x-z Tilt Due to Dispersion in RF Cavities

DLR
October 9, 2012

1 Constructing transport matrix in terms of twiss parameters and dispersion

First construct a matrix T_{12} from point 1 to 2 with $\vec{\eta}_{1}$ and $\vec{\eta}_{2}$ and no RF between 1 and 2. The horizontal and longitudinal motion is described in terms of β, α, ϕ. Next write the matrix for the RF cavity with frequency ω and voltage V. Compute the full turn at point 2. $T=T_{21} T_{R F} T_{12}$. The C_{11} element of the C matrix at point 1 will give the $\mathrm{x}-\mathrm{z}$ coupling in terms of the dispersion $\vec{\eta}_{2}$ at the observation point and $\vec{\eta}_{1}$ at the cavity, and the phase advance from cavity (1) to observation point (2).

1.1 Matrix T_{12} from $\vec{\eta}_{1}$ to $\vec{\eta}_{2}$

We start with

$$
T_{12}=\left(\begin{array}{ll}
M_{12} & m_{12} \tag{1}\\
n_{12} & N_{12}
\end{array}\right)
$$

and then

$$
\begin{align*}
T_{12}\left(\begin{array}{c}
\eta_{1} \\
\eta_{1}^{\prime} \\
l \\
1
\end{array}\right) & =\left(\begin{array}{c}
\eta_{2} \\
\eta_{2}^{\prime} \\
l \\
1
\end{array}\right) \tag{2}\\
& \rightarrow M_{12}\binom{\eta_{1}}{\eta_{1}^{\prime}}+m_{12}\binom{l}{1}=\binom{\eta_{2}}{\eta_{2}^{\prime}} \tag{3}
\end{align*}
$$

The first column of m is zero because \vec{x} is independent of l.

$$
m_{12}=\left(\begin{array}{ll}
0 & a \tag{4}\\
0 & b
\end{array}\right)
$$

Then from Equations 3 and 4 we get

$$
\binom{a}{b}=\binom{\eta_{2}}{\eta_{2}^{\prime}}-M_{12}\binom{\eta_{1}}{\eta_{1}^{\prime}}
$$

or

$$
m_{12}=\left(\begin{array}{cc}
0 & \eta_{2} \tag{5}\\
0 & \eta_{2}^{\prime}
\end{array}\right)-M_{12}\left(\begin{array}{cc}
0 & \eta_{1} \\
0 & \eta_{1}^{\prime}
\end{array}\right)
$$

Both M_{12} and N_{12} can be written in terms of twiss parameters for horizontal and longitudinal motion at 1 and 2 . We use the symplecticity of T_{12} to determine n_{12}. Since $T^{T} S T=S$ we can write

$$
\begin{aligned}
\left(\begin{array}{cc}
M^{T} & n^{T} \\
m^{T} & N^{T}
\end{array}\right)\left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right)\left(\begin{array}{cc}
M & m \\
n & N
\end{array}\right) & =\left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right) \\
\left(\begin{array}{ll}
M^{T} & n^{T} \\
m^{T} & N^{T}
\end{array}\right)\left(\begin{array}{cc}
s M & s m \\
s n & s N
\end{array}\right) & =\left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right) \\
\left(\begin{array}{cc}
M^{T} s M+n^{T} s n & M^{T} s m+n^{T} s N \\
m^{T} s M+N^{T} s n & m^{T} s m+N^{T} s N
\end{array}\right) & =\left(\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right) \\
\rightarrow n^{T} s N & =-M^{T} s m \\
\rightarrow n^{T} & =M^{T} s m N^{-1} s
\end{aligned}
$$

and

$$
\begin{align*}
\rightarrow N^{T} s n & =-m^{T} s M \tag{6}\\
\rightarrow n & =s\left(N^{T}\right)^{-1} m^{T} s M \tag{7}
\end{align*}
$$

where in the last line we use $s^{-1}=-s$.
Now substitute m_{12} from Equation 4 for m in Equation 7 and we have

$$
\begin{aligned}
\rightarrow n^{T} & =M^{T} s\left(\left(\begin{array}{ll}
0 & \eta_{2} \\
0 & \eta_{2}^{\prime}
\end{array}\right)-M\left(\begin{array}{cc}
0 & \eta_{1} \\
0 & \eta_{1}^{\prime}
\end{array}\right)\right) N^{-1} s \\
& =\left(M^{T} s\left(\begin{array}{ll}
0 & \eta_{2} \\
0 & \eta_{2}^{\prime}
\end{array}\right)-s\left(\begin{array}{cc}
0 & \eta_{1} \\
0 & \eta_{1}^{\prime}
\end{array}\right)\right) N^{-1} s
\end{aligned}
$$

We can write M and N in terms of β and α at 1 and 2 and ϕ_{12}, the phase advance from one to the other. For simplicity let's suppose that $\alpha_{1}=\alpha_{2}=0$ and that $\beta_{1}=\beta_{2}$. Then

$$
M=\left(\begin{array}{cc}
\cos \mu_{x} & \beta_{x} \sin \mu_{x} \tag{8}\\
\frac{-\sin \mu_{x}}{\beta_{x}} & \cos \mu_{x}
\end{array}\right)
$$

and for $N, x \rightarrow z$. But we know that N has the form

$$
N=\left(\begin{array}{cc}
1 & \alpha_{12} \tag{9}\\
0 & 1
\end{array}\right)
$$

since as there are no RF cavities between points 1 and 2, there is no change to the
energy. Then

$$
\begin{align*}
\rightarrow n^{T} & =\left(\left(\begin{array}{cc}
\cos \mu_{x} & -\frac{\sin \mu_{x}}{\beta_{x}} \\
\beta_{x} \sin \mu_{x} & \cos \mu_{x}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \eta_{2} \\
0 & \eta_{2}^{\prime}
\end{array}\right)-\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \eta_{1} \\
0 & \eta_{1}^{\prime}
\end{array}\right)\right)\left(\begin{array}{cc}
1 & -\alpha_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =\left(\left(\begin{array}{cc}
\frac{\sin \mu_{x}}{\beta_{x}} & \cos \mu_{x} \\
-\cos \mu_{x} & \beta_{x} \sin \mu_{x}
\end{array}\right)\left(\begin{array}{cc}
0 & \eta_{2} \\
0 & \eta_{2}^{\prime}
\end{array}\right)-\left(\begin{array}{cc}
0 & \eta_{1}^{\prime} \\
0 & -\eta_{1}
\end{array}\right)\right)\left(\begin{array}{cc}
\alpha_{12} & 1 \\
-1 & 0
\end{array}\right) \tag{10}\\
& =\left(\left(\begin{array}{cc}
0 & \frac{\sin \mu_{x}}{\beta_{x}} \eta_{2}+\cos \mu_{x} \eta_{2}^{\prime} \\
0 & -\cos \mu_{x} \eta_{2}+\beta_{x} \sin \mu_{x} \eta_{2}^{\prime}
\end{array}\right)-\left(\begin{array}{cc}
0 & \eta_{1}^{\prime} \\
0 & -\eta_{1}
\end{array}\right)\right)\left(\begin{array}{cc}
\alpha_{12} & 1 \\
-1 & 0
\end{array}\right) \tag{11}\\
& =\left(\begin{array}{ll}
0 & \frac{\sin \mu_{x}}{\beta_{x}} \eta_{2}+\cos \mu_{x} \eta_{2}^{\prime}-\eta_{1}^{\prime} \\
0 & -\cos \mu_{x} \eta_{2}+\beta_{x} \sin \mu_{x} \eta_{2}^{\prime}+\eta_{1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{12} & 1 \\
-1 & 0
\end{array}\right) \tag{12}\\
& =\left(\begin{array}{cc}
-\frac{\sin \mu_{x}}{\beta_{x}} \eta_{2}-\cos \mu_{x} \eta_{2}^{\prime}+\eta_{1}^{\prime} & 0 \\
\cos \mu_{x} \eta_{2}-\beta_{x} \sin \mu_{x} \eta_{2}^{\prime}-\eta_{1} & 0
\end{array}\right) \tag{13}\\
& \rightarrow n=\left(\begin{array}{c}
-\frac{\sin \mu_{x}}{\beta_{x}} \eta_{2}-\cos \mu_{x} \eta_{2}^{\prime}+\eta_{1}^{\prime} \\
0
\end{array}\right. \tag{14}
\end{align*}
$$

2 RF cavity

The matrix for an RF cavity is

$$
N_{R F}=\left(\begin{array}{cc}
1 & 0 \tag{15}\\
e \frac{L \omega}{c} V & 1
\end{array}\right)
$$

The full turn matrix for the longitudinal motion is

$$
N=\left(\begin{array}{cc}
1 & \alpha_{p} \tag{16}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\tilde{V} & 1
\end{array}\right)=\left(\begin{array}{cc}
1+\alpha_{p} \tilde{V} & L \alpha_{p} \\
\tilde{V} & 1
\end{array}\right)
$$

Then $\cos \mu_{z}=1+\frac{1}{2} \frac{\alpha_{p} \omega V L}{c E_{\text {beam }}}$ and $\mu_{z} \sim \sqrt{\frac{\alpha_{p} \omega V L}{c E_{\text {beam }}}}$. And

$$
\begin{aligned}
\beta_{z} \sin \mu_{z} & =L \alpha_{p} \\
\rightarrow \beta_{z} & =\frac{L \alpha_{p}}{\mu_{z}}
\end{aligned}
$$

We can evaluate the full turn matrix at an arbitrary point

$$
\begin{aligned}
T_{a r b} & =\left(\begin{array}{cc}
1 & \alpha_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\tilde{V} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha_{21} \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+\tilde{V} \alpha_{12} & \alpha_{12} \\
\tilde{V} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha_{21} \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+\tilde{V} \alpha_{12} & \left(1+\tilde{V} \alpha_{12}\right) \alpha_{21}+\alpha_{12} \\
\tilde{V} & \tilde{V} \alpha_{21}+1
\end{array}\right)
\end{aligned}
$$

Since $\alpha_{12}+\alpha_{21}=\alpha$, we see that to first order in α, β_{z} is about the same.

3 Full turn

$$
\begin{aligned}
T & =\left(\begin{array}{ll}
M_{12} & m_{12} \\
n_{12} & N_{12}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & N_{R F}
\end{array}\right)\left(\begin{array}{cc}
M_{21} & m_{21} \\
n_{21} & N_{21}
\end{array}\right) \\
& =\left(\begin{array}{ll}
M_{12} & m_{12} \\
n_{12} & N_{12}
\end{array}\right)\left(\begin{array}{cc}
M_{21} & m_{21} \\
N_{R F} n_{21} & N_{R F} N_{21}
\end{array}\right) \\
\left(\begin{array}{cc}
M & m \\
n & N
\end{array}\right) & =\left(\begin{array}{ll}
M_{12} M_{21}+m_{12} N_{R F} n_{21} & M_{12} m_{21}+m_{12} N_{R F} N_{21} \\
n_{12} M_{21}+N_{12} N_{R F} n_{21} & n_{12} m_{21}+N_{12} N_{R F} N_{21}
\end{array}\right)
\end{aligned}
$$

4 C-matrix

The coupling matrix

$$
\begin{aligned}
C \propto & m+n^{\dagger}=M_{12} m_{21}+m_{12} N_{R F} N_{21}+\left(n_{12} M_{21}+N_{12} N_{R F} n_{21}\right)^{\dagger} \\
= & \left(\begin{array}{cc}
\cos \mu_{12} & \beta_{x} \sin \mu_{12} \\
-\frac{\sin \mu_{12}}{\beta_{x}} & \cos \mu_{12}
\end{array}\right)\left(\begin{array}{cc}
0 & a_{21} \\
0 & b_{21}
\end{array}\right)+\left(\begin{array}{cc}
0 & a_{12} \\
0 & b_{12}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\tilde{V} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha_{21} \\
0 & 1
\end{array}\right) \\
& +\left(\left(\begin{array}{cc}
c_{12} & d_{12} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \mu_{21} & \beta_{x} \sin \mu_{21} \\
-\frac{\sin \mu_{21}}{\beta_{x}} & \cos \mu_{21}
\end{array}\right)+\left(\begin{array}{cc}
1 & \alpha_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\tilde{V} & 1
\end{array}\right)\left(\begin{array}{cc}
c_{21} & d_{21} \\
0 & 0
\end{array}\right)\right)^{\dagger} \\
= & \left(\begin{array}{cc}
0 & a_{21} \cos \mu_{12}+b_{21} \beta_{x} \sin \mu_{12} \\
0 & -a_{21} \frac{\sin \mu_{12}}{\beta_{x}}+b_{21} \cos \mu_{12}
\end{array}\right)+\left(\begin{array}{cc}
0 & a_{12} \\
0 & b_{12}
\end{array}\right)\left(\begin{array}{cc}
1 \\
\tilde{V} & \tilde{V} \alpha_{21}+1
\end{array}\right) \\
& +\left(\left(\begin{array}{cc}
c_{12} \cos \mu_{21}-d_{12} \frac{\sin \mu_{21}}{\beta_{x}} & c_{12} \beta_{x} \sin \mu_{21}+d_{12} \cos \mu_{21} \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
1 & \alpha_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
c_{21} & d_{21} \\
\tilde{V} c_{21} & \tilde{V} d_{21}
\end{array}\right)\right)^{\dagger} \\
= & \left(\begin{array}{cc}
0 & a_{21} \cos \mu_{12}+b_{21} \beta_{x} \sin \mu_{12} \\
0 & -a_{21} \frac{\sin \mu_{12}}{\beta_{x}}+b_{21} \cos \mu_{12}
\end{array}\right)+\left(\begin{array}{cc}
a_{12} \tilde{V} & a_{12}\left(\tilde{V} \alpha_{21}+1\right) \\
b_{12} \tilde{V} & b_{12}\left(\tilde{V} \alpha_{21}+1\right)
\end{array}\right) \\
& +\left(\left(\begin{array}{cc}
c_{12} \cos \mu_{21}-d_{12} \frac{\sin \mu_{21}}{\beta_{x}} & c_{12} \beta_{x} \sin \mu_{21}+d_{12} \cos \mu_{21} \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
1 & \alpha_{12} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
c_{21} & d_{21} \\
\tilde{V} c_{21} & \tilde{V} d_{21}
\end{array}\right)\right)^{\dagger} \\
= & \left(\begin{array}{lll}
a_{12} \tilde{V} & a_{21} \cos \mu_{12}+b_{21} \beta_{x} \sin \mu_{12}+a_{12}\left(\tilde{V} \alpha_{21}+1\right) \\
b_{12} \tilde{V} & -a_{21} \frac{\sin \mu_{12}}{\beta_{x}}+b_{21} \cos \mu_{12}+b_{12}\left(\tilde{V} \alpha_{21}+1\right)
\end{array}\right) \\
& +\left(\begin{array}{cc}
0 & -c_{12} \beta_{x} \sin \mu_{21}-d_{12} \cos \mu_{21} \\
0 & c_{12} \cos \mu_{21}-d_{12} \frac{\sin \mu_{21}}{\beta_{x}}
\end{array}\right)+\left(\begin{array}{cc}
c_{12}+\alpha_{12} \tilde{V} c_{21} & d_{12}+\alpha_{12} \tilde{V} d_{21} \\
\tilde{V} c_{12}
\end{array}\right. \\
= & \left(\begin{array}{ll}
a_{12} \tilde{V} & a_{21} \cos \mu_{12}+b_{21} \beta_{x} \sin \mu_{12}+a_{12}\left(\tilde{V} \alpha_{21}+1\right) \\
b_{12} \tilde{V} & -a_{21} \frac{\sin \mu_{12}}{\beta_{x}}+b_{21} \cos \mu_{12}+b_{12}\left(\tilde{V} \alpha_{21}+1\right)
\end{array}\right) \\
& +\left(\begin{array}{ll}
0 & -c_{12} \beta_{x} \sin \mu_{21}-d_{12} \cos \mu_{21} \\
0 & c_{12} \cos \mu_{21}-d_{12} \frac{\sin \mu_{21}}{\beta_{x}}
\end{array}\right)+\left(\begin{array}{cc}
\tilde{V} d_{21} & -d_{12}-\alpha_{12} \tilde{V} d_{21} \\
-\tilde{V} c_{12} & c_{12}+\alpha_{12} \tilde{V} c_{21}
\end{array}\right)
\end{aligned}
$$

Finally just picking out C_{11}

$$
\begin{equation*}
C_{11}=\left(a_{12}+d_{21}\right) \tilde{V} \tag{17}
\end{equation*}
$$

We get a_{12} from Equation 5 and d_{21} from Equation 14, where we are again assuming $\beta_{1}=\beta_{2}$ and $\alpha_{1}=\alpha_{2}=0$.

$$
\begin{aligned}
a_{12} & =\eta_{2}-\cos \mu_{12} \eta_{1}-\beta_{x} \sin \mu_{12} \eta_{1}^{\prime} \\
d_{21} & =\cos \mu_{21} \eta_{1}-\beta_{x} \sin \mu_{21} \eta_{1}^{\prime}-\eta_{2}
\end{aligned}
$$

and

$$
\begin{equation*}
C_{11}=\left(\left(\cos \mu_{21}-\cos \mu_{12}\right) \eta_{1}-\beta_{x} \eta_{1}^{\prime}\left(\sin \mu_{12}+\sin \mu_{21}\right)\right) \tilde{V} \tag{18}
\end{equation*}
$$

$5 \quad \beta_{1} \neq \beta_{2}$

Return to Equation 5 to get a_{12}

$$
\begin{aligned}
m_{12} & =\left(\begin{array}{ll}
0 & \eta_{2} \\
0 & \eta_{2}^{\prime}
\end{array}\right)-M_{12}\left(\begin{array}{cc}
0 & \eta_{1} \\
0 & \eta_{1}^{\prime}
\end{array}\right) \\
m_{12} & =\left(\begin{array}{ll}
0 & \eta_{2} \\
0 & \eta_{2}^{\prime}
\end{array}\right)-\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}} \cos \mu & \sqrt{\beta_{1} \beta_{2}} \sin \mu \\
-\frac{\sin \mu}{\beta_{1} \beta_{2}} & \sqrt{\frac{\beta_{1}}{\beta_{2}}} \cos \mu
\end{array}\right)\left(\begin{array}{cc}
0 & \eta_{1} \\
0 & \eta_{1}^{\prime}
\end{array}\right) \\
\rightarrow a_{12} & =\eta_{2}-\sqrt{\frac{\beta_{2}}{\beta_{1}}} \cos \mu_{12} \eta_{1}-\sqrt{\beta_{1} \beta_{2}} \sin \mu_{12} \eta_{1}^{\prime}
\end{aligned}
$$

and then to Equaton 14 to get d_{12}

$$
\begin{equation*}
d_{21}=\sqrt{\frac{\beta_{2}}{\beta_{1}}} \cos \mu_{21} \eta_{1}-\sqrt{\beta_{1} \beta_{2}} \sin \mu_{21} \eta^{\prime}-\eta_{2} \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
C_{11}=\left(\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu_{21}-\cos \mu_{12}\right) \eta_{1}-\sqrt{\beta_{1} \beta_{2}} \eta_{1}^{\prime}\left(\sin \mu_{12}+\sin \mu_{21}\right)\right) \tilde{V} \tag{20}
\end{equation*}
$$

6 Both RF Cavities

East and west RF cavities are approximately symmetric with respect to the $\operatorname{IP}(\mu=0)$. The C_{11} element of each is

$$
\begin{aligned}
C_{11}^{W} & =\left(\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu_{21}-\cos \mu_{12}\right) \eta_{1}-\sqrt{\beta_{1} \beta_{2}} \eta_{1}^{\prime}\left(\sin \mu_{12}+\sin \mu_{21}\right)\right) \tilde{V} \\
C_{11}^{E} & \propto\left(\sqrt { \frac { \beta _ { 2 } } { \beta _ { 1 } } } \left(\cos \left(\mu_{21}-\Delta \mu\right)-\cos \left(\mu_{12}+\Delta \mu\right) \eta_{1}+\sqrt{\beta_{1} \beta_{2}} \eta_{1}^{\prime}\left(\sin \left(\mu_{12}+\Delta \mu\right)+\sin \left(\mu_{21}-\Delta \mu\right)\right) \tilde{V}\right.\right.
\end{aligned}
$$

where $\Delta \mu$ is the phase advance between the cavities along the path that does not include point 2 , and $\eta_{E}^{\prime}=-\eta_{W}^{\prime}$. Then

$$
\begin{aligned}
C_{11}(2) \propto & \left(\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu_{21}-\cos \mu_{12}+\cos \left(\mu_{21}-\Delta \mu\right)-\cos \left(\mu_{12}+\Delta \mu\right)\right) \eta_{1}-\right. \\
& \sqrt{\beta_{1} \beta_{2}} \eta_{1}^{\prime}\left(\sin \mu_{12}+\sin \mu_{21}-\sin \left(\mu_{12}+\Delta \mu\right)-\sin \left(\mu_{21}-\Delta \mu\right)\right) \tilde{V}
\end{aligned}
$$

