢n)

p1d(¢é1) 0 0
0 p2d(¢2) 0
=W 0 0 p3d(¢3)

-,

Note that V (g, ¢) effects the transformation of Equation 28 for any real numbers p; and ¢;.

15



7.2 Real Basis

We transform from a complex to a real basis with K where the real matrix Z (Equation 25) is
related to the complex matrix D (Equation 29) by the similarity transformation

Z(02,09,05) = KD(01,04,05) K (30)
where
k 0 0
K=|o0 & o (31)
0 0 k
and )
1 1
= (i L) (32)

7.3 W-matrix
To construct W and U from V and D, we use Equations 22, 24 and 30 to write

T=wWUWw™! vDy~!

Now since the columns of Vj are complex conjugate pairs, VoK ! is real. The Z matrices are
similarly constructed to be real and therefore V' is real.
So far we have

wuw= = vizv'!
wWYZ@)y ' = v'z@v' !
-V =WY
where we have used Equation 24.

Next we determine the parameters p and qg We choose p' so that V' will be symplectic. In
particular, if we write V’ in terms of the 2X2 matrices V;J then

Vvl/l ‘/1/2
V, _ V2/1 Vv2/2
Vor Voi -2\ [mR(¢1) O
— | Vor Vo3 ... 0 p2R(p2)

p1VorR(1) p2VoiR(62)
— | mVoiR(¢1) p2VodR(¢2)

16



Symplecticity constrains the sums of determinants of Vi’j so that

n

= > W

=1

= > Vol R(¢))]
=1

n .
= > Al
=1

— pPj=

1
i Vo]

In order to determine the order of the conjugate columns of V’, and finally the paramters gg we

expand
1% WY (G)
vitoveE wl ¢ ..\ (G 0
v’ |75 7GRN I G0 0 Gy
piVoiR(¢1)  p2VoiR(¢2) 1G1 CGy
p1VosR(¢1)  p2VosR(¢2) C'G1 72Go

Then the diagonal blocks are required to have the form

V' = 3G

)

piVoiR(¢:i) = i (f 1)
VBi  VBi

A real solution requires that |V’ §| > 0. We are free to choose the order of the conjugate columns of
V' to ensure that this is true. (Note that if we reverse the order of the columns V"7 — V"7 then
the sign of the determinant of the 2 X 2 blocks is reversed.) If we reverse the order of eigenvectors
in V'’ then we also reverse the order of eigenvalues in D(g) or equivalently 6; — 27 — 6;. To find qz_g
we proceed with our expansion of Vo and R(¢;) and write

” <voiﬁ vo?g)(cosqbi sin<z>i>> _ (VB0
' V01221 %1212 —sing; cos@; ‘ \7& ;

We choose ¢; so that Gb, = 0, or

S

Vol

Voia

The ambiguity in ¢;, (tan ¢; = tan(2m — ¢;)) is resolved with the condition that Giy = Vol cos ¢; —
‘/07112 sin gb > 0.

tan ¢; =

17



7.4 Summary
1. Find eigenvectors and eigenvalues
2. Transform eigenvectors to a real basis

3. Construct V. The columns of V' are the eigenvectors. The eigenvectors appear as complex
conjugate pairs since T is symplectic.

4. Choose the normalization for each pair of eigenvectors so that W will be symplectic. In
particular if
caVig eVip
V=]V c2Vas

where V; ; are 2X2 matrices, and ¢; = pe'® then choose p; so that

Pt (Vial + [Vaal + [Vaa| +...) =1

5. Adjust the order of complex conjugate pairs so that |V; ;| > 0. That is, if |V ;| < 0, than swap
the order of the columns.

6. Choose the phases ¢; so that

Gi = Vi;R0)

has the form
_ (JB g)
VB VB

8 Interpretation of the Coupling Matrix

Consider two dimensional coupling, that is horizontal and vertical, or horizontal and longitudinal.
The full turn matrix 7" is written in terms of normal modes

T=vuv!
M m
=% W)

7= (5 5)

As before (section on propagating twiss parameters), we can write

where

and

A=G,'R(ua)Ga, B =Gy 'R(u)G

a O i
o (F 8) - ()
e T —siny  cosp

where

18



Now

where
G, 0
o= (T )
The real phase space vector & is related to the normalized normal mode vector i according to
- - (M C —1-
r=VG _<CT ’YI>G U

where for a 4X4 matrix, V has the form defined in Equation 7, and C' is 2X2. Then after propagation
through n turns, we have
o = T =1"¢" Wi = (VG RGVHr(vGahHa
= VG 'R(np,)@® = G(GYWG Y R(np,)d® = GVa"
where B
V=GVvG!

is the normalized coupling matrix.
In the limit of vanishing coupling between horizontal and vertical planes, the normal mode
emittances €, and €, reduce to €, €, as

€ limg 0 €z

€p hmb_)o €y

In electron storage rings typically €, < €4. So let’s suppose that €, = 0. Then in general in the
normal mode coordinates

Ugq
N T
““1o
0

The normal mode coordinates propagate from one turn to the next as a rotation.

u? ul cos(np) + u, sin(np)

an <R(nua) 0 > ul, | | —ulsin(nu) + ul, cos(np)
N 0 R(nuyp) 0| 0
0 0

It is convenient to define our starting point so that ug, =0.
Now the laboratory frame phase space coordinates on turn n are related to the normal mode
coordinates according to

™ = GVR

cos(nu) v cos(npg)
_ | osin(rp) | o ) v sinnpg 0
= GV 0 ug =G —C cos(njg) —Cr sin(ng) Ya
0 Co1 cos(npg) + Chisin(npg)
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Now we have parameteric equations for the real space trajectory

" = \/EVCOS(nMa)ug
v = V/Bi(~Carcos(nua) + Casin(npa))ul

tand = (B/By) "> Coply
12 -
w=(Bp/By " Crofy

9 Equations of motion

For a relativistic charged particle in a static magnetic field
dp =
— =eUx B
dt

The field is static, so energy does not change and ym is independent of time and

dp dv =
dit) = m’yd—::eﬁxB

et x B

ym

— U= (33)

Now we have to compute R = ¥ in the curvilinear coordinate system. We define p as the curvature.
The coordinates of the particle at any position along the path s are R = (p + =) + y3.

R = a’:i—kr%—kg)g)

= @i+ (r0)s + i

where 7 = §3. The second derivative
R = ii+ 7054 r6s+ rfs+ iy
= &3 +705 + 15 — r0%% + iy
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where § = —20. We know that ds = pdf = p-=dt. So we can write that = % and

ds _ %
dt '07‘
and

2

B = (i- )2+ (6 +rd)s+ g

Next change dependent variable from ¢ to s.

d
dt
d2
at?

Then

=i
1

Vs\2 =
s R//
(+7)

2
s

9 2
() e () s

r T

Comparison with equation 33 gives

2
y T e r
——~ = " (v,B.—v,B
oot = s s ()
2
y e r
_ L o B (=
P’ ymus y<p>
2
" e r r
~ = B (= L
! ymus y<p> i
1 dB dB
"~ —— | B,(0 v =y
v Bp( v(0) +y dy dz
2
"~ —(—1—1:K> <T> —i—%
p p p
o~ —<1—|—xK> <x+p>2+x+p
p p p?
"~ —(;4—3:[()
2
T qfim(vSB v, B) <vrp>
S
2
" eB, x
~ 1+ =
s (14)
" e dB, dB,
~ 0 1
Y ’ym’us( #(0) + dx * dy I
1 dB
2 ~ T B 0 X
y Bp( 2(0) i y)
y// ~ Ky

r

dsd _po.d
dtds r ds
( vs)?dz
- ds?
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where we have only kept first order terms in = and y and we assume that B, (0) = 0,and B,(0)/Bp =
1/p.
10 Solution to equation of motion

If K(s) is periodic with period C, such that K(s) = K(C + s) then the general solution to the
equations of motion is

x = Aw(s) cos[y(s) + I]

with w(s) periodic in C. Substitution into the equation of motion
" =—-Kzx (34)
gives

0 = % (w' cos(yp + 8) — wy' sin(¢ + 8)) + Kw cos(y + 0)
= W cos(ip 4 6) — 2wy sin(vp + §) — w(¥)')% cos(¢p + ) — wip” sin(h + 6) + Kw cos(v + )

If that last is true for any phase ¢ then
0 = 2wy’ + wy” (35)
Define 8 = w? and

0 = B8y + 52 (v)

gy
BTy
By + B =0
1d , 1d
- Jﬁ/’—_ggﬁ
dy’ __dp
T W TR

Also

0 = w' —w)?+Kuw

1 1

0 = (\/B)”——ﬁgm—i—f(ﬁi
_1d B 1 1
0= 3% TR

1 6” 1,3'2 1 )

22



11 Floquet transformation

_ _ 1 ds _ oz
Let ¢ - zﬂ/y7 Where V= o f 6(5) and 5 = 6% Then

z(s) = Aﬂ(s)% cos(¥(s) + 0)

—>6—l = Acos(vg+9)
— ¢ = Acos(vp+9)

d§ d¢ ds 5( x 1 mﬂ’)

dp — dsdp C\B2 232

/ 1 ap
= v <x B2 — 251/2>

_ g (g a8 18 1ap” 1ap”
B uﬁ(:nﬁ2+251/2 2312 2p51/2 7 433/2

1 1248
_ 2 "p3/2 L _allpl/2 |+
= v (m 15} 2:L“ﬁ B+ 451/2)

12
S <$1/ﬁ3/2 o %x (,3//51/2 _ ;;/2>>

Substitution from above gives

d%¢ 2 <$//53/2 g <K53/2 B 1>>

d*¢
dg?

do? B2
d%¢ 9 T
@ = Vg

= ]/25

And if there are contributions to the equation of motion, for example from magnetic fields B(s)
that do not scale linearly with displacement, then refeq:eom becomes

B
o + K(s)x = — chﬁ()s) (36)

and 2 AB
d¢é + %€ = —1/2523%;’@ (37)
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12 Field errors

12.1 Linear Quadrupole Resonance

Suppose there is a thin quad error field k at ¢ = ¢g. Then Equation 37 becomes

2
TE L = BB 2e0(6 - d0)

d¢?
= —12B%k/¢ Z ei(né—go)

n=-—oo
In the limit where the error is small the perturbation expansion is

o0
= —Av?B%k cosvd Z e~ iP0eing
n=—00
(o)

— _ARB Z eid0 gi(ndtiveg) | i(ng—ive)

n=—oo

The system will respond at the frequency of the driving force, which is n¢ + v¢. Near resonance,
that is when (n £+ v) ~ v the solution is

A

2027/
¢ VB]CVQ:I:(n—V)Z

with resonance at v = n/2, when the tune v is half integer or integer.

12.2 Matrix Method

Recall the full turn map

M= cos [t + asin Bsin i
N —~ysin p COS L — avsin

Insert a thin quadrupole with focal length f and matrix representation

QZ(—bfg>

r_ - cos b+ asin Bsin p
M =QM = <_}(cosu+asinu)—vsinu —},Bsin,u—kcosu—ozsiny)

Then the perturbed full turn matrix is

The perturbed tune

cos y = % <QCOSM— ?sinu)

Stability requires that
|cos /| = | cos pu — ﬂsinu! <1

2f
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12.3 Sexupole resonance

2
A single sextupole with field proportional to ko = %Bip scales quadratically with horizontal
displacment leads to the equation of motion

ze 205, 2
W+Vf = —Uv B2ka£"0(¢ — ¢o)
— —1/2/831{3152 Z ei(nd)f(bo)
~ —AQI/Q,ng/COSQ vo Z ei(né—do)

n=—oo
[e.9]

~ _A22 ng/ Z o—i%0 < ci(nd+26v) 4 i(ng—26v) | ei(nd)))

n=—oo

The system responds resonantly when v? — (£2v +n)2 =0or v2 £n? =0, or v = %n, v = %n, or

vV =n.

13 Hamiltonian dynamics

Hamilton’s equations

_ 0H
P= g
. 0H
T

13.1 Point transformation

Consider the generating function

F=F3p,Q,t) =7 (pT + x& + yy)

Then
_ R, 0R
So
0 o r. 0r Ty . z
Ps - _%F?)—_p p(l—i_;)ai p'(1+>5— ps<1+ >
0
P, = _%—_px
0
P, = _@__py
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The new hamiltonian is just the original expressed in the new coordinates. The original hamiltonian
is

H= \/(ﬁ— eA)2ch + m2ct + eV

The new Hamiltonian (z — s) is

N

1
H' =c|———(ps — eAs)? + (o — e42)* + (py — eAy)* + m*c®| +eV

(1+3)

13.2 Poincare invariants

Consider a 2-dimensional region of phase space and define the area of any surface in the space

J1 = Z/S/dpid%'

is invariant with respect to canonical transformations of the phase space variables ¢, p. That is

n=y /S [ dndai=Y" /S [ araa (38)

where P;, (); are related to p;, ¢; by a canonical transformation. Any point on the surface can be
identified by two coordinates w,v. Then on the surface p;(u,v), and g;(u,v). The area element
dp;dq; transforms to the area element dudv by the Jacobian determinant

9q; %
8(“:”) dq;  Op;
ov ov
so that o )
iy Pi
dq;dp; = ————=dud
haep 0(u,v) uaw

Then Equation 38 becomes

Jy = Z// ;;’ffdd Z// Q“l dv (40)

Since the surface is arbitrary, Equation 40 and the invariance of J is equivalent to the statement
that

94 94 0Qi  9Qi
ou ) ou ov

) =2 (41)
i Opi  Opi i or; opr;
ou ) ou v

where (¢,p) = (Q, P) is a canonical transformation. (u,v) can be anything. If we choose u — ¢;
and v — p;, then Equation 41 becomes

9¢i  Ogq; 0Qi 0Qi
dq;  Op; dq;  Op;
S T o SED I e
i |9pi  Opi i |9k OB i
8q j 8]) j Bq b ap j
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Now let’s suppose that g;, p; are the phase space coordinates of a particle at time ¢, and @;, P; the
coordinates at a later time t’. The two sets of coordinates are related by a canonical transformation.
Therefore, the elements of the Jacobian matrix relating (¢q,p) to (Q, P) satisfy the relationship of
Equation 42

There is one other invariance that we will need to demonstrate symplecticity of the Jacobian.
It turns out that Equation 38 can be generalized for a 4-dimensional surface, or a 6-dimensional
surface, etc. In particular the integral

Jo = Z / /S / / dpidgidprdgy, (43)

is invariant with respect to canonical transformations. Then as before we conclude that the Jacobian

determinant

ou, v, w, z)

is also invariant and that

0(Qi, Pi, Qk, Pr) _
0(qi» i ks P

(45)

14 Transfer Matrices

Consider a quadrupole magnet. The magnet is consists of 4 poles with alternating pole tip field. If
the magnet is very long, then far from the ends the field is purely transverse. Expand the vertical
component of the field in the horizontal plane.

OB
By:32+m5fwau (46)

By symmetry B;(y =0) =0,
Consider a magnet with 4 poles with alternating pole tip field. Place the center of each pole on
the diagonals. By symmetry
By(0) = By(0+7/2)=—By(0+7m)=—B,(0+37/2)
B.(0) = By(0+7/2)=—B.(0+1)=—B,(0+31/2)

In the two-dimensional limit, B, = 0.

0B 0B
V-B=0—» ——Y=-""2
~ oy Oz
0B 0B
VxB=0 2=t
% - y Ox
Then
0B
0B,
B, =
y@y +
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15 Quadrupole

The linear equations of motion for a magnet with quadrupole symmetry are

% = et x B = iﬁx B
ym

opos v B

ds ot Vmp

op' _

T:Uz = —p.B,

The total momentum is constant and

1 (pa 2 1 Dy 2
22 a2 _
Pz p Py =Dy ~P 2<p> 2(p>

U > B
2 2
Substituting into the above
1 1 2 1 2 e 1 2 1 2\ 3
=/ / / / /
(p— - T (p—Z2?_ B
fﬂym(p 57 —5Y") 'vm(p 58—y )BL
For small angles & < 1
10p =
1o, _ e 5,
p Os ym
l‘” = E§ X BL
T p
For the quadrupole
= E%x =Kz
p Ox
y// _ EaBm — _Ky
p 9y

where K = epa—iy and K has dimensions of L™2. The solutions to the equations of motion are

0.
z = AcosVKs+ BsinvKs
= (Ccosv—Ks+ DsinvV—Ks

If 2(s = 0) = 79 and /(s = 0) = ) then A = xg and B = z{,/VK and similary C' = yo and
D =vy[/ VK. If K > 0 the quadrupole is horizontally focusing and vertically defocusing and The
matrix for the transverse phase space becomes

cos vV Kl \/—%sin\/Kl 0 0
M- —VK sin VKI cos vV Kl 0 0 (47)
N 0 0 cosh VK1 %? sinh VK1

0 0 VK sinhvVKIl  coshVKI
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and

xo z(l)
zo | [ 2'()
Ml | = v
Yo y'()

15.1 Tilted quadrupoles

The 4 x 4 transfer matrix for a horizontally focusing quad with strength k¥ and length [ can be

written as ?77.
K 0
MQuad = I:( Of Kd):| (48)

where K 4 are appropriate 2 x 2 matrices. The matrix for a quad rotated by an angle 6 about the
z-axis is

Qrot = R_l(e)MquadR(‘g) (49)

Icosf Isiné
R(0) = K—Isin@ IcosG)} (50)

where

15.2 Skew quadrupoles
A skew quad is rotated by 6 = 45°,

1 Kf+Kd —Kf+Kd
skew — 5 1
Quken = 3 [(—Kf+Kd K/ + K, (51)

For a thin skew quad, [—0 and vk sin(Vkl) — %,
(1 K /0 0
o= |(x, 7)) == [(3 0) 2

16 Solenoids

16.1 Longitudinal fields

In the longitudinal field of a solenoid

10p -
Lopr, - e PLil (53)
p 0Os ym p
2 = ylEB — kg
p
Yy = —x/ng = —ks2' (54)
p

The coupled equations are solved by substituting one into the other

o — —k‘gxl
(/A 2 1
y = —kiy
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The solutions are

Substitution into 54 gives

—ks(Asinksl — Beoskgl) = kg(C coskgl+ Dsinksl)

Acoskgl + Bsin kgl

1

k—(—A sin ksl + Bcosksl) + a
C cos ksl + D sin kgl

1
k—(—C sin ksl + D cosksl) + b

S

—-A = —-D, B=C

The boundary conditions fix the constants.

B
1'6 = A x9=—+a
ks
A
y(,) = Ba y():_ki—i_b
S
y/
A = ap, B=yp, a=z—" b=yo+
S

The transfer matrix for the motion thr

ough a longitudinal field is

(™Mo
(G

where ks = ﬁBZ and

g
I

16.2 Radial fringe

1 é sin kg2
0 cosksz

0 kis(cos ksz — 1)
0 —sinksz

&0
ks

The fringe field of a solenoid is radial, of equal magnitude and opposite direction at each end. The

elements of the transfer matrix for the

radial fringe are

(z|xo) = cos x cosh x

(z|z() = le -(sin x cosh x + sinh x cos )
(xlyo) = sin y sinh

(zlyy) = \/217<Sin x cosh x — sinh x cos x)
(ylwo) = —(zlyo)

(ylzp) = —(x|y)

(ylyo) = cos x cosh x

(ylyp) = \/2lT,.(SinX cosh y + cos x sinh x)
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where y = \/%’”a, k. = iﬁB% and a is the length (along z) of the pole tips, that is, the effective

length of the radial field. [(z'|zo), (2'|x), etc. are obtained by differentiating (x|zo), (x|z(), etc.

with respect to z.] In the limit of a thin radial fringe a — z — 0 and k,z = ’“25; — %S, the transfer
matrix becomes

<[, )] <[4 9

16.3 Symplecticity of solenoid maps

Eqgs.(55), (58) are not symplectic, but the solenoid matrix My, = MgingeMiong M !

g (77, Sec.?? fringe is symplectic.
ee Eq.(77), Sec.??.

Solenoid lens M can also be written as a combination of rotations of an angle 6 = kyl/4 and
a thick lens that focuses in both planes with focusing strength k = (k4/2)?, where k; = »e Bz and |
is the solenoid length,

Mo = R(2)F (5.0) R (%) (60)

K/ is as in Eq.(48).

17 Superimposed solenoid and quadrupole fields

The matrices Mqr, and Mqgr are given for superimposed quadrupole and longitudinal fields and
for superimposed quadrupole and radial fields. The elements of Mgy, are

(x|zo) = —f—iq(ng cosfyz — g= 0% coshf_z)

(z|xy) = %@(_9+9— sinfyz + g 04 sinhf_z)

(z|yo) = ’;r:qj (—0_sinfyz+ 0, sinh6_z)

(z|lyy) = %(cos 01z — coshf_z)

(ylzo) = (2lyo)

(ylzgy) = —(x|yp)

(ylyo) = %(g_ cosf,z — gt coshf_2z)

(ylyo) = f%q(g’t%r sinfyz+ ¢gt6_sinh6_z) (61)

(k3 £ f)], and

1
2
9% = kg — 5(k2 £ f). Elements (2/|z¢), (2/|2(), etc. are obtained by differentiating (z|zo), (z|z),
etc. with respect to z.

The focusing strength of the quadrupole is k¢, ks = = B;, f = ki 4k2, 01 = |
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If k2 > k? (where k. = ky/(2a)), elements of Mgp are

(zlzo) = F(gT cos gz — g~ cosh ¢z)

(z|zh) = 2%(g" singz — g~ sinh ¢2)

(xlyo) = ’%(cosh ¢z — cos ¢z)

(z|lyy) = 21;;2(# (sinh ¢z — sin ¢2)

(ylwo) = —(z|yo)

(ylzo) = —(yp)

(ylyo) = +(gT coshpz — g~ cos ¢z)

(ylyy) = 2%5(g" sinh oz — g~ sin ¢2) (62)

If k2 > k2, then

(zlzg) = 2(¢*cos( cosh( + kgsin(sinh ()

(x|xg) = ,37?2(79* sin ¢ cosh ¢ + g7 sinh ¢ cos ()

(2lyo) = 2 (sin ¢ sinh €)

(z|yy) = *}%gga (cos ¢ sinh ¢ — sin ¢ cosh ()

(ylzo) = —(zlyo)

(ylao) = —(«lyo)

(ylyo) = 2(¢? cos ( cosh ¢ — kg sin ¢ sinh ()

(ylyo) = 22 (g™ cosh(sin¢ — g~ sinh ( cos () (63)

where ¢ = |k2 — k‘?ﬁ, h =2¢?, gt = +¢? — ky, a = ¢/V/2 and ( = az. Again (2'|29), (2'|x)), etc.
are obtained by differentiating (2'|x¢), (z'|xy), etc. with respect to z. Matrices Mgz, and Mgpg are
not symplectic, but the combination Mg}?MQ L(Mglg)_l is symplectic in the limit of zero length

fringe. (Mglﬁl is Mgr in the limit of zero length.) See Eq.(59).

18 Dipole

Sextupoles When there is a vertical closed orbit yg at a sextupole, the sextupole behaves as a
skew quad with strength k = 2¢By  where By and rq are the field and the radius at the pole tip.

2
perg
The sensitivity of the luminosity in eTe™ colliders to the details of the vertical orbit is related to
this property.

19 Cyclotron Equations of Motion

In cylindrical coordinates

d?r
F_mw
% = %rf':f“f'—{—r?:f“f'—{—réé
d?r

S5 = it 400+ 100 +rdd
= ¥+ 700 + 700 — r#6% + r0d
= PP+ 2700 — ri6% + rlh
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where we used # = 66 and 9 = 10,
The Lorentz force is
F=¢q¢(vxB+E)

In a cyclotron with uniform vertical magnetic field and electrostatic focusing

oOF
F. = —qusB + qaif(r —70)

where % = %—i, and vy is the velocity in the azimuthal direction. The radial force

E, .. :
F, = —qusB + qaa—r(r —19) = m(F — 7"92) (64)

Let r = rp + x and Equation 64 becomes

. 1 OF
. 92 — ~(_guB T
Z—r m( quB +q o x)
. 1 OF Vg \ 2
f - Lmpe B (2)
1 oFE, v2
. _ Lo 5 .
v m( v +q8 x)+x+r0
P _vg_i_q(‘)E,, +1§(1_£)
ro m Oor 70 70
2
vy q OE,
o (7‘(2) m Or )@
—sw? = W¥(1-n)
Qs = %: vV1i—n
w

.B
where w = 2 and
mro

m Or  wvsB Or '

<7‘0>2 q OF, ro OE,
n=|—

The vertical force

Since V- E =0, 8(% = —8£T and

_>Qz = 72:\/7;
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