David Rubin
February 8, 2008

Normal Mode Decomposition of $2 N \times 2 N$ symplectic matrices

Normal mode decomposition of a 4X4 symplectic matrix is a standard technique for analyzing transverse coupling in a storage ring. We generalize the decomposition to any 2 nX 2 n symplectic matrix T and derive the transformation W from lab coordinates to normal mode coordinates U. That is

$$
\begin{equation*}
T=W U W^{-1} \tag{1}
\end{equation*}
$$

where U is block diagonal and real and we construct the real matrix W with the form

$$
W=\left(\begin{array}{cccc}
\gamma_{1} I & C_{1} & C_{2} & \ldots \tag{2}\\
C^{\prime}{ }_{1} & \gamma_{2} I & C_{3} & \ldots \\
C^{\prime}{ }_{2} & C^{\prime}{ }_{3} & \gamma_{3} I & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

I is the 2×2 identity, and $C_{1}, C_{2}, C_{1}^{\prime}$ etc are 2×2. (If for example, $n=2$, then $\gamma_{1}=\gamma_{2}$ and $C^{\prime}=-C^{\dagger}$.
The matrix

$$
\begin{align*}
U & =\left(\begin{array}{ccc}
A & 0 & \ldots \\
0 & B & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right) \text { can be decomposed as } \\
U & =Y Z Y^{-1} \tag{3}
\end{align*}
$$

where

$$
Z\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)=\left(\begin{array}{ccc}
R\left(\theta_{1}\right) & 0 & \ldots \tag{4}\\
0 & R\left(\theta_{2}\right) & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)
$$

with

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{5}\\
-\sin \theta & \cos \theta
\end{array}\right)
$$

and

$$
Y=\left(\begin{array}{ccc}
G_{1} & 0 & \ldots \tag{6}\\
0 & G_{2} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)
$$

and $G_{i}=\left(\begin{array}{cc}\sqrt{\beta_{i}} & 0 \\ \frac{\alpha_{i}}{\sqrt{\beta_{i}}} & \frac{1}{\sqrt{\beta_{i}}}\end{array}\right)$.
Since standard techniques exist for diagonalizing square matrices and identifying eigenvalues and eigenvectors, we begin by doing just that.

$$
\begin{equation*}
T=V D V^{-1} \tag{7}
\end{equation*}
$$

where T is the $2 n \times 2 n$ symplectic matrix, D is the diagonal matrix of eigenvalues, and V is the matrix constructed from the eigenvectors. Since T is symplectic, the eigenvalues and eigenvectors appear as unimodular, complex conjugate pairs, $\lambda_{i}, \lambda_{i}^{*}$ and \vec{v}_{i} and \vec{v}_{i}^{*}. Then D can be written in the form

$$
D=\left(\begin{array}{cccc}
d\left(\theta_{1}\right) & 0 & 0 & \ldots \tag{8}\\
0 & d\left(\theta_{2}\right) & 0 & \ldots \\
0 & 0 & d\left(\theta_{3}\right) & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right) \text { where } d(\theta)=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)
$$

The n columns of the matrix V are the n eigenvectors v_{i}. The eigenvectors are not unique, but may be multiplied by an arbitrary complex number. That is, $\vec{v}_{i} \rightarrow \rho_{i} e^{i \phi_{i}} \vec{v}_{i}$ and $\vec{v}_{i}^{*} \rightarrow \rho_{i} e^{-i \phi_{i}} \vec{v}_{i}^{*}$. If $V_{0}=\vec{v}_{1} \vec{v}_{1}^{*} \vec{v}_{2} \vec{v}_{2}^{*} \ldots \vec{v}_{n} \vec{v}_{n}^{*}$, then

$$
\begin{aligned}
V(\vec{\rho}, \vec{\phi}) & =V_{0} D\left(\rho_{1}, \rho_{2}, \ldots \rho_{n}, \phi_{1}, \phi_{2}, \ldots, \phi_{n}\right) \\
& =V_{0}\left(\begin{array}{cccc}
\rho_{1} d\left(\phi_{1}\right) & 0 & 0 & \ldots \\
0 & \rho_{2} d\left(\phi_{2}\right) & 0 & \ldots \\
0 & 0 & \rho_{3} d\left(\phi_{3}\right) & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
\end{aligned}
$$

Note that $V(\vec{\rho}, \vec{\phi})$ effects the transformation of Equation 7 for any real numbers ρ_{i} and ϕ_{i}.
We transform from a complex to a real basis with K where the real matrix Z
(Equation 4) is related to the complex matrix D (Equation 8) by the similarity transformation

$$
\begin{equation*}
Z\left(\theta_{2}, \theta_{2}, \theta_{3}\right)=K D\left(\theta_{1}, \theta_{2}, \theta_{3}\right) K^{-1} \tag{9}
\end{equation*}
$$

where

$$
K=\left(\begin{array}{ccc}
k & 0 & 0 \tag{10}\\
0 & k & 0 \\
0 & 0 & k
\end{array}\right)
$$

and

$$
k=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{11}\\
i & -i
\end{array}\right)
$$

W-matrix

To construct W and U from V and D, we use Equations 1, 3 and 9 to write

$$
\begin{aligned}
T=W U W^{-1} & =V D V^{-1} \\
& =V_{0} D(\vec{\rho}, \vec{\phi})\left(K^{-1} K\right) D(\vec{\theta})\left(K^{-1} K\right) D^{-1}(\vec{\rho}, \vec{\phi}) V_{0}^{-1} \\
& =V_{0}\left(K^{-1} K\right) D(\vec{\rho}, \vec{\phi})\left(K^{-1} K\right) D(\vec{\theta})\left(K K^{-1}\right) D^{-1}(\vec{\rho}, \vec{\phi})\left(K K^{-1}\right) V_{0}^{-1} \\
& =\left(V_{0} K^{-1}\right) Z(\vec{\rho}, \vec{\phi}) Z(\vec{\theta}) Z^{-1}(\vec{\rho}, \vec{\phi})\left(K^{-1} V_{0}^{-1}\right) \\
& =V^{\prime}(\vec{\rho}, \vec{\phi}) Z(\vec{\theta}) V^{\prime-1}(\vec{\rho}, \vec{\phi})
\end{aligned}
$$

Now since the columns of V_{0} are complex conjugate pairs, $V_{0} K^{-1}$ is real. The Z matrices are similarly constructed to be real and therefore V^{\prime} is real.
So far we have

$$
\begin{aligned}
& W U W^{-1}=V^{\prime} Z V^{\prime-1} \\
& W Y Z(\vec{\theta}) Y^{-1}=V^{\prime} Z(\vec{\theta}) V^{\prime-1} \\
& \rightarrow V^{\prime}=W Y
\end{aligned}
$$

where we have used Equation 3.
Next we determine the parameters $\vec{\rho}$ and $\vec{\phi}$. We choose $\vec{\rho}$ so that V^{\prime} will be symplectic. In particular, if we write V^{\prime} in terms of the 2 X 2 matrices V_{i}^{j} then

$$
\begin{aligned}
V^{\prime} & =\left(\begin{array}{ccc}
V_{1}^{\prime 1} & V_{1}^{\prime 2} & \ldots \\
V_{2}^{\prime 1} & V_{2}^{\prime 2} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right) \\
& =\left(\begin{array}{lll}
V_{0}^{1} & V_{01}^{2} & \ldots \\
V_{0}^{1} & V_{02}^{2} & \ldots \\
\cdots & \ldots & \ldots
\end{array}\right)\left(\begin{array}{ccc}
\rho_{1} R\left(\phi_{1}\right) & 0 & \ldots \\
0 & \rho_{2} R\left(\phi_{2}\right) & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\rho_{1} V_{01}^{1} R\left(\phi_{1}\right) & \rho_{2} V_{01}^{2} R\left(\phi_{2}\right) & \ldots \\
\rho_{1} V_{02}^{1} R\left(\phi_{1}\right) & \rho_{2} V_{02}^{2} R\left(\phi_{2}\right) & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)
\end{aligned}
$$

Symplecticity constrains the sums of determinants of $V_{i}^{\prime j}$ so that

$$
1=\sum_{i=1}^{n}\left|V_{i}^{\prime j}\right|
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left|\rho_{j} V_{0_{i}^{j}}^{j} R\left(\phi_{j}\right)\right| \\
& =\sum_{i=1}^{n} \rho_{j}^{2}\left|V_{0 i}^{j}\right| \\
& \rightarrow \rho_{j}=\frac{1}{\sqrt{\sum_{i=1}^{n}\left|V_{0 i}^{j}\right|}}
\end{aligned}
$$

In order to determine the order of the conjugate columns of V^{\prime}, and finally the paramters $\vec{\phi}$ we expand

$$
\begin{aligned}
V^{\prime} & =W Y(\vec{G}) \\
V^{\prime} & =\left(\begin{array}{ccc}
V_{1}^{\prime 1} & V_{1}^{\prime 2} & \ldots \\
V_{2}^{\prime 1} & V_{2}^{\prime 2} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)=\left(\begin{array}{ccc}
\gamma_{1} I & C & \ldots \\
C^{\prime} & \gamma_{2} I & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)\left(\begin{array}{ccc}
G_{1} & 0 & \ldots \\
0 & G_{2} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right) \\
\left(\begin{array}{ccc}
\rho_{1} V_{0}{ }_{1}^{1} R\left(\phi_{1}\right) & \rho_{2} V_{01}^{2} R\left(\phi_{2}\right) & \ldots \\
\rho_{1} V_{02}^{1} R\left(\phi_{1}\right) & \rho_{2} V_{02}^{2} R\left(\phi_{2}\right) & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right) & =\left(\begin{array}{ccc}
\gamma_{1} G_{1} & C G_{2} & \ldots \\
C^{\prime} G_{1} & \gamma_{2} G_{2} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)
\end{aligned}
$$

Then the diagonal blocks are required to have the form

$$
\begin{aligned}
V_{i}^{\prime i} & =\gamma_{i} G_{i} \\
\rho_{i} V_{0 i}^{i} R\left(\phi_{i}\right) & =\gamma_{i}\left(\begin{array}{cc}
\sqrt{\beta_{i}} & 0 \\
\frac{\alpha_{i}}{\sqrt{\beta_{i}}} & \frac{1}{\sqrt{\beta_{i}}}
\end{array}\right)
\end{aligned}
$$

A real solution requires that $\left|V_{i}^{\prime i}\right|>0$. We are free to choose the order of the conjugate columns of V^{\prime} to ensure that this is true. (Note that if we reverse the order of the columns $V^{i, j} \rightarrow V^{\prime j, i}$, then the sign of the determinant of the 2 X 2 blocks is reversed.) If we reverse the order of eigenvectors in V^{\prime}, then we also reverse the order of eigenvalues in $D(\vec{\theta})$ or equivalently $\theta_{i} \rightarrow 2 \pi-\theta_{i}$. To find $\vec{\phi}$ we proceed with our expansion of $V_{0}{ }^{i i}$ and $R\left(\phi_{i}\right)$ and write

$$
\left.\rho_{i}\left(\begin{array}{cc}
V_{011}^{i i} & V_{012}^{i i} \\
V_{021}^{i i} & V_{022}^{i i}
\end{array}\right)\left(\begin{array}{cc}
\cos \phi_{i} & \sin \phi_{i} \\
-\sin \phi_{i} & \cos \phi_{i}
\end{array}\right)\right)=\gamma_{i}\left(\begin{array}{cc}
\sqrt{\beta_{i}} & 0 \\
\frac{\alpha_{i}}{\sqrt{\beta_{i}}} & \frac{1}{\sqrt{\beta_{i}}}
\end{array}\right)
$$

We choose ϕ_{i} so that $G_{22}^{i}=0$, or

$$
\tan \phi_{i}=\frac{V_{011}^{i i}}{V_{012}^{i i}}
$$

The ambiguity in $\phi_{i},\left(\tan \phi_{i}=\tan \left(2 \pi-\phi_{i}\right)\right)$ is resolved with the condition that $G_{11}^{i}=V_{011}^{i i} \cos \phi_{i}-V_{012}^{i i} \sin \phi>0$.

Summary

1. Find eigenvectors and eigenvalues
2. Transform eigenvectors to a real basis
3. Construct V. The columns of V are the eigenvectors. The eigenvectors appear as complex conjugate pairs since T is symplectic.
4. Choose the normalization for each pair of eigenvectors so that W will be symplectic. In particular if

$$
V=\left(\begin{array}{ccc}
c_{1} V_{1,1} & c_{2} V_{1,2} & \ldots \\
c_{1} V_{2,1} & c_{2} V_{2,2} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)
$$

where $V_{i, j}$ are 2X2 matrices, and $c_{i}=\rho e^{i \phi_{i}}$ then choose ρ_{1} so that

$$
\rho_{1}^{2}\left(\left|V_{1,1}\right|+\left|V_{2,1}\right|+\left|V_{3,1}\right|+\ldots\right)=1
$$

5. Adjust the order of complex conjugate pairs so that $\left|V_{i, i}\right|>0$. That is, if $\left|V_{i, i}\right|<0$, than swap the order of the columns.
6. Choose the phases ϕ_{i} so that

$$
\left.G_{i}=V_{i, i} R \theta\right)
$$

has the form

$$
=\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)
$$

