D. Rubin

February 12, 2008

Dispersion in terms of coupling parameters

Consider the full turn 4X4 matrix $T=T_{0} T_{R F}$ that couples transverse (either horizontal or vertical) and longitudinal motion. We write

$$
T_{0}=\left(\begin{array}{cc}
M & m \\
n & N
\end{array}\right), \quad T_{R F}=\left(\begin{array}{cc}
I & 0 \\
0 & A
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{cc}
1 & 0 \\
-\frac{\omega}{c} \frac{V}{E} & 1
\end{array}\right)
$$

Furthermore

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
\cos \theta_{x}-\alpha \sin \theta_{x} & \beta_{x} \sin \theta_{x} \\
-\gamma_{x} \sin \theta_{x} & \cos \theta_{x}+\alpha \sin \theta
\end{array}\right) \\
N & =\left(\begin{array}{cc}
1 & L \alpha_{p} \\
0 & 1
\end{array}\right) \\
m & =(I-M)\left(\begin{array}{cc}
0 & \eta \\
0 & \eta^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \eta\left(1-\cos \theta_{x}+\alpha \sin \theta_{x}\right)-\eta^{\prime} \beta_{x} \sin \theta_{x} \\
0 & \gamma \eta \sin \theta_{x}+\eta^{\prime}\left(1-\cos \theta_{x}-\alpha \sin \theta_{x}\right)
\end{array}\right)
\end{aligned}
$$

the coupling matrix

$$
C=\frac{-H \operatorname{sgn}(\operatorname{Tr}[M-N])}{\gamma \sqrt{(\operatorname{Tr}[M-N])^{2}+4|H|}}
$$

where $H=m+n^{\dagger}$. In the limit where the accelerating voltage V and synchrotron tune are zero $|H|=0$ and $\gamma=1$. Then

$$
C \rightarrow \frac{H}{2\left(1-\cos \theta_{x}\right)}
$$

We take advantage of the symplecticity of T_{0} to write n in terms of m, M, N. Then

$$
\begin{aligned}
m+n^{\dagger} & =m+\left(N s m^{T} s M\right)^{\dagger}=m+M^{\dagger} s\left(m^{T}\right)^{\dagger} s N^{\dagger} \\
& =m-M^{\dagger} m N^{\dagger} \\
& =(I-M) \eta-M^{\dagger}(I-M) \eta N^{\dagger} \\
& =(I-M) \eta-\left(M^{\dagger}+I\right) \eta \quad\left(\text { since } \eta N^{\dagger}=\eta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(2 I-(\operatorname{Tr} M) I) \eta \\
& =\left(\begin{array}{cc}
0 & 2\left(1-\cos \theta_{x}\right) \eta \\
0 & 2\left(1-\cos \theta_{x}\right) \eta^{\prime}
\end{array}\right)
\end{aligned}
$$

Finally

$$
\begin{aligned}
C & =\frac{m+n^{\dagger}}{2\left(1-\cos \theta_{x}\right)} \\
& =\left(\begin{array}{cc}
0 & \eta \\
0 & \eta^{\prime}
\end{array}\right)
\end{aligned}
$$

If the accelerating voltage and synchrotron tune are non-zero then

$$
\begin{aligned}
T & =T_{0} T_{R F} \\
& =\left(\begin{array}{cc}
M & m \\
n & N
\end{array}\right)\left(\begin{array}{ll}
I & 0 \\
0 & A
\end{array}\right) \\
& =\left(\begin{array}{cc}
M & m^{\prime} \\
n & N^{\prime}
\end{array}\right)
\end{aligned}
$$

where $m^{\prime}=\left(\begin{array}{ll}a m_{12} & m_{12} \\ a m_{22} & m_{22}\end{array}\right)$ and $a=-\frac{\omega V}{c E}$ and $N^{\prime}=N A$.
Then

$$
\begin{aligned}
H & \rightarrow m^{\prime}+n^{\dagger} \\
& =\left(\begin{array}{cc}
a m_{12} & 2\left(1-\cos \theta_{x}\right) \eta \\
a m_{22} & 2\left(1-\cos \theta_{x}\right) \eta^{\prime}
\end{array}\right)
\end{aligned}
$$

Now $|H|=2 a\left(1-\cos \theta_{x}\right)\left(m_{12} \eta^{\prime}-m_{22} \eta\right)$ and $\operatorname{Tr}[M-N]=2\left(\cos \theta_{x}-\cos \theta_{z}\right)$, and $\gamma=1-|C|$.

$$
C=\frac{\left(\begin{array}{cc}
a m_{12} & 2\left(1-\cos \theta_{x}\right) \eta \\
a m_{22} & 2\left(1-\cos \theta_{x}\right) \eta^{\prime}
\end{array}\right)}{2 \gamma \sqrt{\left(\cos \theta_{x}-\cos \theta_{z}\right)+2 a\left(1-\cos \theta_{x}\right)\left(m_{12} \eta^{\prime}-m_{22} \eta\right)}}
$$

In the limit that $a \rightarrow 0,|H| \rightarrow 0, \cos \theta_{z} \rightarrow 1$ and $\gamma \rightarrow 1$.

