

Introduction to CesrTA

David Rubin September 11, 2012

- Consider the positron storage ring:
 - 1. What is the threshold beam current for emittance dilution and instability due to the electron cloud ?
 - 2. What are the most effective techniques for mitigating the growth of the electron cloud ?
 - 3. What are the relevant material properties of the mitigations?
 - 4. How do we extrapolate our findings to other machines ?

- To address the first question (emittance dilution threshold ?)
 - Create low emittance (both horizontal and vertical) CESR configuration so that we can explore the beam physics in the appropriate regime =>
 - Superconducting damping wigglers to reduce emittance
 - Instrumentation for beam based measurement and optics correction, to minimize residual coupling and dispersion
 - Instrumentation for measuring emittance
 - Develop techniques for generating an electron cloud of arbitrary (ring averaged) density
 - Instrumentation to measure emittance growth and instabilities as a function of the cloud density

- To address the second (effectiveness of mitigations ?)
 - Detectors for measuring local electron cloud density in a controlled environment including:
 - Flux of synchrotron radiation
 - External magnetic field (dipole, quadrupole, wiggler, drift)
 - Vacuum chamber geometry and surface treatment
 - Beam energy, current and bunch configuration
 - (Retarding field analyzers, shielded pickups, TE wave)
- And the third (material properties ?)
 - Detectors that can provide temporal information about the growth and decay of the cloud
 - (Shielded pickups and time resolving RFAs)

Electron Cloud

- Synchrotron radiation photons strike chamber walls emitting photo-electrons.
- Electrons are accelerated by the circulating positron bunches into the opposite wall, producing secondaries
- Interaction of the positron beam with the accumulating cloud generates instabilities and dilutes vertical emittance

- Physics of the electron cloud is incorporated into models
 - The "Complete" model includes
- 1. Emission of photons from circulating positrons
- 2. Tracking of photons to the vacuum chamber. Generation of a photoelectron, or a reflection. If reflected continue tracking.
- 3. Simulation of the emission of photoelectrons at the photon-wall absorption point.
- 4. Evaluation of forces that act on the electrons (from the beam, space-charge and external fields).
- 5. Application of forces to the electrons and propagation of electron trajectories.
- 6. Simulation of secondary emission as the electrons hit the walls of the chamber.
 - Many details are parameterized in the model:
 - Dependence of photon scattering angle on chamber surface (roughness). (Experimental program to verify reflectivity model is underway – Reflectivity collaboration)
 - Quantum efficiency, angular and energy distribution of photo-electrons depends on photon energy and chamber surface properties
 - Secondary emission depends on primary energy and incident angle as well as surface chemistry
- Measurements inform the models and constrain the parameters
- The models are the basis of the simulations that predict storage ring performance

CESR Conversion

- Reconfigure CESR layout for low emittance operation
- Develop/install instrumentation for measuring electron cloud
 - Retarding field analyzers, measurement of local density, spatial and energy distribution of the cloud
 - Shielded pickups local measurement of time evolution of the cloud
 - TE-wave semi-local measurement of density
 - Bunch dependent tune shifts (global measure of cloud density)
- Develop/install instrumentation for tuning low emittance (correcting β-phase, coupling, dispersion) and measuring effect of cloud on the beam
 - High bandwidth/high precision beam position monitors
 - Turn by turn/bunch by bunch x-ray beam size monitor (to measure vertical emittance)
- Deploy survey reference grid for routine magnet alignment
- Develop/install instrument for direct measurement of SEY of materials in storage ring environment

September 11, 2012

Preserve compatibility with CHESS x-ray operation.

- Transition from CesrTA low emittance single beam optics, to CHESS electron/positron configuration must be routine (1-2 hours)
- Gate valves suitably deployed to minimize effect on CESR vacuum and CHESS operation when swapping test chambers

Machine Layout, Optics and Instrumentation for Low Emittance operation

- CESR lattice has long dipoles and a relatively low density of quadrupoles
 => relatively high emittance
- To attain low emittance we rely on damping wigglers
- At 2GeV, the 12, 1.3m long, 1.9T superconducting wigglers, decrease radiation damping time by 10 from 0.5 secs to 50 msec.
 - => 4 fold reduction in horizontal emittance *providing* we can eliminate dispersion
- To that end we re-locate 6 wigglers from arc to L0 straight.
- And design optics with the appropriate constraints

Flexible magnetic optics

All 100 quadrupoles and 78 sextupoles are independently powered

More than a dozen distinct lattice configurations for operation at energies from 1.8 - 5.3 GeV have been implemented and used for various studies

CESR Conversion

with SPU, RFA, TE-wave – dipole RFA

Damping wigglers redeployed to zero dispersion straight

3840511-040

Wigglers instrumented with mitigations and RFAs

Precision beam position monitors

Turn by turn/bunch by bunch ~10 micron single pass precision

Routine tuning for low emittance is essential to the experimental program.

Beam based characterization of machine optics depends on high bandwidth/high precision beam position monitors.

Upgrade to digital readout electronics completed 2010

Xray beam size monitor

Xray beam size monitor

- Measure vertical beam size to \sim 10 microns => vertical emittance
- Turn by turn/bunch by bunch to 4 ns => bunch dependent emittance

Helium or Vacuum

Basic Setup

Visible light beam size monitor

Visible light beam size monitor

- Double slit interferometer => horizontal beam size (emittance and energy spread)
- Streak camera => bunch length

Visible light beam size monitor

Schematic of visible light optics

Optical path length 17m from source at B48 to camera

- Wigglers relocated to zero dispersion straight. (L0)
- Survey reference system established, and magnet alignment completed
- Instrumention deployed for tuning low emittance with capability to measure
 - Turn by turn position
 - Width, height, length of single bunch
 - And turn by turn and bunch by bunch measure of vertical size

Instrumentation for measuring electron cloud and characterizing mitigations

Retarding field analyzers

Local measurement of time averaged flux of electrons into wall of chamber

- Measures the energy spectrum of the time-average cloud current which impacts the chamber wall.
- Most devices are segmented, so that some position information is also available.
- Placed in drifts, dipoles, quadrupoles, and wigglers.
- In chambers with mitigations, RFAs measure their effectiveness

September 11, 2012

Retarding field analyzers

Four wigglers are instrumented with RFAs Bare Cu Groove tips/valley radius < 0.002" !! **TiN** coated Grooves **Clearing electrode** Each wiggler has three RFAs SCW Magnet Poles (Irons) #2 (RFA #1 1 10 -800 -400 -200 200 -600 400 600 800

3840511-267

Clearing electrode

Grooved copper insert

September 11, 2012

Shielded pickup

Shielded pickups have nanosecond temporal resolution and inform time development and decay of cloud

Experimental region 15W

3840511-055

Chambers with various mitigations are tested in 15W and 15E regions => providing comparison in standardized synchrotron radiation environment

Electron Cloud Instrumentation

with SPU, RFA, TE-wave – dipole RFA

Mitigation	Drift	Quadrupole	Dipole	Wigglor	Institutions Providing	
wittigation				vv iggier	Chambers	
Al	 ✓ 	 ✓ 	 ✓ 		CU, SLAC	
Cu	~			~	CU, KEK, LBNL,	
Cu					SLAC	
TiN on Al	 ✓ 	✓	~		CU, SLAC	
TiN on Cu	>			~	CU, KEK, LBNL,	
					SLAC	
Amorphous C on Al	 ✓ 				CERN, CU	
Diamond-like C on Al	 ✓ 				CU, KEK	
NEG on SS	 ✓ 				CU	
Solenoid Windings	 ✓ 				CU	
Fins w/TiN on Al	 ✓ 				SLAC	
Triangular Grooves on				~	CU, KEK, LBNL,	
Cu				•	SLAC	
Triangular Grooves			~			
w/TiN on Al			•		CO, SLAC	
Triangular Grooves					CU, KEK, LBNL,	
w/TiN on Cu					SLAC	
Clearing Electrode				~	CU, KEK, LBNL,	
				-	SLAC	

Ecloud model – SEY measurement

Direct measurement of secondary emission yield, including angular and energy dependence and the effect of beam processing

CesrTA Program Review - Introduction

- Contributions to ILC DR design 2012
 - Specification of vacuum chamber and mitigations for the ILC damping ring, based on CesrTA measurements
 - Electron cloud simulation codes
 - Developed in parallel to CesrTA experimental program,
 - Benchmarked against CesrTA data
 - ⇒That demonstrate that with the recommended mitigations, the electron cloud density will be well below threshold for emittance blowup
 - Emittance tuning methodology developed for CesrTA is used to establish damping ring alignment and instrumentation specifications

- Intra-beam scattering
 - Tuning techniques routinely yield ~ 10-15 pm-rad vertical emittance
 - Instrumentation for measuring multi-bunch size and spectra is well suited to investigate collective effects (not just electron cloud)
 - In low emittance CesrTA, 2GeV optics, intra-beam scattering makes significant (measurable) contribution to equilibrium beam size
 - Measurements with both particle species allow us to distinguish electron cloud, ion, "other" effects

And we have investigated IBS in some detail (2011-2012)

- Nearly 240 days of dedicated studies time (2008 – 2012)
- Approximately one dozen lattice configurations implemented, tuned, tested
- With many dozens of "knobs" to adjust coupling, dispersion, horizontal & vertical emittance, beta …
- Experiments at 1.8, 2.1, 2.3, 3.0, 4.0, 5.3 GeV with both electrons and positrons
- Extensive measurements of ecloud, and low emittance beam physics

- Instrumentation John Sikora
- SEY and RFA studies Walter Hartung
- Shielded Pickup studies Jim Crittenden
- Electron cloud beam dynamics studies Gerry Dugan
- Emittance tuning Jim Shanks
- Intra-beam scattering Mike Ehrlichman
- CesrTA Collaboration Mike Billing
- Super KEK-B ecloud mitigation and instrumentation John Flanagan
- Future plans D. Rubin

Thank you for your attention

- Exploit damping wigglers to reduce emitttance
- At 2.0 GeV, 12-1.3m long 1.9T superconducting wigglers increase radiation damping rate 2/sec to 20/second.
- If the wigglers are in a zero dispersion straight, there is an (almost) corresponding decrease in horizontal emittance.

Not quite because the wigglers themselves generate dispersion internally.

• =>2.5 - 3 nm-rad

Electron cloud

- Mitigation
 - Material properties: SEY, QE, beam processing, durability
- Modeling
 - Cloud growth and beam-cloud interactions
- Dynamics
 - Cloud induced tune shift, emittance dilution, instability

To answer the question: For a given vacuum chamber design, what is the threshold current for emittance dilution and instability from the electron cloud?

• Emittance tuning

- To determine sensitivity of low emittance beams to electron cloud effects, in a variety of lattice configurations (beam energy, horizontal emittance etc) we need set of beam based measurements and correction techniques for routine application
- Requires precision bpm to measure residual coupling and vertical dispersion, and beam size monitors for measuring emittance and a good understanding of systematic measurement errors
- Collective effects
 - While the electron cloud has been the principle focus of the effort, CesrTA is now well instrumented for exploring other collective effects including intr-beam scattering, fast ion instability, and limits to ultra-low emittance operation

	Drift	Quad	Dipole	Wiggler	VC Fab
AI	\checkmark	\checkmark	\checkmark		CU, SLAC
Cu	~			~	CU, KEK, LBNL, SLAC
TiN on Al	✓	\checkmark	\checkmark		CU, SLAC
TiN on Cu	~			~	CU, KEK, LBNL, SLAC
Amorphous C on Al	✓				CERN, CU
NEG on SS	\checkmark				CU
Solenoid Windings	\checkmark				CU
Fins w/TiN on Al	\checkmark				SLAC
Triangular Grooves on Cu				~	CU, KEK, LBNL, SLAC
Triangular Grooves w/TiN on Al			\checkmark		CU, SLAC
Triangular Grooves w/TiN on Cu				\checkmark	CU, KEK, LBNL, SLAC
Clearing Electrode				\checkmark	CU, KEK, LBNL, SLAC

- Goals of the CesrTA R&D program
- Emittance tuning
- Electron cloud research
- Intra-beam scattering
- ILC positron damping ring
- CESR conversion
- Summary and plan for the day