D. Rubin

September 8, 2008

BPM Tilt and Crunch vs Shear

The BPM buttons are mounted as a top block and a bottom block, each with two buttons. So the distance between the two buttons in each block is well defined. The two blocks are very nearly parallel. But there may be a horizontal displacement of the top block compared to the bottom block. Then

$$
\begin{aligned}
x_{4} & =-x_{1}=x_{0}-\Delta x \\
x_{2} & =-x_{3}=x_{0}+\Delta x \\
-y_{1} & =-y_{2}=y_{3}=y_{4}=y_{0}
\end{aligned}
$$

Assuming that all buttons have the same gain, we can wite for $\Delta x / x_{0} \ll 1$,

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & \frac{3 \Delta x}{r_{0}^{2}} y_{0} \\
\left(-1+\frac{3 x_{0}^{2}}{r_{0}^{2}}\right) \frac{\Delta x}{y_{0}} & 1
\end{array}\right)\binom{x}{y}
$$

In terms of g_{x}, g_{y} and ϕ,

$$
\begin{aligned}
1 & =g_{x} \cos (\theta+\phi) \\
\frac{3 \Delta x}{r_{0}^{2}} y_{0} & =g_{x} \sin (\theta+\phi) \\
\left(-1+\frac{3 x_{0}^{2}}{r_{0}^{2}}\right) \frac{\Delta x}{y_{0}} & =-g_{y} \sin (\theta-\phi) \\
1 & =g_{y} \cos (\theta-\phi)
\end{aligned}
$$

Then if we assume that θ and ϕ are both small

$$
\begin{align*}
2 \theta & \approx\left(\frac{1}{y_{0}}+\frac{3}{r_{0}^{2}}\left(-\frac{x_{0}^{2}}{y_{0}}+y_{0}\right)\right) \Delta x=\left(1+\frac{3}{r_{0}^{2}}\left(-x_{0}^{2}+y_{0}^{2}\right)\right) \frac{\Delta x}{y_{0}} \\
\rightarrow \theta & \approx \frac{1}{2}(1-3 \cos 2 \beta) \frac{\Delta x}{y_{0}} \tag{1}
\end{align*}
$$

where $\beta=\tan -1\left(y_{0} / x_{0}\right)$ and

$$
\begin{align*}
2 \phi & \approx\left(\frac{-1}{y_{0}}+\frac{3}{r_{0}^{2}}\left(\frac{x_{0}^{2}}{y_{0}}+y_{0}\right)\right) \Delta x=\left(-1+3 \frac{x_{0}^{2}+y_{0}^{2}}{r_{0}^{2}}\right) \frac{\Delta x}{y_{0}} \\
\rightarrow \phi & \approx \frac{\Delta x}{y_{0}} \tag{2}
\end{align*}
$$

Conclusion

In the limit where $x_{0}=y_{0}$, the tilt angle $\theta \rightarrow \frac{1}{2} \phi$. In the limit of a very wide spacing, $x_{\gg} y_{0}$, then $\beta \rightarrow 0$ and $\theta \rightarrow-\frac{1}{2} \phi$. Finally, if the chamber is tall, $\beta \rightarrow \frac{\pi}{2}$ and $\theta \rightarrow 2 \phi$.

Example

For the CESR vacuum chamber $x_{0}=12.98 \mathrm{~mm}, y_{0}=24.92 \mathrm{~mm}$. Consider the shear $\Delta x=$ 1 mm . Then

$$
\begin{aligned}
\phi & =0.04 \mathrm{rad} \\
\theta & =0.054 \mathrm{rad}
\end{aligned}
$$

and

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & 0.094 \\
-0.011 & 1
\end{array}\right)
$$

