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Normal Mode Decomposition of 2N × 2N symplectic matrices

Normal mode decomposition of a 4X4 symplectic matrix is a standard technique for
analyzing transverse coupling in a storage ring. We generalize the decomposition to
any 2nX2n symplectic matrix T and derive the transformation W from lab
coordinates to normal mode coordinates U . That is

T = WUW−1 (1)

where U is block diagonal and real and we construct the real matrix W with the
form

W =


γ1I C1 C2 ...
C ′1 γ2I C3 ...
C ′2 C ′3 γ3I ...
... ... ... ...

 (2)

I is the 2x2 identity, and C1, C2, C
′
1 etc are 2x2. (If for example, n = 2, then

γ1 = γ2 and C ′ = −C†).
The matrix

U =

A 0 ...
0 B ...
... ... ...

 can be decomposed as

U = Y ZY −1 (3)

where

Z(θ1, θ2, ..., θn) =

R(θ1) 0 ...
0 R(θ2) ...
... ... ...

 (4)

with

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(5)

and

Y =

G1 0 ...
0 G2 ...
... ... ...

 , (6)
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and Gi =

(√
βi 0
αi√
βi

1√
βi

)
.

Since standard techniques exist for diagonalizing square matrices and identifying
eigenvalues and eigenvectors, we begin by doing just that.

T = V DV −1, (7)

where T is the 2n x 2n symplectic matrix, D is the diagonal matrix of eigenvalues,
and V is the matrix constructed from the eigenvectors. Since T is symplectic, the
eigenvalues and eigenvectors appear as unimodular, complex conjugate pairs, λi, λ

∗
i

and ~vi and ~v∗i . Then D can be written in the form

D =


d(θ1) 0 0 ...

0 d(θ2) 0 ...
0 0 d(θ3) ...
... ... ... ...

 where d(θ) =

(
eiθ 0
0 e−iθ

)
. (8)

The n columns of the matrix V are the n eigenvectors vi. The eigenvectors are not
unique, but may be multiplied by an arbitrary complex number. That is,
~vi → ρie

iφi~vi and ~v∗i → ρie
−iφi~v∗i . If V0 = ~v1 ~v

∗
1 ~v2 ~v

∗
2 ...~vn ~v

∗
n, then

V (~ρ, ~φ) = V0D(ρ1, ρ2, ...ρn, φ1, φ2, ..., φn)

= V0


ρ1d(φ1) 0 0 ...

0 ρ2d(φ2) 0 ...
0 0 ρ3d(φ3) ...
... ... ... ...


Note that V (~ρ, ~φ) effects the transformation of Equation 7 for any real numbers ρi
and φi.
We transform from a complex to a real basis with K where the real matrix Z
(Equation 4) is related to the complex matrix D (Equation 8) by the similarity
transformation

Z(θ2, θ2, θ3) = KD(θ1, θ2, θ3)K
−1 (9)

where

K =

 k 0 0
0 k 0
0 0 k

 (10)

and

k =
1√
2

(
1 1
i −i

)
(11)
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W-matrix

To construct W and U from V and D, we use Equations 1, 3 and 9 to write

T = WUW−1 = V DV −1

= V0D(~ρ, ~φ)
(
K−1K

)
D(~θ)

(
K−1K

)
D−1(~ρ, ~φ)V −1

0

= V0

(
K−1K

)
D(~ρ, ~φ)

(
K−1K

)
D(~θ)

(
KK−1

)
D−1(~ρ, ~φ)

(
KK−1

)
V −1

0

=
(
V0K

−1
)
Z(~ρ, ~φ)Z(~θ)Z−1(~ρ, ~φ)

(
K−1V −1

0

)
= V ′(~ρ, ~φ)Z(~θ)V ′

−1
(~ρ, ~φ)

Now since the columns of V0 are complex conjugate pairs, V0K
−1 is real. The Z

matrices are similarly constructed to be real and therefore V ′ is real.
So far we have

WUW−1 = V ′ZV ′
−1

WY Z(~θ)Y −1 = V ′Z(~θ)V ′
−1

→ V ′ = WY

where we have used Equation 3.
Next we determine the parameters ~ρ and ~φ. We choose ~ρ so that V ′ will be
symplectic. In particular, if we write V ′ in terms of the 2X2 matrices V j

i then

V ′ =

V ′1
1 V ′1

2 ...
V ′2

1 V ′2
2 ...

... ... ...


=

V0
1
1 V0

2
1 ...

V0
1
2 V0

2
2 ...

... ... ...

 ρ1R(φ1) 0 ...
0 ρ2R(φ2) ...
... ... ...


=

 ρ1V0
1
1R(φ1) ρ2V0

2
1R(φ2) ...

ρ1V0
1
2R(φ1) ρ2V0

2
2R(φ2) ...

... ... ...


Symplecticity constrains the sums of determinants of V ′i

j so that

1 =
n∑
i=1

|V ′i
j|
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=
n∑
i=1

|ρjV0
j
iR(φj)|

=
n∑
i=1

ρ2
j |V0

j
i |

→ ρj =
1√∑n
i=1 |V0

j
i |

In order to determine the order of the conjugate columns of V ′, and finally the
paramters ~φ we expand

V ′ = WY (~G)

V ′ =

V ′1
1 V ′1

2 ...
V ′2

1 V ′2
2 ...

... ... ...

 =

 γ1I C ...
C ′ γ2I ...
... ... ...

G1 0 ...
0 G2 ...
... ... ...


 ρ1V0

1
1R(φ1) ρ2V0

2
1R(φ2) ...

ρ1V0
1
2R(φ1) ρ2V0

2
2R(φ2) ...

... ... ...

 =

 γ1G1 CG2 ...
C ′G1 γ2G2 ...
... ... ...


Then the diagonal blocks are required to have the form

V ′i
i

= γiGi

ρiV0
i
iR(φi) = γi

(√
βi 0
αi√
βi

1√
βi

)

A real solution requires that |V ′ii| > 0. We are free to choose the order of the
conjugate columns of V ′ to ensure that this is true. (Note that if we reverse the
order of the columns V ′i,j → V ′j,i, then the sign of the determinant of the 2 X 2
blocks is reversed.) If we reverse the order of eigenvectors in V ′, then we also

reverse the order of eigenvalues in D(~θ) or equivalently θi → 2π − θi. To find ~φ we
proceed with our expansion of V0

ii and R(φi) and write

ρi

(
V0

ii
11 V0

ii
12

V0
ii
21 V0

ii
22

)(
cosφi sinφi
− sinφi cosφi

)
) = γi

(√
βi 0
αi√
βi

1√
βi

)

We choose φi so that Gi
22 = 0, or

tanφi =
V0

ii
11

V0
ii
12
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The ambiguity in φi, (tanφi = tan(2π − φi)) is resolved with the condition that
Gi

11 = V0
ii
11 cosφi − V0

ii
12 sinφ > 0.

Summary

1. Find eigenvectors and eigenvalues

2. Transform eigenvectors to a real basis

3. Construct V . The columns of V are the eigenvectors. The eigenvectors
appear as complex conjugate pairs since T is symplectic.

4. Choose the normalization for each pair of eigenvectors so that W will be
symplectic. In particular if

V =

 c1V1,1 c2V1,2 ...
c1V2,1 c2V2,2 ...
... ... ...


where Vi,j are 2X2 matrices, and ci = ρeiφi then choose ρ1 so that

ρ2
1 (|V1,1|+ |V2,1|+ |V3,1|+ ...) = 1

5. Adjust the order of complex conjugate pairs so that |Vi,i| > 0. That is, if
|Vi,i| < 0, than swap the order of the columns.

6. Choose the phases φi so that

Gi = Vi,iRθ)

has the form

=

(√
β 0
α√
β

1√
β

)
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