
Evaluation of a New Cavity Focusing Theory

Robin Bjorkquist
Physics Department, Reed College, Portland, OR, 97202

(Dated: December 14, 2008)

This report compares a new derivation of a transport matrix for an accelerating
cavity following [1] to a previously published matrix theory [2]. I find that the the
two theories are equivalent in the interior section of the cavity. The new theory
does not yet fully account for the motion of particles through the fringe field regions
at the cavity entrance and exit; by addressing this aspect of the problem, it might
be possible to produce a matrix that differs from and improves upon the currently
accepted matrix theory. A program is presented that can be used to compare the
results of the matrix theories to simulated particle trajectories, in order to test their
performance under various initial conditions.

I. INTRODUCTION

An accelerating cavity is a hollow metal structure that supports standing or traveling
radio-frequency electromagnetic waves. The longitudinal electric field within the cavity
transfers energy to bunches of particles as they pass through, thereby accelerating the beam.
However, the cavity also influences the radial motion of particles in the beam. We are
interested in the radial motion of particles as they pass through the cavity; only motion in
one dimension is considered, in the plane that contains the axis of the cavity.

For the particular mode that is excited in accelerating cavities, the electric field has radial
and longitudinal components, and the magnetic field has only an angular component. The
longitudinal electric field causes acceleration. The other field components cause a radial force
on the beam. The cavity consists of a series of identical cells. The periodic structure of the
cavity paired with the oscillations of the fields cause particles to experience an oscillatory
radial force as they pass through the cavity. As a result of this force, particles move along
oscillatory paths. Particles experience an inward force when they are farther from the axis,
and an outward force when they are closer to the axis. Because the radial force is stronger
farther from the axis, there is a net inward force on the beam—this produces the cavity
focusing effect.

The goal of a cavity focusing theory is to derive a transport matrix for the cavity: when
the initial coordinates of a particle (before the cavity) are multiplied by the transport matrix,
the result is the corresponding coordinates of the particle after it emerges from the other side
of the cavity. Such matrices allow for easy calculation of beam characteristics throughout
the accelerator structure.

It is important to be able to simulate the behavior of the beam under various conditions
because accelerators must be carefully designed to produce needed beam characteristics. A
thorough understanding of the effects of all accelerator elements, including the accelerating
cavities, improves our ability to control the beam and produce desirable beam qualities, such
as small radial size.
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II. PREVIOUS CAVITY FOCUSING THEORY

In 1994, J. Rosenzweig and L. Serafini published a cavity focusing theory [2]. Here, I para-
phrase their derivation. In places, I have added additional explanation and interpretation
beyond what appears in the paper.

The derivation proceeds through the following steps: First, they write the radial force
experienced by particles in the cavity in terms of the axial electric field. Then, they present
a general form for the axial electric field that can represent both standing and traveling
waves. They calculate the average radial force over one cavity cell, following a procedure
developed in [3]. Finally, they write and solve an averaged equation of motion, producing a
transport matrix.

According to the Lorentz force law, the radial force on a particle in an accelerating cavity,
where E = Err̂ + Ez ẑ and B = Bφφ̂, is given by

Fr = q(Er − vzBφ). (1)

However, by making certain assumptions, Er and Bφ may be written in terms of the accel-
erating field Ez on the axis of the cavity. Those assumptions are that the radial position
r is small (and so may be treated only to first order), and that the particle is traveling
at relativistic speeds, so that v ≈ vz ≈ c. Maxwell’s equations provide the necessary link
between the different field components. In cylindrical coordinates (and in vacuum),

∇ · E = 0 =⇒ 1

r

∂

∂r
[rEr(r, z, t)] +

∂

∂z
[Ez(r, z, t)] = 0. (2)

Integrating the equation with respect to r, and disregarding terms above first order in r, we
get

rEr(r, z, t) =

∫ r

0

−r ∂
∂z

[Ez(r, z, t)] dr ≈ −
1

2
r2 ∂

∂z
Ez(0, z, t). (3)

Similarly,

∇×B =
1

c2

∂E

∂t
=⇒ 1

r

∂

∂r
(rBφ(r, z, t)) =

1

c2

∂

∂t
Ez(r, z, t) (4)

yields the relation

Bφ(r, z, t) =
1

c2

r

2

∂

∂t
Ez(0, z, t). (5)

In this way, we may write the radial force in terms of the axial accelerating field:

Fr ≈ q

(
−r

2

∂

∂z
Ez − vz

1

c2

r

2

∂

∂t
Ez

)
, (6)

where, from now on, Ez is the field at r = 0. Applying the chain rule ( d
dz

= ∂
∂z

+ 1
vz

∂
∂t

) and
then the high-energy approximation that vz = c, we get

Fr ≈ −
qr

2

(
d

dz
+

1

vz

(
v2
z

c2
− 1

)
∂

∂t

)
Ez ≈ −

qr

2

d

dz
Ez. (7)

The accelerating field profile for a traveling wave in an accelerator cavity can be written
as the product of a periodic function (dependent on the geometry of the cavity) and a
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sinusoidal traveling wave with phase velocity ω/k = c, to match the particle velocity:

Ez = E0Re


∞∑

n=−∞

bne
−i 2πn

d
z

︸ ︷︷ ︸
periodic, with period d

traveling sinusoidal︷ ︸︸ ︷
ei(ωt−kz)

 (8)

where d is the length of one cavity cell. This can be rewritten as

Ez = E0Re

[
∞∑

n=−∞

bne
i(ωt−knz)

]
, (9)

where kn = k + 2πn
d

. This is the Floquet form used by Rosenzweig and Serafini.
A standing wave may also be represented in Floquet form. In general, a π mode standing

wave in an accelerator cavity may be represented by

Ez = E0A(z) cosωt = E0Re
[
A(z)eiωt

]
(10)

where A(z) is a real function with periodicity of length 2d. If we choose to place the
origin z = 0 at the center of a cavity cell, then the symmetry of the cavity demands that
A(−z) = A(z). In addition to periodicity of length 2d, the accelerating field is opposite in
adjacent cavity cells (this is what is meant by a π mode standing wave): A(z+ d) = −A(z).
We can write

A(z) =
∞∑

n=−∞

ane
−inπ

d
z (11)

with the following restrictions on the an:

A(z) real =⇒ a−n = a∗n
A(z) even =⇒ an real
A(z + d) = −A(z) =⇒ an = 0 for even n.

(12)

Then, we may rewrite the expression for A(z) with n replaced by 2n+ 1, to include only the
non-zero terms. The field is thus

Ez = E0Re

[
∞∑

n=−∞

a2n+1e
−i(2n+1)π

d
zeiωt

]
= E0Re

[
∞∑

n=−∞

a2n+1e
i(ωt−π

d
z−2nπ

d
z)

]

= E0Re

[
∞∑

n=−∞

a2n+1e
−i 2πn

d
zei(ωt−kz)

]
, (13)

noting that k = π
d

for a π mode standing wave. We see that we have recovered the Floquet
form, with bn = a2n+1. Because the an are real, so are the bn, and because a−n = an, we
have

b−(n+1) = a−(2n+1) = a2n+1 = bn, (14)

the relationship mentioned in Ref. [2]. The bn are real because we placed z = 0 at the center
of a cavity cell; similarly, for a traveling wave, the bn will be real if z = 0 is at the center
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of a cavity cell and we specify that the maximally accelerated particle has ωt = kz (this
is equivalent to choosing the placement of the time origin so that at t = 0 the maximally
accelerated particle is at z = 0).

Now that we have an expression for the accelerating field, we calculate the average radial
force. For a particle with ωt = kz + ∆φ,

Ez = E0Re

[
∞∑

n=−∞

bne
i(∆φ− 2πn

d
z)

]
. (15)

The radial force experienced by the particle is given by Eq. (7):

Fr = −qr
2

d

dz
Ez =

qE0π

d
rRe

[
∞∑

n=−∞

inbne
i(∆φ− 2πn

d
z)

]
. (16)

This radial force is oscillatory, with a period equal to one cavity cell. Thus, a particle passing
through the cavity undergoes small radial oscillations about an equilibrium position r0. The
cavity has a focusing effect on the beam, so r0 changes as the beam moves through the cavity.
We are more interested in the evolution of r0 than in the details of the small oscillations. For
this reason, it is of interest to calculate the average radial force. Ref. [3] details a two-stage
process to obtain the average force. Although r0 is not constant, it changes little over the
course of one cavity cell. Thus, we may treat r0 as constant in order to obtain the trajectory
for one period of the small oscillation. Then we average the force over that trajectory. The
first step is to replace r by r0 in the expression for the force, and solve for the motion of the
particle. To find the equation of motion, use

Fr =
dpr
dt

=
d

dt
(γmvr). (17)

We assume that γ changes little in one cavity cell, so that

d2r

dt2
=

Fr
γm

=⇒ d2r

dz2
=

Fr
γmc2

, (18)

where we have used vz = dz
dt
≈ c to rewrite the time derivative as a space derivative. Using

Eq. (16) for Fr, with r0 in place of r, we have

r′′ =
qE0π

γmc2d
r0Re

[
∞∑

n=−∞

inbne
i(∆φ− 2πn

d
z)

]
. (19)

A particular solution to this differential equation is

r = r0

1− qE0d

4πγmc2
Re

 ∞∑
n=−∞
n6=0

i
bn
n
ei(∆φ− 2πn

d
z)


 . (20)

To get the general solution, we would need to add the solution to the corresponding ho-
mogeneous differential equation r′′ = 0; however, here we use this particular solution, with
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average radial position r0. Next, we average the force along this path for one period of the
cavity structure:

〈Fr〉 =
1

d

∫ d/2

−d/2

qE0π

d
r0

1− qE0d

4πγmc2
Re

 ∞∑
n=−∞
n6=0

i
bn
n
ei(∆φ− 2πn

d
z)


Re

[
∞∑

m=−∞

imbme
i(∆φ− 2πm

d
z)

]
dz

= −(qE0)2

4γmc2
r0

1

d

∫ d/2

−d/2

∞∑
n=−∞
n6=0

bn
n

sin

(
∆φ− 2πn

d
z

) ∞∑
m=−∞

mbm sin

(
∆φ− 2πm

d
z

)
dz

= −(qE0)2

4γmc2
r0

1

d

∫ d/2

−d/2

∞∑
n=−∞
n6=0

bn
n

[
cos

(
2πn

d
z

)
sin(∆φ)− sin

(
2πn

d
z

)
cos(∆φ)

]

×
∞∑

m=−∞

mbm

[
cos

(
2πm

d
z

)
sin(∆φ)− sin

(
2πm

d
z

)
cos(∆φ)

]
dz

= −(qE0)2

4γmc2
r0

1

2

∞∑
n=−∞
n6=0

b2
n

(
sin2(∆φ) + cos2(∆φ)

)︸ ︷︷ ︸
from m = n

+ bnb−n
(
cos2(∆φ)− sin2(∆φ)

)︸ ︷︷ ︸
from m = −n


= −(qE0)2

8γmc2
r0

∞∑
n=1

(
b2
n + b2

−n + 2bnb−n cos(2∆φ)
)
. (21)

For notational simplicity, define

η(∆φ) =
∞∑
n=1

(
b2
n + b2

−n + 2bnb−n cos(2∆φ)
)
, (22)

so that

〈Fr〉 = −η(∆φ)
(qE0)2

8γmc2
r. (23)

Note that η(∆φ) is always positive. The minus sign indicates that this is a focusing force,
as we expected. This average force will be used to solve for the motion we care about—not
the small oscillations as the particle passes through the cavity cells, but the more gradual
focusing of the particle trajectory.

The next step of the derivation is to write and solve equations for the radial motion of
the particle. Now we are interested in the trajectory for more than just one cavity cell, so
we no longer treat γ as constant:

Fr =
d

dt
(γmvr) = c

d

dz

(
γmc

dr

dz

)
= γ′mc2r′ + γmc2r′′ (24)

r′′ +

(
γ′

γ

)
r′ − Fr

γmc2
= 0. (25)

This is an exact equation of motion, but we want an equation that takes the average force
and returns an average trajectory. To accomplish this, average the entire equation over one
period: 〈

r′′ +

(
γ′

γ

)
r′ − Fr

γmc2

〉
= 0. (26)
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Because Eq. (25) is true, so is Eq. (26). With some further assumptions, however, we may
formulate the equation in a more useful form (one that we can solve). The first assumption
is that γ changes very little over one cavity cell, so that we can pull it out of the average.
The second assumption is that γ increases fairly smoothly, so that we may write 〈γ′r′〉 as
〈γ′〉〈r′〉. Furthermore, we use the approximations γ′ ≈ 〈γ′〉 and γ′′ ≈ 〈γ′′〉. Applying these
changes and putting in 〈Fr〉 from Eq. (23), we get

r′′ +

(
〈γ′〉
γ

)
r′ +

η(∆φ)(qE0)2

8(γmc2)2
r = 0. (27)

Because γmc2 is the particle energy, d
dz

(energy) = force, and the average force is predomi-
nantly longitudinal,

〈γ′〉 =
1

mc2
〈qEz〉 =

qE0 cos(∆φ)

mc2
, (28)

using b0 = 1, where 〈Ez〉 comes from averaging Eq. (15). Thus, we may rewrite Eq. (27) as

r′′ +

(
γ′

γ

)
r′ +

η(∆φ)

8 cos2(∆φ)

(
γ′

γ

)2

r = 0, (29)

with γ′ denoting 〈γ′〉. The solution to Eq. (29) is

r = ri cos(α) + r′i
cos(∆φ)√
η(∆φ)/8

γi
γ′

sin(α), (30)

where

α ≡
√
η(∆φ)/8

cos(∆φ)
ln

(
γf
γi

)
. (31)

In matrix form, this is

(
r
r′

)
=

 cos(α)
cos(∆φ)√
η(∆φ)/8

γi
γ′

sin(α)

−
√
η(∆φ)/8

cos(∆φ)

γ′

γf
sin(α)

γi
γf

cos(α)

(rir′i
)
. (32)

III. A NEW CAVITY FOCUSING THEORY

In this section, I present the derivation of a new matrix theory, developed in [1] as an
alternative to [2].

Define the coordinate a = pr
p0

. Here, pr is the radial momentum of the particle, and p0

is the momentum the particle would have if it were moving straight along the axis, with no
radial component to its motion. For small r and pr, p0 ≈ pz. Thus, to first order,

r′ =
dr

dz
=
pr
pz
≈ pr
p0

= a. (33)

We seek equations of motion for the coordinates r and a. To that end, take the derivative
of a:

a′ =
d

dz

(
pr
p0

)
=

1

p0

dpr
dz
− pr
p2

0

dp0

dz
=

1

p0

(
1

vz

dpr
dt
− adp0

dz

)
. (34)
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Note that with the added assumption that vz = c, this equation is the same as Rosenzweig
and Serafini’s equation of motion, Eq. (25). Indeed, the next step in the derivation invokes
the high-energy approximation (as well as the linearity of the fields in r) that

dpr
dt

= Fr ≈ −
qr

2

d

dz
Ez, (35)

just as in Eq. (7). A possible area for improvement in this theory is the inclusion of 1
γ2

terms in the expression for the radial force, but we have not yet incorporated or tested this
change. Inserting Eq. (35) into Eq. (34), we can write

a′ = − 1

p0

(
qr

2vz

dEz
dz

+ a
dp0

dz

)
. (36)

Finally, note that
d2p0

dz2
=

d

dz

(
q

v0

Ez

)
=

q

v0

dEz
dz
− q

v2
0

dv0

dz
Ez. (37)

Under the assumption that r and a are small, v0 = vz. Further, dv0
dz

may be neglected in the
relativistic limit. Thus, we can rewrite Eq. (36) without explicit reference to the fields:

a′ = −1

p

(r
2
p′′ + ap′

)
, (38)

where we write p0 as p for simplicity.
Next, change coordinates from

(
r, a
)

to
(
u, u′

)
, with u defined as

u = r
√
p. (39)

The derivatives of u are

u′ = a
√
p+

rp′

2
√
p

(40)

u′′ = a′
√
p+

ap′
√
p
− rp′2

4p3/2
+

rp′′

2
√
p

(41)

and a′ is given by Eq. (38), so we get

u′′ = − 1
√
p

(r
2
p′′ + ap′

)
+
ap′
√
p
− rp′2

4p3/2
+

rp′′

2
√
p

= − rp′2

4p3/2
= −u

(
p′

2p

)2

. (42)

At this point in the derivation, we average the equation over one cavity cell, as Rosenzweig
and Serafini did with Eq. (25). Assuming that the energy change in one period is small, we
may treat p as a constant and pull it out of the average, yielding

u′′ = −u
(

∆2

4p2

)
, ∆ ≡

√
〈p′2〉, (43)

where u and u′′ characterize the averages 〈u〉 and 〈u′′〉. We make the further assumption
that p′ is constant, with p′ ≈ 〈p′〉 ≡ Ω. Then we may replace the z derivatives with p
derivatives, using d

dz
= Ω d

dp
:

d2u

dp2
= −u(∆/Ω)2

4p2
. (44)
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Now change back to r coordinates. Substituting u = r
√
p into Eq. (44), we get

d2

dp2
(r
√
p) = −r√p(∆/Ω)2

4p2

d2r

dp2

√
p+

dr

dp

1
√
p
− r

4p3/2
= −r (∆/Ω)2

4p3/2

d2r

dp2
+

1

p

dr

dp
= −r ε

2

p2
, (45)

where

ε ≡
√

(∆/Ω)2 − 1

4
(46)

is zero for constant p′ and therefore characterizes the variations in the cavity’s acceleration.
Eq. (45) is analogous to Rosenzweig and Serafini’s averaged equation of motion, Eq. (29).
The solution to Eq. (45) is

r = A cos(ε ln p) +B sin(ε ln p), (47)

where A and B are arbitrary constants. In matrix form,(
r
a

)
=

(
1 0

0 εp
′

p

)(
cos(ε ln p) sin(ε ln p)
− sin(ε ln p) cos(ε ln p)

)(
A
B

)
. (48)

Here, p′ is still taken to be the constant Ω. However, it may be possible to use the actual
p′ at a specific location in the first and last cells of a cavity to improve the accuracy of the
theory. By inverting this matrix equation, we can solve for A and B in terms of r and a:(

A
B

)
=

(
cos(ε ln p) − sin(ε ln p)
sin(ε ln p) cos(ε ln p)

)(
1 0

0 1
ε
p′

p

)(
r
a

)
. (49)

This is true everywhere, but if we choose to evaluate A and B at the initial position, then
we can rewrite Eq. (48) in terms of the initial coordinates:

(
r
a

)
=

(
1 0

0 εp
′

p

) cos
(
ε ln p

pi

)
sin
(
ε ln p

pi

)
− sin

(
ε ln p

pi

)
cos
(
ε ln p

pi

)(1 0

0 1
ε
p′

pi

)(
ri
ai

)
. (50)

IV. COMPARISON OF THE TWO THEORIES

We have now derived two transport matrices for the periodic section of an accelerating
cavity. The Rosenzweig and Serafini matrix: cos(α) cos(∆φ)√

η(∆φ)/8

γi
γ′ sin(α)

−
√
η(∆φ)/8

cos(∆φ)
γ′

γf
sin(α) γi

γf
cos(α)

 , α =

√
η(∆φ)/8

cos(∆φ)
ln

(
γf
γi

)
(51)
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and the Hoffstaetter matrix (with the three component matrices multiplied together, to
make the comparison clear): cos

(
ε ln

pf
pi

)
1
ε
pi
p′ sin

(
ε ln

pf
pi

)
−ε p′

pf
sin
(
ε ln

pf
pi

)
pi
pf

cos
(
ε ln

pf
pi

) . (52)

There are two differences between these matrices. First, the Rosenzweig and Serafini matrix
uses γ where the Hoffstaetter matrix uses p. However, because p and γ are proportional in
the relativistic limit (p = γmv ≈ γmc),

γf
γi

and
pf
pi

are equivalent for high-energy particles.

The second difference between the two matrices is that the Rosenzweig and Serafini

matrix has

√
η(∆φ)/8

cos(∆φ)
where the Hoffstaetter matrix has ε. To compare these two constants,

we need to calculate ε for the Floquet form of the accelerating field in Eq. (9). The constant

ε is defined in Eq. (46). Because p′ = dp
dt

= q
v
Ez,

〈p′2〉
〈p′〉2 is the same as 〈E

′2
z 〉

〈Ez〉2 . For a particle

with phase ∆φ,

〈Ez〉 =

〈
E0

∞∑
n=−∞

bn cos

(
∆φ− 2πn

d
z

)〉
= E0 cos(∆φ) (53)

and, by a calculation much like that in Eq. (21),

〈
E2
z

〉
=

〈
E2

0

∞∑
n=−∞

bn cos

(
∆φ− 2πn

d
z

) ∞∑
m=−∞

bm cos

(
∆φ− 2πm

d
z

)〉

= E2
0

(
b2

0 cos2(∆φ) +
1

2

∞∑
n=1

(
b2
n + b2

−n + 2bnb−n cos(2∆φ)
))

= E2
0

(
cos2(∆φ) +

1

2
η(∆φ)

)
, (54)

where η(∆φ) is as defined in Eq. (22). Thus we have

ε =

√
1

4

(
〈E2

z 〉
〈Ez〉2

− 1

)
=

√√√√1

4

(
E2

0

(
cos2(∆φ) + 1

2
η(∆φ)

)
E2

0 cos2(∆φ)
− 1

)
=

√
η(∆φ)/8

cos(∆φ)
, (55)

showing that the two matrices are identical.

V. THE CAVITY ENTRANCE AND EXIT

The matrices discussed so far propagate the average position and slope through the
periodic portion of a cavity array. However, to pass through the entire cavity, a particle
must pass through the fringe field regions at the entrance and exit to the cavity—regions in
which the central matrix does not apply. In [2], transport matrices for the cavity entrance
and exit are developed, and the problem of matching actual coordinates outside the cavity
to averaged coordinates inside the cavity is considered. As of this writing, [1] does not
completely account for these edge effects; however, this is an area in which it might be
possible to improve the theory.
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The Rosenzweig and Serafini treatment of the cavity entrance and exit is as follows: the
entrance region extends from well outside the cavity to the center of the first cavity cell. The
exit region in similarly defined. In making these definitions, we assume that the accelerating
field profile of the inside half of the edge cell matches that of the interior cells. Assuming
that γ and r are both constant in the edge region, we may integrate Eq. (18) with Fr given
by Eq. (7) to find the change in particle angle ∆r′:

∆r′ = − 1

γmc2

qr

2
∆Ez. (56)

The axial accelerating field Ez is zero outside the cavity, and Em cos(∆φ) at the center of
a cell, where Em is the maximum field at the center of a cell and ∆φ is the particle phase.
Thus, ∆Ez = ±Em cos(∆φ) at the entrance (exit) of the cavity, making

∆r′ = ∓qEm cos(∆φ)r

2γi(f)mc2
= ∓ γ′

2γi(f)

gr, (57)

where γ′ is as defined in Eq. (28) and g = Em
E0

is the ratio of the maximum field at the

center of a cell to the average field experienced by a maximally accelerated particle (one
with ∆φ = 0). Returning to our expression for Ez in Eq. (9), and evaluating it at z = 0
(the center of a cavity cell) and t = 0 (when the field in the center is strongest), we find that

Em = E0

∞∑
n=−∞

bn =⇒ g =
∞∑

n=−∞

bn. (58)

Eq. (57) gives the angle at the start of the periodic central section. However, the input to
the central matrix needs to be not the actual angle, but the corresponding average angle. To
make the necessary adjustment, Rosenzweig and Serafini calculate the angle of the oscillatory
path over which the force was averaged. Taking the derivative of Eq. (20), and evaluating
it at z = 0, we get

−qE0 cos(∆φ)r

2γmc2

∞∑
n=−∞
n 6=0

bn = −γ
′r

2γ
(g − b0) = − γ

′

2γ
(g − 1)r. (59)

This slope adjustment needs to be subtracted from Eq. (57) at the entrance of the cavity,
and added to Eq. (57) at the exit. The g terms cancel nicely, resulting in transport matrices
of  1 0

∓ γ′

2γi(f)

1

 (60)

for the edge regions of the cavity. The full transport matrix for the cavity is thus

 1 0
γ′

2γf
1


 cos(α)

cos(∆φ)√
η(∆φ)/8

γi
γ′

sin(α)

−
√
η(∆φ)/8

cos(∆φ)

γ′

γf
sin(α)

γi
γf

cos(α)


 1 0

− γ′

2γi
1

 . (61)
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VI. NUMERICAL INTEGRATION

We have compared the two matrix theories to each other. It is also interesting to compare
the results of both theories to actual particle trajectories. The derivation of a transport
matrix for an accelerating cavity necessarily involves making approximations. Therefore,
the resulting matrix will only yield accurate results under certain circumstances—and it is
of interest to figure out precisely what those circumstances are.

We used the CLANS program to find the electric and magnetic fields within a 7-cell
accelerating cavity; the particular geometry used is a recent version from the design stages
for Cornell’s Energy Recovery Linac (ERL). With this data as an input, I used Mathematica
to construct the time-varying fields for a π mode standing wave within the cavity and
numerically solve for the trajectory of a particle under the influence of these fields. For a
given set of initial coordinates, the program plots the actual particle trajectory, along with
the trajectories that result from applying the two matrix theories.

With this program, we have the capability to assess the quality and range of applicability
of the transport matrices. A thorough investigations of this sort will be the subject of future
work.

VII. CONCLUSION

The new cavity focusing theory results in the same central matrix as the Rosenzweig and
Serafini theory, but by means of an alternate derivation. Both derivations rely on the same
key assumptions: that r and r′ are small and that the particles move at relativistic velocities.
In addition, both derivations follow the same basic procedure: first, write equations of
motion; then, average those equations over one cavity cell; finally, solve the average equations
to obtain a transport matrix. While it does not produce a new result, the Hoffstaetter
derivation gives us a new way to approach the same problem—a way which might lead to
improvements in the theory.

There are many interesting aspects of this problem still to be addressed.
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