

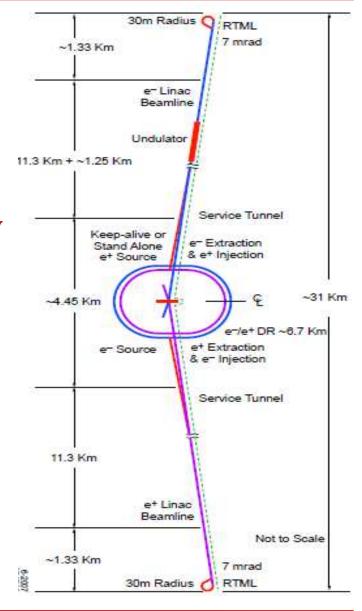
Cornell University Laboratory for Elementary-Particle Physics

Testing Superconducting RF Cavities of the Highest Field Gradients for the International Linear Collider

Fangfei Shen

Massachusetts Institute of Technology

Advisors: Zachary Conway and Matthias Liepe


Cornell University

Cornell Laboratory for Accelerator-based Sciences and Education

ILC and SRF

- ILC = International Linear Collider
- The ILC is a proposed electronpositron collider that uses
 superconducting radio-frequency (SRF) cavities for acceleration
 - ~16,000 SRF niobium cavities are needed
 - All cavities must reach accelerating gradients of $E_{acc} = 35$ MV/m during tests

Cavity Terminology

- **Q**₀ = cavity's **intrinsic quality factor**
 - High Q₀ is desired → indicates efficient performance - Great: Q₀ ≈ 10¹⁰ or 10¹¹
- **Quench** = the transition from super- to normal conducting, often caused by unwanted heating
 - It becomes prohibitively harder to excite normal conducting cavities to high E_{acc}
- Good cavity preparation is essential for high quality factors *and* for getting to high E_{acc}

- <u>Defects</u> and <u>impurities</u> on the cavity surface can lower Q_0 and cause quenching
 - Increases the surface resistance of niobium
 - Causes high RF losses that generate heat
 - With enough heat, the cavity quenches
- Common procedures to get rid of defects
 - Chemical treatments
 - Clean assembly
 - High pressure rising
 - Baking

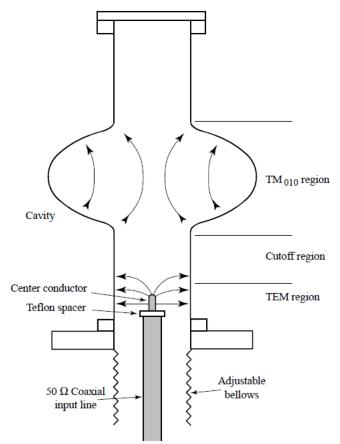
- Chemical treatments use acid solutions to etch away the outer layers of niobium
 - Buffer chemical polish (BCP) is a rough etch
 - Electropolish (EP) is a finer, smoother etch
- There exists a proposal that only BCPs are needed for large grain cavities
- BCPs and EPs use Hydrofluoric Acid
 → undergraduates must stay away!

Clean Room Procedures

• Cavity assembly


- Always done in the clean room to minimize the number of particulates that enter the cavity
- High pressure rinsing (HPR)
 - Performed in clean room
 - Spray interior of cavity with jets of ultrapure water at 1000 psi
 - This dislodges loose particulates in the cavity

Cornell University Laboratory for Elementary-Particle Physics


Cavities Bakes

- Bakes are performed for freshly electropolished cavities
 - Baking reduces the surface resistance of niobium
 - All bakes performed for this project were at 110°C, but higher-temperature bakes at ~800°C are also common

- Cavity Testing
- Cavities are tested in a liquid helium bath
- Measurements are made through input and output power couplers
 - The output power probe is coupled to the cavity very weakly
 - We want the input power probe to be unity coupled to the cavity for tests
 - Probe length is semi-adjustable during tests
- Q₀ values are obtained at various E_{acc} values to create a Q-curve

- Three single-cell cavities were tested
 - AES-2
 - NR1-2
 - LR1-5
- All tests suggested high Q's, but the only Qcurve obtained was from AES-2
- Difficulties with coupling prevented us from obtaining Q-curves for NR1-2 and LR1-5

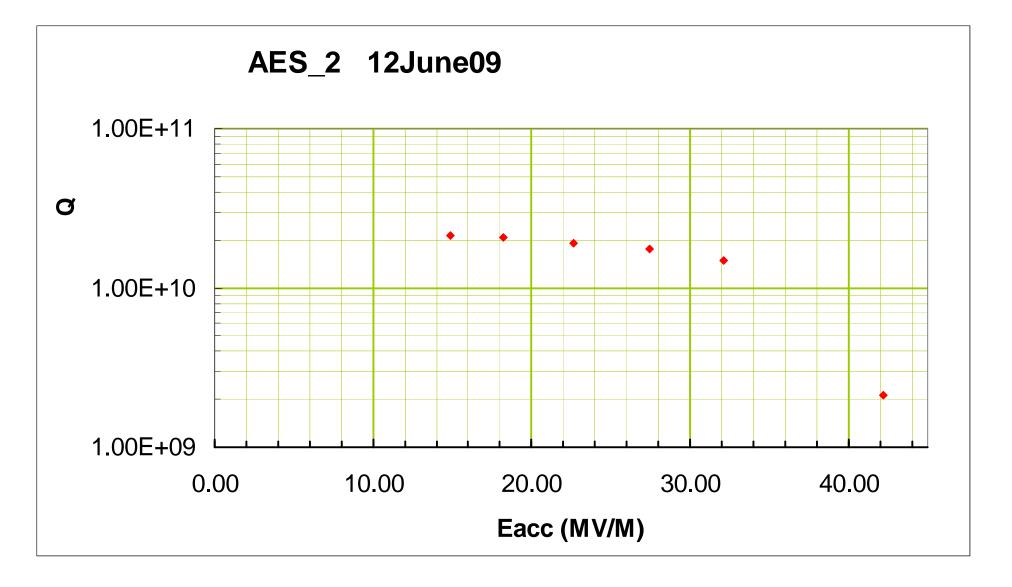
• NR1-2 Cavity Test:

Input coupler's probe length was too long → cavity was always overcoupled

Notes on the Tests

- Estimated a low-field Q of over 8×10^{10}
- LR1-5 Cavity Test:
 - Could not unity couple to the cavity
 - Measured Q-value were: 2.4×10^{10} and 8.9×10^{9}
 - This was a large-grain reentrant cavity that had only received a BCP

• AES-2 Cavity Test:


– Q curve looked good: Q-values around 10^{10}

Notes on the Tests

- We were able to get above $E_{acc} = 42 \text{ MV/m}$
- Not enough liquid helium to finish the Q slope

Cornell University Laboratory for Elementary-Particle Physics

AES-2 Q-Curve