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This work consists of two parts. In the first part we construct the complete ex-
tension of the Minimal Supersymmetric Standard Model by higher dimensional
effective operators and then study its phenomenology. These operators encap-
sulate the effects on LHC physics of any kind of new degrees of freedom at
the multiTeV scale. The effective analysis includes the case where the multiTeV
physics is the supersymmetry breaking sector itself. In that case the appropri-
ate framework is nonlinear supersymmetry. We choose to realize the nonlinear
symmetry by the method of constrained superfields. Beyond the new effective
couplings, the analysis suggests an interpretation of the ‘little hierarchy prob-
lem’ as an indication of new physics at multiTeV scale.

In the second part we explore the power of constrained superfields in ex-
tended supersymmetry. It is known that in N' = 2 supersymmetry the gauge
kinetic function cannot depend on hypermultiplet scalars. However, it is also
known that the low energy effective action of a D-brane in an N' = 2 super-
symmetric bulk includes the DBI action, where the gauge kinetic function does
depend on the dilaton. We show how the nonlinearization of the second SUSY
(imposed by the presence of the D-brane) opens this possibility, by constructing
the global N =1 linear + 1 nonlinear invariant coupling of a hypermultiplet with
a gauge multiplet. The constructed theory enjoys interesting features, including

a novel super-Higgs mechanism without gravity.
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CHAPTER 1

INTRODUCTION

1.1 The Importance of Supersymmetry

Probably the most significant manifestation of the beauty of Supersymmetry is
that this simple idea of a symmetry that relates fermions and bosons has proven
to be one of the most fruitful proposals in theoretical high energy physics of the

last forty years.

At the level of phenomenology, supersymmetry offers a complete or partial
solution to almost all shortcomings of the Standard Model (SM). For example,
the beautiful properties of SM under renormalization are based on the fact that
it is a model of fermions and gauge bosons. However, its cornerstone, the Higgs
mechanism, is bound to the existence of a scalar mode. The Higgs scalar seems
very unnatural within the framework of the SM. It is the only scalar field and it
doesn’t share the same renormalization properties with the others. More specifi-
cally, the natural value for its mass is at the Planck scale, which would obviously
destroy the validity of the model. This puzzle comes with the name “hierarchy
problem” and it’s believed to be one of the main reasons for leaving SM behind.
The solution by supersymmetry is based on treating scalars on equal footing

with all other fields. Not only it contains a variety of scalars, degrading them



from the special role they enjoyed in SM, their normalization properties are also
no different than all other fields. Their masses scale logarithmically with the

cutoff scale which then offers a resolution to the hierarchy problem.

Another source of skepticism towards the SM comes from cosmology. There
is a set of cosmological and astrophysical observations that lead to the same
conclusion. The stable matter described by the SM, which is the matter that
surrounds us, is nothing but a tiny fraction of the full matter content of the uni-
verse. ‘Out there’, stable particles exist that we have never observed and that
are not described by the SM. The observations can also inform us about the ba-
sic properties of these particles. It comes out that they have to be massive and
weakly interacting. Once again, supersymmetry has the answer. Supersym-
metric models generically come with one stable particle that enjoys the desired

properties.

We should also mention that supersymmetry seems to complete the pro-
gram for unification of gauge interactions. The SM had the striking success of
unifying the numerous processes between particles observed in colliders (and
seeming extremely complicated in the early years of particle physics) into three
fundamental gauge interactions parametrized by three independent coupling
constants. The unification would be complete by further unifying into a single
gauge group, which would then lead us to a “Grand Unified Theory”. Unfor-
tunately it was calculated that the renormalization group (RG) equations of the
SM don’t meet at a single point for unification to occur. New degrees of free-
dom are needed to shift the RG in a way they meet. It has been shown that
the degrees of freedom brought by supersymmetry do the job and the predicted

unification occurs at around 10'® GeV.



The above arguments favor supersymmetric models as a candidate for de-
parture from the SM. It seems however that it doesn’t merely offer a model for
a successful replacement of the SM but it’s basic concepts play a fundamental
role in quantum field theory. This can be seen as follows. In a paper of 1967 by
S. Coleman and J. Mandula [6] it was shown that the most general Lie algebra
of symmetries of the S-matrix is the Poincaré algebra plus a number of Lorentz
scalar generators that form the algebra of a compact Lie group. This was a
conclusive no-go theorem about the allowed symmetries of the S-matrix and
in particular about the impossibility of a nontrivial combination of a spacetime
symmetry with an internal one. The Coleman-Mandula theorem was extremely
powerful as it was based on generic assumptions that would apply to any quan-
tum field theory. However, it was later discovered that the assumption that the
algebras need to be Lie algebras was too restrictive as one could add fermionic
generators forming what is called “graded Lie algebras”. In a paper by Haag,
Sohnius and Lopuszanski seven years later, it was shown that the only graded
Lie algebras that generate symmetries allowed by the generic assumptions of
quantum field theory are the supersymmetric algebras [7]. In a few words, the
exploration of the largest symmetry allowed by the S-matrix has inevitably led

us to supersymmetry.

Last but definitely not least, supersymmetry opens a window for the holy
grail of theoretical physics, the unification of gravity with the other three forces.
The combination of the principle that gravity is the manifestation of the curva-
ture of spacetime, coming from general relativity, and the fact that supersym-
metry is a spacetime symmetry, coming from the Haag-Sohnius-Lopuszanski
theorem above, implies that a theory with local supersymmetry is a theory of

gravity. Such a theory is called “supergravity”. Supergravities themselves ap-



pear as the low energy effective theories of various settings of string theory, the
only framework where gravity and the other forces are unified into a single and
tinite theory. In summary, following the path: Global Supersymmetry — Local
Supersymmetry — String Theory we obtain, for the first time, a complete pic-
ture of how the unification of particles and interactions works. Furthermore, the
principle of supersymmetry is built in string theory. The very first appearance
of a symmetry that exchanges bosons and fermions first appeared in the con-
text of dual models [8, 9], which is what was later reinterpreted as string theory.
Without supersymmetry, string theory would not be a consistent theory. In a
few words, the most basic ingredient of the only known path to a theory where

matter and forces are unified, is supersymmetry.

This thesis touches upon both model building in supersymmetric theories
and more formal aspects, especially related to string theory. It is then naturally
devided in two parts which are weakly related to each other and can be read

independently. It is based on publications [1, 2, 3, 4, 5].

1.2 Effective and Nonlinear Field Theory in the Minimal Su-

persymmetric Standard Model

In the first part we apply the techniques of Effective Field Theory (EFT) on
the Minimal Supersymmetric Standard Model (MSSM) and study their phe-
nomenological consequences. The MSSM is the minimal extension of the SM
and is used as a prototype model for phenomenological studies of supersym-
metry. Our method involves the addition of higher mass dimension terms in the

MSSM Lagrangian. From an EFT point of view, the appearance of such terms is



not a sign that the model is sick but rather an indication that it is valid only up
to the mass scale that suppresses those terms. Their purpose is to parametrize
the effects of any kind of new physics that might exist at a scale that is not ap-
proachable by LHC and in the same time not too high, so in the range of a few

TeV.

In a few lines, the method of our analysis is as follows. We construct the
effective Lagrangian by adding to that of MSSM nonrenormalizable terms of
higher mass dimension. These are terms that would appear in a low energy ef-
fective model of some UV renormalizable theory by integrating out degrees of
freedom above a certain mass scale M. However, in a bottom-up point of view
we don’t focus on the origin of these terms but rather on a generic analysis of
their effects. To this purpose, we choose at a first level to add to MSSM all possi-
ble mass dimension five operators that are all allowed by the gauge symmetries
and by R-parity. In this way, EFT allows us to draw conclusions that are com-
pletely model independent. For a more detailed discussion of supersymmetric

EFT, see sec. 2.

Generally this constitutes a huge set of extra free parameters, limiting the
predictability of the model. Nevertheless, many of these operators are actually
redundant as they can be eliminated by proper field redefinitions. In our analy-
sis, we perform such redefinitions reducing to a model with less parameters and
thus more distinct phenomenology. We firstly focus on the Higgs sector because
of its special importance in view of the little hierarchy problem and because its
extension by effective terms is quite restricted, facilitating drawing clear con-
clusions. After that we pass on to other couplings and processes that may be

interesting for LHC physics. Below we summarize the content of the chapters



of part L.

In chapter 3, we focus on the most general set of R-parity conserving, mass
dimension five operators that can exist in the MSSM [1]. We also employ spu-
rion superfields to include any soft supersymmetry breaking effects that these
operators parametrize. It turns out that not all of these operators are actually
independent. We perform spurion dependent field redefinitions to remove the
redundancy thus obtaining the minimal, irreducible set of dimension five op-
erators within MSSM. By incorporating further constraints coming from flavor
changing neutral currents (FCNC), we end up with the final model which we

call “MSSMs”.

In chapter 4, we go on to study the phenomenological consequences of
MSSMs [1].  One consequence is the generation of new effective interac-
tions of the type quark-quark-squark-squark with potentially large effects in
squark production compared to those generated in the MSSM, especially for the
top/stop quarks. This can be important for LHC supersymmetry searches by
direct squark production. Additional “wrong” Higgs couplings, familiar in the
MSSM at the loop level [10, 11, 12], are also generated with a coefficient that can
be larger than the loop-generated MSSM one. Again, these are largest for the
top and also bottom sector at large tan 8. Furthermore, we study the effect of the
new terms in the Higgs potential. It turns out that the mass of the Higgs can
be shifted in a way that it alleviates the little hierarchy problem. This implies
that we can obtain a novel point of view towards this apparent shortcoming of
MSSM. Instead of considering it as a weakness of the theory, we can think of it

as an indication for new massive particles at the energy range of few TeV.

Consideration about the stability of the effective potential as well as an ob-



served tan 8 suppression of the correction to the Higgs mass by five dimensional
operators leads to the inevitable inclusion of mass dimension six operators in
the Higgs sector [2]. In chapter 5, we perform this analysis insisting on a generic
approach, including all possible dimension six operators allowed by the sym-
metries of the model. In the large tang region, these two classes of operators
can have comparable contributions to the Higgs mass which implies a further

alleviation of the little hierarchy.

In chapter 6, we move on to study a different type of EFT, this time real-
ized by nonlinear supersymmetry [3]. In models of low energy SUSY breaking,
the gravitino acquires a sub-eV mass and thus it cannot be excluded from the
spectrum of the low energy model. If this model is MSSM, we have to study
couplings of the gravitino to MSSM. The “equivalence theorem”, which states
that in scenaria with very low gravitinos the latter can be effectively replaced
by their goldstino component which dominates over the dynamics, greatly sim-
plifies such studies [13]. Nonlinear supersymmetry offers then the most con-
venient formalism for studying goldstino self interactions and goldstino-matter
couplings. We use the method of constrained superfields to realize the nonlin-
ear SUSY algebra and study the most general couplings of the goldstino with
MSSM fields.

An important effect of these couplings is the increase in the mass of the
Higgs, which can be significant for a SUSY breaking scale at the range of few
TeV. This offers one more way for alleviating the little hierarchy. The difference
is that in this case we don’t even have to assume some kind of new physics at
the high scale. The SUSY breaking mechanism itself brings the correction. In

addition, we calculated the invisible decay of Higgs to neutralinos and goldsti-



nos and found that it can be comparable with the standard MSSM decay rate of
Higgs to photons. Finally, we found that, in the case that the mass of Z is larger
than that of the lighest neutralino, there is a bound on the SUSY breaking scale

at around 400 - 700 GeV coming from the invisible Z boson decay.

1.3 Dilaton - DBI couplings in N = 2 supersymmetry

In the second part of the thesis we turn towards aspects of supersymmetry
closely related to supergravity and string theory. Our target now is to under-

stand how the coupling of a D-brane to the bulk arises in field theory.

The stage that we choose to focus on is type II strings on R;; X CY5. The
geometry of the Calabi Yau manifold breaks SUSY, giving rise to a 4D N = 2 ef-
fective supergravity theory. Generically, the presence of a D-brane in such back-
ground spontaneously breaks half supersymmetry on its worldvolume giving
rise to an N = 1 + 1 supersymmetric theory where the second supersymmetry
is realized nonlinearly. The effective D-brane action is described by a Dirac-
Born-Infeld (DBI) theory. It is an effective action for the gauge multiplets of
the D-brane as well as for their coupling to the bulk fields. The latter can be
described by hypermultiplets, single-tensor multiplets or double-tensor multi-

plets. All descriptions are Poicaré dual to each other.

Reproducing this action from field theory is the main aim of this second part.
This task is nontrivial for two reasons. First, it is known that N = 2 linear su-
persymmetry, global or local, forbids a dependence of gauge kinetic terms on
hypermultiplet scalars. For instance, in N' = 2 supergravity, the scalar mani-

fold is the product of a quaternion-Kéhler manifold for hypermultiplet scalars



[14] and a Kdhler manifold of a special type for vector multiplet scalars [15]. In
global N' = 2 supersymmetry, the quaternion-Kéhler manifold of hypermulti-
plet scalars is replaced by a Ricci-flat hyper-Kéhler space [16]. Second, consis-
tency of compactification of type II strings with D-branes requires the presence
of orientifolds necessary for tadpole cancellation. These objects break super-
symmetry explicitly globally, although is still preserved locally around the D-
branes and away from the orientifold plane. It is then not clear if it is possible
to construct from field theory the action that couples the bulk and brane multi-

plets, even those that would be truncated by the orientifold projection.

The DBI action appearing in D-brane dynamics suggests that the restrictions
on the coupling between bulk and brane fields in N' = 2 supersymmetry are ex-
pected to change if (at least) one of the supersymmetries is nonlinearly realized.
This is the path that we follow. In chapter 10, we construct an N = 2 action for
the coupling of a single tensor multiplet with a gauge multiplet. This coupling
is essentially the supersymmetrization of the Chern-Simons B A F coupling of
the antisymmetric NSNS 2-form and the gauge field strength. We then impose
nonlinear realization of the second SUSY by applying a supersymmetric con-
straint on the gauge multiplet. This is the generalization for N' = 2 superspace
of the constrained superfield method used in the first part of the thesis. The re-
sulting action is invariant under NV = 1 linear + 1 nonlinear SUSY and involves
the Maxwell goldstino multiplet coupled to a single tensor multiplet [4]. If we
remove this multiplet, the action reduces to the standard super-Maxwell DBI

theory derived in the past [20, 21, 22].

We have chosen to group the bulk fields in a single tensor multiplet because

it is the only one that admits a simple off shell superspace formulation. Hy-



permultiplets also can be formulated off-shell in the context of harmonic su-
perspace but only in the expense of introducing infinite number of auxiliary
tields [23]. In any case we can always switch between hyper-, single-tensor and

double-tensor multiplets by performing Poicaré dualities.

By appropriate field redefinitions we obtain another equivalent description
of the system, in terms of the Higgs phase of N' = 1+1 QED [24, 25]. This basis re-
veals some very interesting features of the system. The goldstino multiplet com-
bines with a chiral superfield to form a N' = 1 massive vector multiplet while
the other chiral superfield remains massless. This is a novel type of super-Higgs
mechanism that does not require a gravitino (which would normally ‘eat” the
goldstino as in the standard super-Higgs mechanism). Also, at one point along
the flat direction of the potential, the vector multiplet becomes massless and the
U(1) gauge symmetry is restored. This is a known phenomenon from D-brane
dynamics, where the U(1) world-volume field becomes generically massive due

to the CS coupling.

Having constructed the N' = 1+ 1 DBI action, the next step would be to iden-
tify its field content in terms of string fields. As already mentioned, the analog of
this construction in string theory is that of type IIB strings compactified on a Cal-
abi Yau and interacting with a D-brane. The bulk fields under consideration are
the dilaton scalar (associated to the string coupling), the (Neveu-Schwarz) NS-
NS antisymmetric tensor and the (Ramond) R-R scalar and two-form. Its nat-
ural basis is a double-tensor supermultiplet,’ having three perturbative isome-
tries associated to the two axionic shifts of the antisymmetric tensors and an

extra shift of the R-R scalar. These isometries form a Heisenberg algebra, which

!This representation of N' = 2 global supersymmetry has been only recently explicitly con-
structed [26]. See also ref. [27].
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at the string tree-level is enhanced to the quaternion-Kéhler and Kéhler space
SU2,1)/SUQ2) x U(1). We can also use an equivalent formulation where the
NS-NS and R-R 2-forms are replaced by their Poincaré dual scalars. In this for-
mulation, the aforementioned isometries are realized on the scalar manifold of
the four scalars which form a hypermutiplet called the “universal hypermulti-

plet”.

Therefore, we need to determine the proper ‘global supersymmetry” limit of
the universal hypermultiplet and match it with the hyperKéhler scalar manifold
of the global action. At the level of global N = 2, imposing the Heisenberg
algebra of isometries determines a unique hyperkdhler manifold of dimension
four, depending on a single parameter. This is in close analogy with the local
case of a quaternionic space where the corresponding parameter is associated
to the one-loop correction [28]. These similar results suggest a correspondence
between the local and global cases which could be studied using a Ricci-flat

limit of the quaternion-Kédhler manifold preserving the Heisenberg algebra.

Obtaining the global SUSY limit of the universal hypermultiplet is not a triv-
ial task. In N = 2, the scalar curvature comes out to be proportional to the gravi-
tational coupling & so in the global SUSY limit we unavoidably obtain a Ricci-flat
manifold. However, if we naively send k to zero we reduce to the trivial case of
a flat scalar manifold with canonical kinetic terms. To obtain a non-trivial space,
an appropriate limit must be defined, involving a new mass scale that should
remain finite as Planck mass goes to infinity. This mechanism has only been
explicitly displayed for some particular cases, mostly using the quaternionic
quotient method [29, 30]. In chapter 11, we use this procedure to obtain the

one-loop effective supergravity of the dilaton hypermultiplet and to then de-

11



scribe the appropriate zero-curvature limit, using the perturbative Heisenberg

symmetry as a guideline [5].
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CHAPTER 2

EFFECTIVE FIELD THEORY

2.1 Physics is Effective

The ultimate goal of physics is believed to be the formulation of the theory that
will disclose all mysteries of nature. There is a lot of discussion about the kind of
truths that will be unveiled to us, however physicists generally agree that this
final “Theory of Everything” will provide an exact description of all physical
phenomena that occur at any place and any time of the universe. Of course, we
don’t have this theory yet. We rather have various theories each one being a
good description for some class of physical phenomena while failing for others.
“Good” here is used in the sense of being precise enough for our needs. If we
want to think in terms of the “parameter space” of nature, where the parameters
can be distance, energy, velocity et c., then we can say that our theories are valid
in a certain parameter subspace but not outside. For example, in the study of a
system that interacts gravitationally, Newtonian gravity is a good description if
interactions are non-relativistic but needs replacement by General Relativity if

they are relativistic.

Theories that are valid only in a certain region of the full parameter space

are called “effective”. This definition might sound redundant since all physi-

14



cal theories would be effective. Nevertheless, this simple idea has an surpris-
ingly rich structure in quantum field theory (QFT). The most relevant parameter
here is distance. After almost a century of experiments in particle physics we
have learned that, as we probe smaller distances, nature appears to reveal richer
structure. In the context of QFT, this is expressed by the appearance of new
degrees of freedom, describing new particles. These are invisible at longer dis-
tances either because they are unstable, decaying to known long lived particles,
or because they are components of particles that at longer distances seem funda-
mental. This suggests that a QFT model with a given set of degrees of freedom
is valid only at distance scales larger than the threshold for production of new
particles, not included in the set. If we agree that the principles of QFT are valid
beyond the threshold distance, we will need to exchange the old model with a
new one, where the new particles (and the new interactions that they reveal)
are included. This process essentially builds a ladder of effective field theory
(EFT) models separated by the threshold distances where new particles appear.
Various interesting questions arise: How to smoothly switch from one EFT to
another, what is their behavior very close to the threshold et c. Another thing
that makes EFT nontrivial is the need for regularization. Since regularization
involves the behavior of a QFT model at high energies (short distances), it has

to be treated with special care .

Let’s attempt a discussion motivated by the questions mentioned above. We
focus on two neighbor theories, call them the “UV’ and the “IR” theory, seper-
ated by threshold energy M (we prefer to talk in terms of energy than distance).
The UV theory contains all the modes of the IR plus those modes with mass of

order M that do not appear in the IR. We expect that as we approach M from

1For a review, see [31].
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below, the new physics that the heavy particles bring will become more and
more apparent. The way to incorporate these effects in the IR is by integrating
out the massive modes. This inevitably introduces a series of higher dimen-
sional, nonrenormalizable operators in the Lagrangian of the IR, suppressed by
the threshold scale. From the EFT point of view, the fact that they are non-
renormalizable is not an indication that the model is sick but simply that it is
valid up to the threshold scale, as expected [32]. This point, even if it sounds
obvious nowadays, was entirely disregarded in the early days of QFT when
nonrenormalizable models were considered pathological. In the expansion of
the operator series, we choose to cut off at some order in 1/M depending on the
accuracy we want to achieve. The coefficients of the new terms are determined
by matching the S-matrix elements of the UV and the IR models. One might ask
why should we bother reducing to an effective IR theory when the full UV the-
ory is known. The reason is that in many cases, calculations in the low energy
regime are much simpler in the IR theory where the very massive modes do not

appear explicitly.

There are many examples of EFT models. For some of them the UV com-
pletion is known while for others it isn’t. To mention a few, Fermi theory is an
effective theory of weak interactions while chiral perturbation theory and nu-
cleon effective theory are low energy effective descriptions of QCD. On the other
hand, the Standard Model (SM) itself is an effective theory (it is renormalizable
only when gravity is ignored) but its UV completion is still unknown. The same

is true for General Relativity.

In order to elucidate the derivation of an effective theory from a known UV

completion, we focus on the popular case of the Fermi theory as an effective
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theory for electroweak interactions. In the SM, consider the tree level exchange
of a massive Z gauge boson between charged fermions
— M?
LDit//'y”(ay+ing,)¢—TZﬂZ” (2].)
By integrating out Z, we generate the higher dimensional operator

2

2M2

AL = W)’ (2.2)

which is a nonrenormalizable four-fermion contact term. Similarly, for scalars

H:
M2
L0, +igZ,) HI - = % (2.3)
and
gz
AL = e (H'0, H) (2.4)

It is also possible that the effective operator is a higher derivative one. Here,
we retrieve such operators by the kinetic mixing of light with heavy states, upon

integrating out the latter. For example, from

L= %(@,qﬁ)z + = ((9,1)() +cd¢ ) — 1M2 2 %A'(ﬁz)(z (2.5)

one finds after integrating out the massive field y:

2

T
L =500 +2u¢ O¢

M? + 0+ A ¢?

= _(a/l¢) +

2M2 (Op)* + - (2.6)

which contains higher derivative terms. In both examples above, the UV com-
pletion of the effective theory is known. EFT is then a practical reformulation of
the relevant degrees of freedom in the low energy regime. However, does EFT

have anything to offer when the UV side is unknown?
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This answer is definitely positive. EFT has proved to be a very useful tool for
exploring new physics in a bottom-up approach [33, 34, 35, 36]. Since the effects
of inaccessible massive states can be incorporated into nonrenormalizable oper-
ators, we can simply add such terms in the IR Lagrangian without referring to
a particular UV scheme. In a systematic analysis, we include all possible terms
up to a given order in 1/M that are allowed by the symmetries of the theory,
keeping the coefficients arbitrary. This constitutes a model independent way of
exploring new physics beyond the validity of the pure IR model. Any possible
UV candidate will essentially reduce to a subset of the nonrenormalizable terms

with fixed values for the coefficients.

Even at first order in 1/M, there is usually a long list of terms allowed by the
symmetries of the theory, introducing many new arbitrary parameters. Never-
theless, such set is in general highly reducible. This means that we can write
the Lagrangian in a way that a smaller number of new operators appears but
physics be the same. There are three different methods to perform such reduc-
tion. By setting the higher dimensional operators “on shell” [37, 38, 39], by
performing field redefinitions [40, 41] and, if the operator is higher derivative,
by applying the “unfolding” technique [42, 43]. Since we will be using the first
two in the phenomenological analysis of the following chapters, we will briefly
present them below in the relevant case of supersymmetric field theories. After
restricting to an irreducible set of higher dimensional operators, one can fur-
ther cut down the parameter space by comparing the model with low energy
phenomenology. In the end, the hope is that the effective model will provide
concrete testable predictions for the effects that very massive modes can have

on low energy observables.
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2.2 Effective Description of Supersymmetric Theories

EFT has a lot to offer in the yet unexplored territory of TeV physics. By pop-
ular belief, the most promising candidate theory for physics around that scale
is supersymmetry. It is then reasonable to construct phenomenological super-
symmetric models by means of EFT techniques and this is what we do in the
following chapters. In order to familiarize with the concept and tools of EFT in
the framework of supersymmetric theories, we present here some representa-

tive study cases.

2.2.1 Integrating out Massive Superfields

Consider the following Lagrangian of dimensionful scales M and m with M >>
m:

L= fd40 [(D%(D +)(T/\(] + {fdze[%)(z +mdy + /51 (1)3] + h.c.} (2.7)

We want to acquire an effective description by integrating out the heavier mode.
We will follow two different paths; either diagonalize the mass matrix and then
integrate or directly integrate. Then we will show that the resulting effective
theories are all equivalent by using the “field redefinitions” method and the

“on shell” method mentioned earlier.

In the first path, we perform the transformation ® = (cos 6 ®, — sin 6 ®,) and

X = (sin@ ®; + cos 6 D,). In the diagonal basis of ®; and ®,, one finds
L = f a0 [cbjcb1 + c1>§c1>2]

+ 20| ™ 02 + ™2 02 4 2 (cos 00, — sin 9D,y |+hc. (2.8)
2 M2 23
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where

m, = %(1—(1+4m2/M2)1/2):—%2(1—;Z_22)+
m, = %(1+(1+4m2/M2 1/2) M(1+_+ ) (2.9)

so @, is the massive field. Then, we integrate out @, via its equation of motion

1—
—ZchD; + 1y @y — Asin (D) cosd — Dy sinf)* =0, (2.10)
with solution
A 24 , A, ;A 2 =2 s N
®, = — cos” 6 sinf P7 — 22 S 20Dy + T2 % 6sindD @~ +O(M™).(2.11)

2
my I’I’l2 m2

The effective Lagrangian that we obtain is:

L7  = f 9o,

+

2 2, A 3p23 m?A? 4 -4
{ 20 [chp £z <D1—2M3(D]]+h.c.}+0(M) 2.12)

where
m? 4

This is an effective description of (2.7) where only the light mode propagates.

Alternatively, one can choose to directly integrate out y from eq. (2.7) with-

out firstly diagonalizing. Its e.o.m. is
—4My+m®) =0 (2.14)

with an iterative solution

1 — 1
x=—|-mo- Do+ ——D ' p?

g
i i = 64 Do+ | @15

Plugging this back in (2.7), we find
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reff = fd49{[1+m_2]@q)+ m [®D2®+hc]+ m (BchT)(DZCD)}
M? 8 M3 1T 16 M#

N {fdzg [;_”A’j o + gqﬁ] + h.c.} +O(1/ M) (2.16)

which, after an appropriate rescaling, is written as

0 = [atolores [0D* @ + he|+ m (D@ (D*D)
Bl 8 M3 16 M#

2
2, [T 2, A ap 3] } 5
+ {fdg[ZMZ(D +3Z Q|+ h.c.p + O(1/ M), (2.17)

where Z = 1/(1 + m*/M?). In this path, we obtained an effective Lagrangian with
higher derivative terms. Equations (2.12) and (2.17) look different, however, the

physics they describe is the same. We will demonstrate this in two ways.

In the first way, we set “on shell” the higher dimensional operator. By use of

the e.o.m.

_ 4m?
D'df = —% @ +410% + O(1/M?) (2.18)

we can rewrite (2.17). The new Lagrangian will contain the term ®®'> which

can be removed by a suitable shift

. Am® .
O=d- 21";[3 &> (2.19)

to find

L9 = f d'o ®'d (2.20)

2 2 2 ..2
2 m- _ <, A, 3m A m -, 1
o [Pl 59 (1-355) - s ¥ eef + o)

where Z = 1/(1 + m?>/M?). It is obvious now that this Lagrangian coincides with

that of (2.12) in the approximation O(1/M*). This confirms that setting the higher
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derivative operators “on shell” via equations of motion is a correct procedure,
within the approximation considered. We obtained again a higher dimensional
operator and a scale dependence acquired classically by the couplings of the

low energy effective theory.

In the second way, we perform field redefinitions in eq. (2.17) so as to elimi-

nate the ®D*® term. We use
O=0'+cD D" (2.21)

where the dimensionful coefficient ¢ is such that the coefficient of ®D>® vanish
in the new Lagrangian. This gives ¢ = —m?/(8M?) and, after some calculations,
the Lagrangian in (2.17) becomes

Lt = f d*e [qﬂ‘ D+ @(qﬂ (D""+h.c.)]
2 M3

2
2 m n A a0 4
; {fde[—mzm + 270 ]+h.c.}+0(1/M) (2.22)

By a final shift ® = ® — m? 1/(2 M*) ®*> we obtain an effective Lagrangian identi-
cal to that in (2.12) and (2.20).

We have shown that the three apparently different paths to the reduced La-
grangian, leading to either eq. (2.12), (2.17) or (2.22), are actually different for-
mulations of same physics at the expansion order studied. The correction at
1/M is solely a wavefunction renormalization while higher dimensional opera-

tors appeared only at higher order.
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2.2.2 Gauge Interactions and Component Analysis

We proceed to study further examples of effective theories, now with gauge in-
teractions present. We will also verify the superfield analysis at the component
level. The effective operators that will be generated are the same with those
used in the phenomenological model of the subsequent chapters. Therefore,
the analysis here provides us intuition about the kind of UV physics that these

effective operators encapsulate.

Consider the Lagrangian of an N' = 1 supersymmetric non-Abelian gauge

theory?

L

d'0| 0 "D+ O " O3+ Dy eV D + Oy e D +STS
1 3 2 4

+

d*o |v, o e DOy +v, Oy’ O + h.c.
1 2

+

M
deO |na, (I)2+MCI)3(D4+?SZ+AS DD, |+ h.c. (2.23)

where M > p and V is the standard vector superfield in the Wess-Zumino

gauge. The equations of motion for the massive fields ®;4 and S give

_%_Z(qﬁev)—%ﬁz(@g )+ Md, = 0
50 al)- gD o) e mon = o
—}1525*+MS +10, 0, = 0 (2.24)

As in the previous section, we use these equations to integrate out the massive

For the link to the MSSM, replace V. — V| = g, Vio' — g/Vy with V,,(Vy) the SU(2),
(U(1)y) gauge fields respectively; also ®, — H2T (iop), ®; — H, with @3 (®4) with same quan-
tum numbers to @; (®,) and (o) exp(-A) = exp(AT) (io), then @y eV CD; - H; e H,, with
Vo= gVioh + g1 Vy.
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tields @54 to find
L = fd49 [0 " @ + @y ¢V @) + (£0] D ¢V ] + hc.)]
+ f &0 [ @ Dy + £(@ D)% |+ hc. + O(M?) (2.25)

’

where ¢ = 22, & = —2”724 and we ignored higher orders in M~'. If the superpo-

AM 7

tential in (2.23) also contains trilinear couplings of heavy doublets ®; 4 to quarks

and leptons
AL = f d0|Q o, U @y + Q0D @3 + Lo E 3| + hc. (2.26)
then, following the same procedure, we would get the extra effective terms
ALY = —% f a0y, @] e QU +v,(QoaD*) e @} + vy (Lo ES) e @) + hc|
+ % f d*6](Qor U )QoaD") + (Qor UYL EX)| + h.c. , (2.27)
where 0,4, are 3x3 matrices in the families space.

Focusing on (2.25), let us set on shell the higher derivative operator by using

the equations of motion for @, ,:
D*[e¥ @] =4udl, Dle’dl]=4ud, . (2.28)
We insert these in (2.25) and rescale ®; — ®!(1 —-2u¢),i = 1,2, to find:
L9 = fd“@ | @] ¢ @)+ @, ™V D] |
+ f A0 [ (1 - 4ué) @y + & (O D) |+ he. + O(M™?)  (2.29)

It is obvious that the specific operator, when put on shell, brings solely a wave-

function renormalization. We now go on to verify at the component level that
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both Lagrangians are equivalent. First, we expand (2.25)*
LY = DD+ i, T Dy - % |01 A1 + hec| + ¢} §¢1 +|Fyif?

- 5 DD+ iy Dy, + % [</>2 Ay, + h.c.] - ¢ g ¢ + |F,l

+ &[0, 00+ 60,0 Fi |+ 221 020" D, 761 + 0217 Dy

+ 2($2DFy = FyD¢1) = 2V2 [y AF) = Fy (Ay)| - 22 (AD) ¢

— 4T DD+ 41 Fak Fi s = )

+ &= @+ 1) +2($162) (91 Fa+ Fighs — 1)

+ he.+0(1/M?) (2.30)
with

D=8, +i =2 ‘z_)#:‘a_ﬂ—i%, (2.31)

and the “h.c.” refers to all terms in the last four lines. Notice that in the off
shell component form of the Lagrangian we have an interesting tensor coupling
Yo 0 7 D, D, ¥, in spite of the minimal gauge coupling in (2.23). This coupling
could be relevant for tree level calculations of the Feynman diagrams. Next, we

eliminate the auxiliary fields F , using their e.o.m.

Fi = ~02(u+28 @)+ & (- 46D, -4 62 + 230, )

Fy

D
—¢1 (,U+2§' (¢1 ¢2)) +& (—4@;11)”% +4 E(pl —2‘/5/11#1) (2.32)

In the terms proportional to ¢ in L%/ we can replace the derivatives of the

fermions by their equations of motion, since the error would be of higher or-

SWe use —4yn D, D'y = 4y [0 T - 2i0c"1D, Dy = —4Yra’ T D, Dy +
4 Yo o F, iy and the first term in the rhs is that entering the final expression of £. Here
Fu=0,V,/2-0,V,/2+i[V,/2,V,/2].
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der. We use

_ 1 —
i Dy = Nlﬁz+$ﬂ¢1+()(§),
. — — 1 —
—llﬁQO'#Dﬂ = ﬂwl_ﬁ ¢2/l+0(§) (233)

We then rescale the scalars and Weyl fermions and after neglecting terms O(¢ &)

we obtain the on shell Lagrangian
P =< i D
L = —¢' D¢ +iy, 7 Dy - —2[¢1A¢1 +hel+ ¢, >

_ — D
= GO+ Dl + —| 2 A0+ he| = 625 6]

B
V2
— N —4uEl | gipr+da )| —p| (1 =4u&) vy +he]

- 28 p|(ng) +he||dipi + 420} ], DP=D'D, (2.34)

This Lagrangian is in agreement with that of (2.29), which shows that on shell
and in the absence of other interactions, only a wavefunction renormalisation
effect is present, giving a new ¢ = u (1 — 4ué). To conclude, integrating out
the massive superfields ®; 4 generated a dimension-five operator @, ¢V D*e" @,
which however, brings only a (classical) wavefunction renormalisation, in the
absence of additional trilinear interactions. Thus this five dimensional opera-
tor doesn’t bring new physics in the absence of additional interactions. One
could ask if this conclusion remains valid when we include soft supersymme-
try breaking terms. Also, if additional trilinear interactions were present, other
tive dimensional operators of type shown in (2.27) could also be generated. All

these issues are studied in the subsequent chapters.
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2.3 Nonlinear Realizations and Constrained Goldstino Super-

field

Consider a field theory invariant under the symmetry group G. The field con-
tent of the theory is divided between fields that are invariant and fields that
transform under G. The latter can transform either linearly under all generators
of G or linearly under a subgroup H and nonlinearly under the coset G/H. In
the first case the theory is in its unbroken phase and the classification of all pos-
sible transformation laws for the fields is described by representation theory. In
the second case the symmetry parametrized by the generators of G/H is broken
with the breaking scale M, sent to infinity. In other words, a theory with a non-
linear realization of a symmetry group can be seen as an effective description of
the far IR limit of a theory where this group is broken spontaneously [44, 45].
The Goldstone fields that appear are in 1-1 correspondance with the generators

of G/H.

If G is the super-Poincaré and H the Poincaré algebra, we have a nonlin-
ear realization of the supersymmetry algebra and this would describe the far
IR regime of a spontaneously broken supersymmetric theory. Since the bro-
ken generators are fermionic, the corresponding Goldstone mode has to be a
fermion, too. To distinguish it from the standard Goldstone fields, we call it
“goldstino”. It is quite surprising that Supersymmetry in four dimensions first
appeared in its nonlinear version [46]. The nonlinear transformation of the gold-

stino A,(x) can be written as:
5y = [ 10 + }(/10*‘7_7 — 0" D, A (2.35)
where 7 is the supersymmetry transformation parameter and f is a parameter
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of mass dimension 2 characterizing the susy breaking scale (+/f = M,). The

commutator of this transformation
(6, ¢l da = 2i(no'E — E07T7)0,Aa (2.36)

is a spacetime translation and proves that the above transformation closes off

shell the super-Poincaré algebra.

In order to take advantage of nonlinear realizations we need to know how
to construct Lagrangians describing interactions of the goldstino with itself and
with other fields. Several strategies have been developed in the past. In the
“geometric” method [46, 47, 48] the transformation (2.35) is interpreted as an

extension of the standard superspace transformation

6 — 6+n,

¥ o X+ 00t — inetd (2.37)

to the chiral goldstino field A(x) by identifying 6 with A/ f. The same analogy be-
tween # and A can be extended to the superspace differentials df and df leading
to the construction of a volume element invariant (up to total derivative) under

the nonlinear transformations. From this we can extract the Lagrangian density
L=-fdetA,  with A*=6"+ ]%zuaﬂaj — 9,05 7) . (2.38)

It is the Volkov-Akulov Lagrangian describing the dynamics of a single gold-
stino up to higher derivative terms. By nonlinearly realizing the algebra on

matter fields ¢ as well,

5¢ = —]i;(/la”ﬁ -0 )0, (2.39)

we can construct goldstino-matter couplings (¢ denotes any kind of field). For

any operator O(¢, d,¢) we simply have to replace partial derivatives by appro-
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priate covariant derivatives so that O transforms in the standard way:
50 = —]i;(/lcr“ﬁ - ot 9,0 . (2.40)
Then any action of the type
S=-f f d*xdet(A) O (2.41)

is invariant under nonlinear transformations. It can be easily shown that, in the
geometric method, the lowest order couplings between goldstinos and matter

are of the type:

1
—TH't

f2 Hy >

where 7, and ¢, are the stress energy tensors of the goldstino and matter field.

(2.42)

Another method for constructing goldstino-matter Lagrangians involves
promoting the goldstino to a superfield A [49, 50]. This is done in a way compli-
ant with the nonlinear supersymmetry transformations of the goldstino so that
in the end, the only physical degree of freedom in A is simply A. Since the basic
concepts of goldstino Lagrangians have been presented along with the geomet-
ric method, we will skip this method and go directly to the next, which is the

one used extensively in chapters 6 and 10 (in its N = 2 generalization).

This is the method of constrained superfields [51, 52, 53, 54]. It draws in-
spiration from a similar technique applied in bosonic symmetries for example
in the context of o models. One starts from the full manifold made up from
the linear symmetry transformations and then restrict to a certain submanifold
by imposing constraints on the coordinates. This breaks the original symmetry
down to the subgroup that is left invariant under the constraints. E.g. in an O(4)
o model of fields (0, %) (% is a vector of pions), we can break the symmetry

down to O(3) by imposing the constraint o + 7 - 7 = f2. It is the same manifold
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that we would obtain by starting from a vacuum state (f,0) and applying the

elements of the coset space O(4)/0(3).

In the context of N = 1 supersymmetry, this technique is realized in the
following way. We start from a standard chiral superfield that describes a full
supersymmetric multiplet and impose a specific constraint on it. Using the con-
straint, we eliminate the scalar d.o.f. in favor of the fermion. In particular, the
constraint

X;=0, (2.43)
delivers

_ Yxix
© 2Fy

Xy = ox+ V20ux+600Fy,  with  ¢x (2.44)

The simplest possible Lagrangian of X,,:
f 40X X, + [ f POfX, + h.c.] - |aﬂ¢x|2+F;Fx+[%$Xaﬂay¢x + f Fy +h.c](2.45)

reproduces the Volkov-Akulov Lagrangian upon integrating out the auxiliary

Fx and identifying yx with the goldstino.

The advantage of this method is the use of superfield formalism. For ex-
ample, the couplings of goldstinos to matter are easily constructed by treat-
ing X, as any other superfield and following the standard rules of superspace.
As a demonstration, consider a supersymmetric theory with chiral multiplets
®; = (¢, ¥i, Fi) and vector multiplets V = (A, 2%, D) coupled in a general way to

Xn[Z

L = f d*0 [XLXn1+(DZ(eVCI)),-—(m?/ fz)XZan,CDZ(eV(D),-]+{ f 426 [fX,1,+W(<Dl~)

B;; Ajjic 1 2m, a
+ ﬁan (Diq)j + aXHZ(Di(Dj(Dk + Z(l + Tan) TrW WQ] + h.C.}, (246)
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where ml2 B;j, A;j are soft terms for the scalars and m, is the gaugino mass. From
this, one can find the Goldstino (¥x) couplings to ordinary matter and gauge

superfields.

Furthermore, this formalism seems to be more general than the geometric
method since it can reproduce couplings that were missed by the latter [55, 56].
In particular, from the equivalence theorem of spontaneously broken theories
[13], we know that for low energy SUSY breaking, the coupling of the gravitino
to matter is dominated by the coupling of its goldstino component and has the

form
(1/f) "yx J, = —(1/ ) yx 0"J, + (total space-time derivative), (2.47)

Here J, is the supercurrent of the theory corresponding to that in (2.46) in which
the goldstino is essentially replaced by the spurion, with the corresponding ex-

plicit soft breaking terms:

2 . B
o= f d'6[1 - m} €7 | (" ), + f d*0|W(®)- — 0,

Aijk 9] 1 2 (]
- ? 6 (Diq)jq)k + Z (1 —2m,0 )TI‘W Ww] + h.c.. (248)

With this, eq. (2.47) shows that, on shell, all goldstino couplings are proportional
to soft terms. Indeed, the supercurrent of (2.48) is given by (with D,,;; = 6;; 9, +
igAsT®)

uij
1

—a l —a
(070 A1, FS + —D"[0%2 1,
22 g

= —[0" T [Dy,ij¢)]" + i [0 Fi - N

Ot = Wia (M;@', + Bijp; + (1/2)A i i) + (™) f A5F, + D Ag]. (2.49)

ﬂ[
V2
From (2.47), (2.49) one then recovers the couplings with one goldstino that are

missed in the geometric method.
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Finally, in addition to usual SUSY and goldstino couplings, eq. (2.46) brings
new goldstino-independent couplings induced by eliminating Fx. Indeed, we

get

l]k

(1 s |¢ P)Fy=—(f+ ﬁ iy + 2 Gy + (2.50)
I? 2 f 6f

2.
So |Fx|* generates new couplings in £, such as quartic scalar terms. As we will
see in chapter 6, when applied to MSSM, they bring new corrections to the Higgs

scalar potential.
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CHAPTER 3

MSSM;

We apply the methods of EFT on the Minimal Supersymmetric Standard
Model (MSSM). Our aim is to study the phenomenological consequences of the
complete set of mass dimension five operators that obey the gauge symmetries
of MSSM and R-parity. Since not all of them are physically relevant, we will use
spurion dependent superfield redefinitions to find the irreducible set of opera-

tors. But before getting there, we need to provide the Lagrangian of the model.
3.1 The Lagrangian

We denote the Lagrangian as:

L= -LMSSM + L(S) (3.1)
Lysswu is the standard Lagrangian of the MSSM. In particular:
Lyssm = fd49[Z1 He""H +Z,H]e" Hz] + Lk

+{fd29[— H, 0y UC—Q/IDDCHl—L/lEECHl+,uH1H2]+h.c.}(3.2)

Here L accounts for the gauge kinetic part and the kinetic terms of the quark

and lepton superfields Q, U, D¢, L, E¢ as well as their associated soft break-
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ing terms obtained using the spurion field formalism. U¢, D and E¢ denote
anti-quark/lepton singlet chiral superfields of components f5 = (f¢), and f;,
f = u,d, e, while Q and L denote the left-handed quark and lepton superfields
doublets. Furthermore, since the hypercharge of H, is —1 and that of H, is +1,
the vector superfields are V, = g, V{, 0’ — gi Vyand V, = g, V|, o + g1 Vy. Vy and
Vy are the vector superfields of U(1)y and S U(2), respectively with g; and g,
being the corresponding couplings. All SUSY breaking terms are included by
allowing spurion dependence in the quantities Z;, 4 and the 3x3 flavor matrices

/lU,D,E:
Z,=Z«85.8"),  u=wpS),  Ar=2Ax(S), F:UDE (3.3)

where S = mg 6* is the spurion parametrising the soft supersymmetry breaking
and my is the supersymmetry breaking scale in the visible sector (e.g. if “f” is the
v.e.v. of the auxiliary field that breaks SUSY, m, in gravity mediation is f/M pianck
and in gauge mediation f/M,ssengr). Since we assume a spontaneously bro-
ken effective Lagrangian, consistency of the integration procedure implies the
restriction

my < M. (34)

L3 denotes the complete set of mass dimension five operators that preserve R-

parity':

{ fdze [Q UToQD + QU T, LE + /IH(HIHZ)z] + h.c.}

Sis

1 : | . ‘
+ = f d*0|H] " QYy U + H} " QYpD® + Hje” LYz E + h.c.|

<

+ % f d*0|AS.S") D" (B(S.S") Hye™")D, (T(S.S™) " Hy) + h.c.](3.5)

!For a general discussion of D=5 operators with discrete symmetries see [57].
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The notation is such that
Q UTo QD = (Q U (ioy) Tg Q D°
Similarly,
D[B(S,S)Hye V11D, IT(S,S e H ] = D*[B(S, S )H] (io5)e” " 1D, [T(S, S He" H,].

Ty, are matrices of parameters both in the up and the down sector, thus they
carry four indices. In addition, all SUSY breaking terms are parametrized in the

usual way, with spurions:
To=ToS), To=TiS), Au=auS), Yr=Yp(S,S"), F:UD,E (3.6)

M is the mass scale up to which the effective approach remains valid. It is asso-
ciated with the mass of the heavy states that have been integrated out in order

to obtain the effective operators.

The spurion dependence associated to these operators is the most general

one can have. For the kinetic terms it is:
Zi=1l+aS+a; ST +aSS7,
Zo=1+bS+bST+Db,SS". (3.7)
and for the higher derivative effective operator:

AS,STY = e+ S+ ST+a3S ST

B(S,ST)

ﬁo+ﬂ15 +,8251“+ﬁ3SST

IS8 = y+7S+7S'+yss’ (3.8)
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3.2 Keeping the essential: The irreducible Lagrangian

The parameter space of Lagrangian (3.1) is huge. However, big parts of it are
redundant since they describe the same physics. We would like to simplify the
Lagrangian by removing this redundancy. One way to do this is by performing
appropriate field redefinitions. A familiar set of holomorphic superfield redefi-
nitions is

D — (1-kS)d;, (3.9)
which are commonly used in MSSM in order to restrict the so called “soft”
breaking terms. We shall use this freedom later on. Less familiar are the fol-

lowing (super)field transformations?

, 1 —2 4 g 1 c
H — H = HI_MD [Angevz(la'z)] +MQPUU
H, » H, = H+iBZ[A Hi e (i )]T+iQ D+ Ly B (3.10)
2 = 2 M 211 € (1073 M PD M PE .
where
pr=pr(S); F:UD,E, Ai = A(S,ST) i=1,2 (3.11)

are arbitrary functions of the spurion. Also, pr, F = U, D, E are 3 X 3 matrices.
The coefficients of their Taylor expansion in S are free parameters. We are free
to fix them in a way to eliminate redundant dimension-five operators. These

coefficients should have values smaller than M. The expansion of A; is:

A(S, ST so+ 518 +5,8T+5,887

Ar(S,ST) = si+5S+5,8ST+s5,858T (3.12)

2To avoid a complicated index notation, the transformations in (3.10) are written in matrix
notation for the Higgs S U(2) doublets. For clarity, (ic) appears explicitly even if it is implicit in
the superpotential.

36



Notice that R-parity conservation does not allow for a similar set of transforma-
tions (3.10) on quark and lepton superfields. In addition, these field redefini-
tions, along with mixing operators from Lyssy and £, generate operators of

the type

1 _
5 f d*0 D*[Hye™"'Al1e" D*[A, e™"" H]] (3.13)

plus a similar one for H,. Since these operators are of higher-order in 1/M, their
effects are further suppressed with respect to the dimension-five operators con-

sidered and we shall neglect them for the time being.
One then finds that the original Lagrangian transforms into:
L = Lx+ f d*0 | Z\ H} " Hy + Z; H} " H,|

+ fdze [—HZQA;, US— QA,D°H, — L/l}EECH1+,uH1H2]+h.c.

+

1 . ‘ ‘ ‘
~ fdze | QU T, QD + QU T LE + Ay (H, Hy)* | + h.c.
1 T ’ c i ’ c ! c
+ fd“@ |H] " QY[ U + H} e Q Y}, D° + H} " LY} E* + h.c.| + AL3.14)
where
1
AL = f d*0| - A] Hye ™' DX(Zy ¢ Hy) - Zy Hye ™ D* (A e" Hy) + h.c.|

+ %fd‘*@ [A(S,S*)Da(B(S,S*)Hze-vl)Da(r(S,ST)eVI H1)+h.c.] (3.15)

The relation between primed and unprimed fields is

'uj(;)pF(S), F:UD,E (3.16)

Ap(S) = Ap(S) +
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also
Y;(S,8T) = Yu(S,8T) =4S, SN A(S) + Zi(S. S pu(S)
Yp(S,8T) = Yn(S,ST)—4A1(S,5T) An(S) + Z2(S, SN pn(S)

Yi(S,8T) = Yi(S,87) —4A(S,ST)A:(S) + Za(S,ST) pi(S) (3.17)

and

To(S) = To(S) + Au(S) ® pp(S) +pu(S) ® Ap(S)

Ti(S) = TuS) + Aw(S) ®pe(S) + pu(S) ®A(S). (3.18)
Finally,

Z,(8.8N) = Zl(S,ST)—%(4y(S)A2(S,ST)+h.c.),

Z)s,8T) = zz(S,ST)—%(4,1(5)&(5,5*)%.(:.). (3.19)

We perform a second set of field redefinitions to canonically normalize the ki-

netic terms:

1 1 a/ br
H — ——=[1-kSIH, Hy»——[1-kS|H, k=-— k=2 (320
e V5, o °7H
with
a, =2, 5510’ a, =2, o b, = Z, s510’ b, = Z, S (3.21)

which can be directly computed using the definition of Z} ,, Zi, and A, given

above. The Lagrangian then becomes
2

2
Z%SST)HIeW H, +(1 —:—ESST)HzeVZHz]

L = £K+A£+fd49[(1—
+ fdze[—HzQ/l’l}U"— Q A}y D° Hy — LA} E° Hy + ' Hy Hy| + h.c.
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1
+ Mfa’ze[QU“T’QQD"+QU"TiLE"+/l},(H1H2)2]+h.c.

1 : »
y f d*0|H] e" QY[ U + H}e" QY D + Hy e LY E° + h.c.| (3.22)

Double primed quantities are given by

1
A5(8) = \/b—6(1_k2S)/l,U(S):(l_bls)/lU(S)"‘O(l/M),
AM(S) = 1, 1=k S) A(S)=0-a;S)Ax(S) + O(1/M), F=D,E.
ay
1
ws) = [1—(ky +k)ST p(S) =1 = (ar +b)S)uS)+ 01 /M). (3.23)

Vo by

Since a;, b, are M-dependent, the couplings 47, .(S) and also (/(S) have ac-
quired, already at the classical level, a dependence on the scale M of the higher
dimensional operators. This is denoted above by O(1/M) and can be easily com-
puted using (3.19) and (3.21). Note that this O(1/M) correction is relevant for
the Lagrangian (3.22). Similar considerations apply to m;, that appear in the
same Lagrangian. Their exact expressions in terms of initial parameters can be

computed in a similar way. Further

4(8) = (1=2(a +b)S) A4x(S),  Y[(S.8T) = (1-ajST) ¥(S,57)

Yp(S,8T) = (1-b78") Y},(S,S7), Y7(S,8T) = (1-b;S") Yi(S,S7) (3.24)

where we ignored terms which bring O(1/M?) corrections to (3.22). Finally, AL
in (3.22) is that of (3.15) after applying transformations (3.20). Its component

expansion up to 1/M order is:
1
AL = _M fd49 to H, €_Vl D2 [eV‘ Hl]
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m,
- [ 4t + 1 + to(a; + by)] hz@#@“ hy —=2[t1 —to + to(b1 —ay)] ha D1 Iy

+ 2V2(t + by 1) by A, Un, — 2V2 (1, + a ) Yn, Ay hy =413 Fp, Fhl]

2
m
+ MO[—“(M —bit3)hy Fyy —4(ts —a, t3) Fi, hy +2fﬁlﬂhzlﬂhl]

SL)J

+ MO [—4(t7 —a ity —bits+a; b t3) h2hl] + h.c. (325)

where D; and A, are components of the vector superfield V, and we also used
the component notation H; = (h;, ¥y, F,). We also replaced ki, (k,) by a;, (b))
respectively, which is correct in the approximation of ignoring 1/M? terms in

the Lagrangian. The coefficients #; are given by

to = aoBoyo + S§+ S ts=dy— Sy —d, sy —bys; —bys),

th = di—s,—-b; s;)*, ts=ds —ay sy —a; 5| — s’; - b s’z*,

t = dr—a SS — Slz*, te = do,

ty = dy—s,—a|sy—s —blsg, t7 = d7 — ay 5y — a1 8 — bisy — bys; (3.26)

with d; being combinations of input parameters «;,5;,y; of eq. (3.8)

di = —Biaoyo — a1BoYo/2, dy = —f3a0y0 — B azyo — @By
d, = —yiBoay— aifovo/2, ds = —y3 o ap — y1 @2 Bo — aofayi,
d; = —ayB0Y0 — aof2yo — @oPoy2, de = a3y0 o + a1Ba2yo + a1Boy2

d7 = —y3 1@y —v1 By — i iz (3.27)

A suitable choice of coefficients sy, s, 55, s> entering in transformation (3.10) al-

lows us to set

=0, i=0,1,23. (3.28)



This ensures that the nonstandard terms in the first, second and third lines of
AL above are not present. The remaining terms proportional to mj and m] bring
solely a renormalisation of soft terms, which are present anyway in Lagrangian
(3.22) and can be ignored. Finally, the term 7,4, brings a renormalisation of
the supersymmetric ¢’ term (1 H, H,) of (3.22) and is invariant under the general
tield transformations (3.10). In principle one could set additional coefficients of
the last two lines in AL to vanish by a suitable choice of remaining s, 3, 5’1,3 ; we
choose not to do so and instead save these remaining coefficients for additional

conditions that can be used to simplify the Lagrangian even further.

We have finally obtained the minimal set of dimension-five operators be-
yond the MSSM Lagrangian:
2

L = £K+fd49 [(1—m—§5*S)HjeVIH1+(1—m—§STS)H;eV2H2]

n, n,

+ f d*6| - Hy Q [(S)U° = Q X)(S)DH, — LAY(S)EH, + ' (S) HiHy | + h.c.

+

%faﬂ@ | QUETH(S) QD + QU T|(S)LE® + X(S) (H Hy)* | + hc.

1 ‘ . ‘
+ o f d“e[HjeV' QYy(S,SHU+ Hie"QYy(S, ST D+ Hie LY (S, ST E + h.c.]

(3.29)

L stands for gauge kinetic terms and kinetic terms of MSSM fields other than
H, ,, together with their spurion dependence. Also, u” here includes the renor-
malisation due to # (not shown). As explained above, there is still some re-
maining freedom to further reduce the parameter space and we will use it in
the next section. The couplings that appear are given in equations (3.16), (3.17),
(3.18), (3.23) and (3.24) in terms of those in the original Lagrangian. The cou-

plings A7, ;(S) acquired a threshold correction O(1/M), which can be obtained
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from (3.23). The dimension-five operator that was present in the last line of
(3.5) is completely “gauged away” in the new fields basis, up to effects which
renormalised the soft terms or the supersymmetric p term. Since physics is in-
dependent of the fields basis we choose, in this new basis it is manifest that the
last operator in (3.5) cannot affect the relations among physical masses of the

Higgs sector. We discuss this in detail in section 4.4.
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CHAPTER 4

PHENOMENOLOGY OF MSSMj5

4.1 Further Restrictions from Flavor Changing Neutral Cur-

rents

The couplings in Lagrangian (3.29) can have dramatic implications if the scale
M is not too high, in particular due to FCNC effects. Indeed, if 7,; and Y7, ,
have arbitrary family dependent couplings, one expects stringent limits from
FCNC bounds [58]. It is possible however, under some mild assumptions for
the original £ of (3.1), to remove the dangerous couplings in (3.29). For exam-

ple, assume that the flavor matrices in (3.5) and the pyp in (3.10), (3.11) are

proportional to the ordinary Yukawa couplings':

To(S) co(S) Ay(0) ® Ap(0)

T (S) = ci(S) 2w (0)® A£(0)

Pr(S) cr(S) Ap(0), F:UD,E 4.1)

and, as usual

A(S) = A:(0)(1+ArS), F:UD,E. (4.2)

!The ansatz is motivated by the discussion in subsection 2.2.2, eq. (2.27) where a similar
structure of Ty ;. and pr is generated by integrating out massive S U(2) superfields doublets.
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Here ¢y (S) are some arbitrary input functions of S; 1z(S) are 3 x 3 matrices,
while A are trilinear couplings. In the following c¢s(S) = ¢f + S ¢|, F = U,D,E
are considered free parameters which can be adjusted, together with the remain-

ing 513, ] 5, to remove some of the couplings in (3.29). Indeed, if
cu(§) = —cr(S) = ce(§), ¢p(S) = —co(S) +cr(S) + ce(S) (4.3)
while cg(S) remains arbitrary, one obtains
Tp(S)=0, Ti(S)=0 (4.4)

We can therefore remove the associated couplings in (3.29), that is the first two

terms in the third line. Finally, let us assume that in (3.5) we also have
Yr(S,8T) = f#(S,57) A£(0), F:UD,E (4.5)

where fr are spurion dependent but family independent functions of arbitrary

coefficients:
frS, SN =fF+ S fF+STF+858T ff (4.6)

Using (3.24), we find that the couplings in (3.29) are

Yi(S.ST) = Ap(O) |xf +xf S+ x5 ST +xf §8T], F=UD.E (4.7)
One finds
x = fV-ds)+ ¢
o= fU-asi+ Vracd
Xy, = fy —4sy+dicg —dix
o= f-asi+a Y racl —a) Y (4.8)
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Similar equations exist for the fields in the D and E multiplets. We just need to

replace U — D (or E), s; — s; and a; — b;.

Let us examine if the form of Y//(S,S") can be simplified using the free pa-
rameters that we are left with: these are s, 3, 513 from general transformations
Arp and cg(S) = cg + S ct, a total of 6 free parameters. We can use s\ 3 (s13) to
eliminate § and § S* parts of ¥;; (Y}), respectively. Using c¢f and ¢ we can
also eliminate the S and S S* of Y}/. In conclusion, we used the remaining 6 free

parameters to bring Y} to the form

Y78 =Y/0,8) = A4:(0)(x{ +x5 ST),  F:UD,E (4.9)
The coefficients x(‘i , depend on the arbitrary coefficients f/,i=0,1,2,3, a;, b;, ¢;
of the original Lagrangian (3.1). Other simplifications can occur if we ignore the

couplings Y of the first two families. With these considerations, the Lagrangian

in (3.29) takes the form
m> m2
L = Ly+ fd“@ (1= =287S)H] " Hy +(1 - =S'S)H] " H,|
ny, 1y,
+ f d*0 | - Hy Q X[(S) U° = QA}(S)D° Hy — LAY(S)EHy + " (S)Hy Ho| + h.c.

1
* fd“@ |H] " QY[(SH U + H} " QY(ST) D + H} e LY[(ST) E + h.c.|

1
iy f d*6 X, (S)(H, Hy)* + h.c. (4.10)

with couplings (4.9) and (3.23)%. This Lagrangian defines MSSMs; the extension

2/l;;(S ) acquired a threshold correction in M: A7,(0) = Ay(0) [1 +1/M (u(O) cy(0) + 2 (u(0) so +
1*(0) s(’;))] with similar relations for D, E obtained by s — s; and U — D, (U — E). In terms
of original parameters, so = —[-4a;B5ys b1 —4d; + (ff + [P+ + P +ay el + by /4 - b))
with d; as in (3.27); for the D, E sectors we use s; = —a;B;y, — So- Similar relations exist for
non-supersymmetric counterparts, see (3.23), (3.24).
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of MSSM by mass dimension five operators.

4.2 Phenomenological Implications

In the following we explore the new couplings that MSSM;5 brings with respect
to standard MSSM. We begin with couplings proportional to m,. Part of these
are coming from the terms in the second-last line of (4.10). These include non-

analytic Yukawa couplings [11]

m
Moxg (/l(l)]),J (l’li qu‘) l/l%j + h.c.

m

0D (D) (h qri) d; + he.

M J

LA Ay ) €+ e AT =Ap0) F:UDE. (411)

These couplings are not soft in the sense of [59], but “hard” supersymmetry
breaking terms in the sense of [11, 12]. They are less suppressed than those
listed in [11] where they were generated at order m3/M?. Such couplings can
bring about a tan 8 enhancement of a prediction for a physical observable, such
as the bottom quark mass relative to bottom quark Yukawa coupling [10, 60].
This effect is also present in the electroweak scale effective Lagrangian of the
MSSM alone, after integrating out massive squarks at one loop level, with a

result for bottom quark mass [10, 60, 61, 62, 63]

vcosS
V2

my = (A + 62, + Ady tan ) (4.12)

where 1, is the ordinary bottom quark Yukawa coupling, 64, its one loop cor-

rection and A4, is a “wrong” Higgs bottom quark Yukawa coupling, generated
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by integrating out massive squarks. In our case, A4, receives an additional con-
tribution from the second line in (4.11). The size of this extra contribution due to
higher dimensional operators, can be comparable and even substantially larger
than the one generated in the MSSM at one loop level (for a suitable value for
xD mo/M - recall that x? is not fixed). Such contributions can bring a tanpg en-
hanced correction of the Higgs decay rate to bottom quark pairs. Similar con-

siderations apply to the U and E sectors.

Other similar couplings derived from (4.10) and proportional to m are

m T F TN~ ~%
MO Xg (/l(l)”/lg)” (l’li I’lz) uRiuRj + h.c.

x5 Y A0 (W g (B g ) + hee. (4.13)

o
M j
where we used that /lg " and ﬁg are equal up to O(1/M) corrections, see (3.16)
and (3.23). The above terms are strongly suppressed due to the square of the
Yukawa coupling, in addition to my/M < 1, so their effects are expected to be
small, except for the third generation. Their counterparts in the down (D) sector

are

% X2 (2T ARy (KDY dpidy, + hec.

% XD (AP A2y (W) (W) )+ he. (4.14)
In the lepton sector similar couplings are present, obtained from eq. (4.14) with
Q — L, D — E. All the quartic couplings listed above are renormalisable, but
naively they would seem to break supersymmetry in a hard way if inserted into
loops with a cutoff larger than M. This, of course, is just an artifact of using a

cutoff larger than the energy scale of the heavy states that we integrated out.
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It is interesting to note that there is no “wrong” Higgs-gaugino-higgsino cou-
pling generated [11], even though the original Lagrangian in eq. (3.5) included
it, see eq. (3.25) where

m
MO W, Ay by + ha Ay W) + hec. (4.15)

was present. Such a coupling can be generated at one loop level [10] but in our
case it was removed by the Higgs fields transformation (3.10). This shows that
not all “wrong” Higgs couplings are actually independent (this may also apply

when such couplings are generated at the loop level).

Note that in the MSSMs defined by eq. (4.10), couplings proportional to m
involving “wrong” Higgs A-terms are not present, given our ansatz (4.1) and
(4.5) leading to (4.9). If this ansatz is not imposed on the third generation, then

one could have such terms from (3.29)

2
m,

M [yu,3 ]’llI (?L,3 ft;s + Va3 h; QL,3 671*3,3 + Ve3 l’l; ZL,3 52,3] (416)

where y;3, f = u,d, e are the coefficients of component S S Tof Y(S,S") of third

generation.

There are also new, and perhaps most important, supersymmetric couplings
that affect the amplitude of processes like quark + quark — squark + squark or

similar with (s)leptons. These are

1 ~ Jx c
% x5 (A (A Gridg; quiug, + h.c.
1 ~ s c
% X0 (A (A G g qridg, + h.c.
Mxé/ A5 Au ZLl.g;j qriip,; + (L & O, E & U) + h.c. (4.17)
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They can be important particularly for the third generation. The largest effect
would be for squarks pair production from a pair of quarks; the process could
be comparable to the MSSM tree level contribution to the amplitude of the same
process [64]. Indeed, let us focus on the gg — gg* in MSSM generated by a

tree-level gluon exchange. The MSSM amplitude behaves as

g3

99-8—4q < T =
Vs

A (4.18)

where s is the Mandelstam variable. On the other hand, the operators (4.17)
generate a contact term contributing

UD
avssms  dodo (4.19)

q949—4q* M

The dimension-five operator for the third generation has therefore a comparable
contribution to the MSSM diagrams for energies E > g3M, which can be in the
TeV range. In MSSM there are other diagrams contributing to this process, in
particular Higgs exchange. It can be checked however that at energies above the
CP-even Higgs masses, the MSSM amplitude decreases in energy whereas the
contact term coming from the dimension-five operators gives a constant con-
tribution which is sizeable for high energy. Of course, at energies above M we
should replace the contact term by the corresponding tree-level diagram with
exchange of massive S U(2) doublets (or whatever other physics generates this

effective operator).

Note that couplings similar to (4.17) could also be generated by the term
f d*0(QU) To(OD) of (3.29). This term is not present in MSSM; of (4.10) due to

our FCNC ansatz (4.1), (4.4); however, the ansatz could be relaxed for the third
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generation. Therefore the above process of squark production can have an even

larger amplitude from contributions in the third line of (3.29).

The Lagrangian (4.10) also contains other supersymmetric couplings involv-
ing gauge interactions which can be important for phenomenology. They arise
from any dimension-five D-term in (4.10) giving

(Ag)ijxg

LDM

. | B I — =
i ~ ~x i ~ c ~% ~ ~%
[ —hy DD (Guilig ;) — N hyAi (Gui ug ; + qui g ;) = 7z Wi, A1 GLi Uiy,
1 ~ ~% T — ~ c ~ %
- 2 hI Dy qritig j + iy, o Dy (Gri Ugj+dLi ”RJ')]

+(U->D,H ->H,, V- V)+(Q—> L H - H,, Vi, > V,,U - E)+ hC(420)

where D), 4, are the auxiliary and gaugino components of V; vector superfield,

and
A - 2
D, = _Ez[hio—)-hl+h;&h2+qzi&QLi+Zzio—)-lLi]
2
IR RN DU S T I
+51[ - hlhl + h2h2 + quiqu‘ - guRiuRi + §dRidR,' - Z‘zilLi + 2eRieRi](éL21)

Here D, is the covariant derivative, O, = d, + i/2V,,, where V,, is the gauge
field of the vector superfield V, = g, Vi, o' — g Vy, introduced in eq. (3.2). Cou-
plings similar to those above are generated by the substitutions shown in (4.20).
Some of them can be phenomenologically important, e.g. those involving 2
particles and 2 sparticles such as Higgs-quark-squark-gaugino or gauge-quark-
higgsino-squark, arising from (4.20). Also, we notice a term with a “wrong”

Higgs-squark-squark derivative coupling.

Yukawa interactions also generate supersymmetric couplings of structure

similar to some of those in (4.20), involving 4 squarks and a higgs or 2 squarks
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and 3 higgses or 2 squarks, 2 sleptons and a higgs. However, these arise at or-
der /l}, where Af, F : U,D, E are Yukawa couplings entering (4.10). Therefore
they are suppressed both by the scale M and, relative to the above gauge coun-
terparts, by an extra Yukawa coupling. This is due to the presence of an extra
Yukawa coupling in the third line of (4.10) relative to ordinary D-terms. The
strength of these interactions is also sub-leading to other Yukawa interactions

listed so far which also involved fewer (s)particles.

Finally, supersymmetric couplings with 3 higgses and 2 squarks or 2 slep-
tons arise from (H;H,)* of (4.10), suppressed by two Yukawa couplings and by
the scale M. Also, there exist potentially larger couplings of 2 higgses and 2 hig-
gsinos, being suppressed only by 14(0) and the scale M. In addition, there are
non-supersymmetric couplings with 4 higgs fields whose effects are discussed
in section 4.4. This concludes our discussion of all the new couplings generated

by dimension-five operators in the MSSMs.

4.3 The MSSM Higgs Sector with Mass Dimension Five Oper-

ators

In the following we restrict the analysis to the MSSM Higgs sector extended
by mass dimension five operators and analyse their implications. In this sector
there are in general two dimension-five operators that affect the Higgs fields
masses, shown in eq. (4.22) below. According to our previous discussion the
last operator in (4.22) is redundant and can be “gauged away”. However, in
this section we choose to keep it, in order to show explicitly that it does not

bring new physics of its own. The relevant part of MSSM Higgs Lagrangian
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with dimension-five operators is
L = f d*0 | Z:(S.5") H] e Hy + Zy(S.S") Hj " H,| (4.22)
+ fdze |a(1+c1S) HiHy + ;—; (1+¢28) (Hy Hy)?| + h.c.

+ %fd“@ {A(S, st D” [B(S, SHYH,e ™ ]Da [r(s, sHe" H, ] + h.c.}

Additional spurion dependence arises from the dimension-five operators con-
sidered. For the definitions of A(S,S"), B(S,S"), I'(S,S7) see eq. (3.8). After elim-
ination of the auxiliary fields and a rescaling of scalar fields, the scalar part of

L in (4.22) becomes:

1 m
L scatar = -3 (g7 + &) (> = |ha*)” + MO (g1 + &) (ml* = 1hal*) (61 hy by + h.c.)

+

2¢c m
ﬁ (P + )@ by hay + hec.) — MO ¢35 (82 (hy o) + h.c.) (4.23)

(il +m)ll® = (&P + ma)lhal* = (hy hyBmo + h.c.) = i, D hy = Iy D* hy

where

mi = my(lar P - az) + O(mo/M)
my = my(1b1 P = ba) + Olmo/M)
Bmou = fimy (c1 —a — bl) + O(my/M) (4.24)

The O(my/M) corrections in (4.24) are not shown explicitly since they only renor-
malise m, , and Bmou which are anyway unknown parameters of the MSSM. We

denoted

01 = —Brapgyo+vifoas —aofoyo(ar —by), 6, =cr+2a +by), (4.25)
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We notice the presence of three contributions in the scalar potential, introduced
by our dimension-five operators. The contributions proportional to c; are due
to (H,H,)? in (4.22) and were discussed in [65] (also [67, 68]; for a review see

[69]). The one proportional to §,
(> = 1hal) (hy by + hec), (4.26)

was introduced by the dimension-five operator in the last line of (4.22). This is
a new contribution to the scalar potential, and is vanishing if ay = 8y = yo. An
interesting feature is that its one loop contribution to 4, self energy remains

soft (no quadratic divergences) despite its higher dimensional origin.

4.4 Higgs Mass Corrections Beyond MSSM

Let us consider the implications of (4.23) for the Higgs masses. The scalar po-

tential is
Vo= i by [P+ w3 o |+ ( Bmowhy hy + hoc.) + % (L |2)2
+ (1hi P =1haP) (o by o + e + (1 P+ |y P) (2 g o + hc)

+ 5 (m3 0 h) +he) (4.27)

N =

where the definition of 77,53 ~ 1/M can be read from eq. (4.23). We take for

simplicity 7; real, and therefore n; > 0, 12| < 173/4. Also

2

~ 2, AR =2
my = mj+ |l 7,

=m; + |1, @=g+g (428)

Consider quantum fluctuations of 4; around a vacuum expectation value

1 -
]’ll' = — (V,’ + l’l,’ + i@'i), i=1,2 (429)
V2
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From the two minimum conditions for the scalar potential V of eq. (4.27) one

can express i, » in terms of Bmgu, vy, v, to find:

. vy 1 m V2 m V2 3
= —Bmo,u;—ggz(vf—v%)—av—]( )———(3 T+ )—Evz2
1
M2 = —Bmou— + = g2 —n?) - L 12 —3v§)—”——1(3v§+v)——v2(430)
Va 8 2 v 1%} 2 v

which shall be used in the following. The mass matrix is

1 &V

M = ——F— =Xij +7Z; 4.31
! 2 ahlahl hi=vi/ V2,6:=0 ( )
where
. 2+ 18232 —v3)  2Bmou — 1 g%vi v
Xij = 5 (4.32)
2Bmop — 3 8% viva 25 — 3 g2 (v —3v))
and
1 6(m +m)viva+n3vs 3@ +m) v+ 30 — i) Vi + 203V 1)
Zij = E (433)
30m +m)vi+30n =) v+ 2 vive 6 —m)vive + 03V
The mass eigenvalues m; ,, of M;; are
2_M2_6UB 2 2. & 2
myy = Myy¥F N mop (Vi — v3) + vlvz(ml —m; + Z(v1 - vz))
[P 2
+ 3 |vive £ 2\/%(\/1 + v3)(=4Bmou + g~ viva)
S [v +) £ 1 (2(1712 —m3)(v; —v3) + g2(vi +v3)°
4 1 \/W 1
- 16Bmoyv1vz)] (4.34)

where upper (lower) signs correspond to the lighter m; (heavier m?,) Higgs field

and M; ,, expresses the pure MSSM part:
2

1 1
M2, = E[ﬁﬁ g+ & 07D o Vw (4.35)
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Also,
g 2
w = (4Bmou — g°viva)* + 4(n~ﬁ — 3 + E(vf - vg)) (4.36)

With the values of 1, , expressed in terms of v, and Bmou from minimum con-

ditions (4.30), one can express mfl 4 of (4.34) as follows

m_% B Bmou(u® + 1) . VW

My = oy > v i+ s+ | (437)
with
u> -1 w> -1) 5
= + 1-6u*+u*)+B 1+ )1+ 18u* +ut
i du 421+ @A [ 1 = 6 1)+ B (1442301 + 18 + 1)
. 1—6u?+u* _ miu(l — 14u* + u*) + Bmou(1 + u*)(1 + 10u® + u*)
+ _ -
LT T W) 42 (1 +u2) V'
2u
= F————— |Bmou(1 + u®) —m>u 4.38
e <1+u2>2w[ ot(1 + 1) — m3 u] (4.38)
where
w = mb + [Bmou(1 + u?)® + 2miu(l — 6u* + u4)]M (4.39)
z ‘ z (1 + 12) '

and where we also used v = vcosB,v, = vsinB, u = tanf, my = g*v*/4 and

Bmou < 0.

Similar considerations apply for the pseudoscalar Higgs/Goldstone boson

sector. The mass matrix in this case is

o*v
N, = 9V 4.40
0000 j|h=v;1 2, 6:=0 (440

with entries

2

Ny = @+ % (v = v3) + (71 + m)vivy — %v%
Np = —%(V% —-3) — %(V% +13) — n3viv2 — Re(Bmop)
82 13
Ny = in5— ) (V] = v3) + (2 — m)viva — EV% (4.41)
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The eigenvalues of N are

1 1
mg, = E(ﬁﬁ+ﬁa§)¢§\/2
4 2 2 o & o
F N7 [Bmoll(Vl —V)+ ViV, (ml —my+ Z(Vl - VZ))]
4Bm
+ m [VIVZ + \/ZO'U Vi3 ]
L o, 5 1 2 a2 = g 2 5
+ m - F0T )7 W(zzBmoyvlv2 + 0 = V) = i) + S (7 = ) )|
(4.42)
with
2 2 2 &0 oV
k = 16|4(Bmou)* + (ifr; — i3 + Toi- ) | (4.43)

where the upper sign corresponds to the Goldstone mg and the lower sign to
m3. One can use (4.30) to replace 7, in terms of vi, and m, . Using (4.30) one

shows that mg; = 0 and

5 vi+ ) . -
my = - [ZBmoll +11 (vi = v3) + 1 (V] +vy) + 23 vy v2]
2V1V2
1+ u? w1 1+ u?
-7 Brmop + v - mv: —m v’ (4.44)

2u

By eliminating Bmou between (4.37) and (4.44), one obtains the masses my, ;:

1 4m> 0 uW® - 1)1v?
mhy = 5|mi+miE W] = amul )
’ 2 (1 +u2)? Vw”
.\ 2nzuv2[ +Mi+M%] Wz[ _ (mi —m3) (@ - 1) (4.45)
1+u? Nz 2 VW’ (1 + u?)?

where the upper (lower) signs correspond to & (H) respectively and

2, 4
4 , 1 —6u”+u

w’ o= ml +my —2m;mp e = (m3 +m3)* —4mi m cos’ 2B (4.46)
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Replacing u = tan§ in my, ; one obtains an equivalent form of my, 5

2 Ir , 2 2 o m
m,y = E[mA +m; F w”] + 11 v sin4p —
m? +m? 2 m? —m2) cos®2
+ o smzﬁ[u A Z] Y [1—( 7M7) COS BNy a7
Nz 2 N
For n, = 13 = 0 one finds from (4.47):
mi +my = m; +m’ (4.48)

which is independent of 7;. Then i, does not affect the relation among physical
masses which is consistent with the result of section 4.3, where the last term
in (4.22), responsible for the n, term in V, could be removed by a suitable field

redefinition.

In the limit of large tan 8 with m, fixed at a value m, > my one finds:

) ,  Amiy?
m, = mz+——— (@ —m) cotp
A~ My
4m> m? m* +m?
- A Z1-p? 4 z cot? B + O(cot® B) (4.49)
2 2 n 2 2. > 2
my —m; 2my m3 (my — m3)
and
4 (m% ny — m2 ) V?
m%{ = mi +13 v2 + ( Anlz 22772) COtﬁ
my —myz
4 m? m? m* +m?
+ =2 Z 11— a__Z cot? B+ O(cot’ B)  (4.50)
2 2 n ) 2
my — m; 2my m; (my — m;,
Therefore
2 4 mi v? 2
6 = — iy = 1)) cotp + O(cot’ B)
my —myz
4 (m? ny — m> V2
omy = M3V + (s 7712 22772) cot 8 + O(cot® B) (4.51)
my —my
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in agreement with [65] for ; = 0. The above expansions for large tan 8 should
be regarded with due care since they are the result of a double series expansion
in n; and 1/tanB. Assuming n; = 0 (then 1, = 0, too), the term proportional to
cotB in (4.49) is larger than the sub-leading one (cot’ 8), giving m; — m% > 0 if
Ini1/g*| > 1/(4tanB). This bound is however outside the validity of the perturba-
tive expansion in 7, as we shall see shortly and then the large tan expansion
is not useful. If ,, = 0 and 73 > 0 one could obtain m,, > my if also the square
bracket in (4.49) is negative, which is more easily satisfied (for a small ;) if m,

is very close to my, but then the above large tan 8 expansion is not reliable.

Let us therefore analyse the validity of the corrections to i ,, from eq. (4.47)
in the approximation used. For our perturbative expansion in 7, to be accurate
we require that the n,-dependent entries in the mass matrix M;; (4.31) be much
smaller than the corresponding values of these matrix elements in the MSSM

case. From this condition one finds

1
3(m +772)v%+3(772—771)v§+2173v1 vz‘ < §g2v1 Vo

1
6(772—771)V1V2+773vf‘ < Zgz‘vf—h%’

1
6(m+m)wi V2+773V§‘<< Zgz '3\/%—\/%‘ (4.52)

Similar conditions are derived from the pseudoscalar Higgs mass matrix ele-
ments N;; (4.40). One may find this condition too restrictive; in principle it may
not be necessary to impose the leading 7; ~ O(1/M) contribution to the mass
matrix entries be suppressed relative to the MSSM zeroth order and that one
should instead ask that the O(1/M) correction dominate over the higher order
terms O(1/M?) [70]. However, at the quantitative level this leads, for the present

case, to results which are similar or even stronger (for example for ;) than those
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derived here from comparing the MSSM zeroth order against the O(1/M) terms.
From these one can obtain upper bounds for each .. Having imposed these
bounds, we can examine if the dimension-five operators bring a significant con-
tribution to the higgs mass and in particular if we can surpass the tree level

bound my;, < m;.

That would mean to also impose some lower bounds in order to achieve the
desired increase. In the approximation considered, these bounds are derived

from (4.45) with (4.52) and give

1 .
< _77_2 < min

(Vo +1-p) (1 +0 Vo
Ruw?-1) T g

(Vo +1-p) (1 +u?)? Vo 73 , {1 > =3 u> -1 u?>-1
< = < min{-, , ,
A0+ No-(p-1)1-w2p] & L4 42 4

with w = (p - 1)* + 16u°p/(1 + u*)* and p = m /m3.

{ u 3u -1 |u2—3|}
6(ur-1) 24u ’ 24u

} (4.53)

Assuming 1, = 0, then m;, > mjy is possible if one or both eqs in (4.53) are
respected. On the other hand, it has no solution for 7, within 1 < tang < 50
and ms/mz > 1; i, alone cannot change the MSSM bound m,, < m; within our
approximation. If 1 < mj/m} < 2.43 there is a somewhat “marginal” solution
tor n;, with m,/my close to unity and large tang preferred, to enforce the “<”
inequalities in (4.52) and (4.53). For example, if my = mz and tang = 50, the
lower bound on 15/g* is 173/g* > 0.02 while 173/g* < 0.25 is also required. In this
case, for tanf = 50 the increase of m; relative to m3, 6, = (m; — m3)/m} equals
5, = —100/2501 + 213/g*. Therefore 6, = 12% or m;, ~ 102 GeV if n3/g> = 0.08,
corresponding to n; = 4.4 x 1072, Larger values for m;, should be regarded with
care, since they would correspond to cases when “<” of (4.53) is not comfort-

ably respected; if n;/g* ~ 0.04 then 6, ~ 4% or m;, ~ 95 GeV. Further, if we now

increase my even by a small amount relative to my, mf1 =1.5 m% and tanB = 50,
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the lower bound on n3/g? is 0.118 which is difficult to comply by a good margin
with an upper bound unchanged at 73/g> < 0.25. Even so, the relative differ-
ence would be only 6, = 2 X 107%, (73/g*> = 0.118), therefore the increase of
my, is negligible. So far we took 7, = 0. If we allow a non-zero value for 7,
which also requires non-zero 7;, their combined effect on increasing m;, is not
larger and the above results remain valid. Note also that for large tan 8 regions

1/M?*-suppressed operators can be important and can affect the results [65].

From this analysis we see that 7, alone cannot change the MSSM tree level
bound my;, <m; within the approximation we discuss. This is consistent with sec-
tion 4.3, where it was shown that the operator which induced the 7, term could
be removed by a general field redefinition of suitable coefficients’. However,
13 can increase m, to values ~ 95 — 100 GeV if m, ~ my, with the higher values
close to the limit of our approximation. Therefore it is the susy breaking term
associated to (H; H,)? that could relax the MSSM tree level bound. This increase
brings a small improvement. To conclude, adding the quantum corrections is

still needed [65] to bring m), above the LEP II bound of 114 GeV [66].

These findings show that the MSSM Higgs sector is rather stable under the
addition of dimension-five operators, in the approximation we considered (ex-
pansion in 1/M) of integrating out a massive singlet or a pair of massive S U(2)
doublets which generated the 7,,3 contributions. If M is low enough, the ap-
proximation used by integrating out these massive fields becomes unreliable,
and one should recompute the full spectrum keeping all fields dynamical. Then
the quartic interactions that the initial massive fields brought can be larger or of

similar order to their MSSM counterparts and in principle they can change the

3To see this one can also start from (4.22) and perform a “smaller” version of redefinition
(3.10), with pr=0.
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above conclusions.

4.5 Including Loop Corrections

It is worth mentioning the value of m,, in the presence of one loop corrections

from top - stop and dimension five operators [71], mentioned in the text:

1

mi = z[m;‘2+m%— \/W+§]
mz2+miy (=24 my) v (m 2 —m2) cos®28
+ Qiomo) v sin 26| 1 + TAT2 | 4 L Skl (4.58)
W 2 V'
where
W= [(m}—mb) cos2B + &£ +sin’ 28 (m 2 + m2)?

ml = i+ +E2+ (2 Louo) vV sin2B + Ly mgv; € = §m sin’ B (4.55)

where 6 is the one-loop correction from top-stop Yukawa sector to 43 of (5.38)

which changes according to 19 — A9 (1 + 6) where [72, 73]

3nt M: X 1 M- M;
5 ’[1—f+—’+ 312 — 16 22)(X, + 21n 1) 1n 22 |,
g*n? R 32712( ! g3)( ' nm,) -y
2(A, my — t B)? A, my — t B)?
X, = (Armyg Z,UCO B) [1_( t Mo ﬂzo B) ] (4.56)
M 12 M

with M2 = mj; m;, and gz the QCD coupling. The combined effect of d = 5
operators and top Yukawa coupling 4, is that m;, can reach values of 130 GeV
for tanB < 7 with a small fine-tuning A < 10 [71] and with the supersymmetric
coefficient )y giving a larger effect than the non supersymmetric one, {;;. Even
for a modest increase of my;, from d = 5 operators alone of order O(10GeV), their

impact on the effective quartic coupling of the Higgs field is significant (due to
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the small value of the MSSM gauge couplings), and this explains the reduction

of fine-tuning by the effective operators.
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CHAPTER 5

MSSM HIGGS WITH OPERATORS
OF MASS DIMENSION 5 AND 6

We generally expect that corrections to observables from higher order oper-
ators will be subdominant to those from the leading, dimension five ones. Nev-
ertheless, we saw in section 4.4 that in the limit of large tanp, the correction to
the mass of the Higgs due to mass dimension five operators is tan 8 suppressed.
In that limit, corrections from dimension six operators can become comparable
to dimension five since 1/M? ~ 1/(M tanB). Therefore, in order to complete the
study of the leading Higgs mass corrections from effective operators, we need
to include the contribution from dimension six operators. Since the latter is not
tan 8 suppressed, the sequence ends here, as dimension seven or further will

always be subdominant.
5.1 The Relevant Operators

We focus on the Higgs sector of the complete Lagrangian. This is comprised of
the MSSM higgs sector £, and the complete set of mass dimension-five and six

operators. For £, we have

Lo = fd“e ZZi(S,ST)H,.TerHi+{fd26’u(l + Bmy 00) H, -H2+h.c.} (5.1)

i=1,2
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in standard notation. Here Z;(S,S") = 1 -¢; mg 0060 with i = 1,2, ¢; = O(1) and

my is the supersymmetry breaking scale as presented in the previous chapter.

We extend this Lagrangian by higher dimensional operators. In dimension-

five we have the usual contributions studied in the previous chapter:

L = % f d*0 ((S) (H, - Hy)*+h.c.
= 2010 (hy - h)(hy - Fy + Fy - hy) + {1y mg (hy - hy)* + hee,
! 4 1Y T -V T 1
L = Mfd 0 {A(S,SHD"(B(S,S") Hye ™ |Du|1(S, STy " Hy| + hc.} (5.2)
where!

%5(5) = {10 + 411 my 60, 10, o ~ 1/M, (5.3)
with § = 66m, the spurion superfield. We assume that
my < M (5.4)
so that the effective theory approach is reliable.

L, is eliminated by generalised, spurion-dependent field redefinitions as it
was shown in detail in the previous chapter. For this reason we keep only £,
for the discussion below. These redefinitions bring however a renormalisation
of the usual MSSM soft terms and of the u term as well as additional corrections
of order 1/M?. Since in the following we will write down and study the full set

of d = 6 operators, the latter will be automatically included.

The list of d = 6 operators is [74]

1 . .
0, = Wfd“ezj(s,s')(H}erHj)z, j=1,2.

IWe switch to a notation best suited for the analysis here. The dictionary is: 1, = 2{iou",
n3=-2mol11. With respect to the literature: In [71] 5, — {1, 73 = & and in [65] i, — 26, 73 = 26,
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where W* = (-1/4)

vector superfields V,,

—J}wawSMH“Hm@ﬂma

1hﬂMamSMmHmmHm

M?2
1
i fd“@ Z5(S.S") (H] e H\) Hy. H, + h.c.
1
e fd“@ Zs(S.S") (H} e Hy) Hy. Hy + h.c.
1

2 a
Wfd 927(8,0) 16 2KTI'W/ Wa(HzH])-i-hC
1
e f d*0 |Zy(S.S") (Hy H) + h.c.| (5.5)

D eVD¢" is the chiral field strength of SU(2), or U(l)y

and Vy respectively. Also V,, = Vi(0?/2) ¥ 1/2 Vy with the

upper sign for V,. The remaining d = 6 operators are:

014

1 B —
— fd“@ Zo(S,STY HIV " V2 H,

Y

= fd“e Z1(S, ST HiV ¢ V2 H,
1

= szd“Hle(S ST Hi " v W H,
1

~ szd“e Zix(S,S) Hj e V" W H,

= n f d*0 Z,5(S,8™) H "' WV v H,

1
= 15 f d*0 Z,4(S,S") H} ¢ WP V" H, (5.6)

Also V, H; = ¢™" D, ¢ H; and W_ is the field strength of V;. In the most generic

case, the above operators should actually include spurion dependence of ar-

bitrary coefficients under any V,, in order to include supersymmetry breaking

effects associated to them. The wavefunction coefficients introduced above have

the structure

1
WZ(SS )=a

0 + i my00 + o mo 00 + mg 0060, @;j ~ 1/M>. (5.7)
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Regarding the origin of these operators: O, ,3 can be generated in MSSM with
an additional, massive U(1)" gauge boson or S U(2) triplets integrated out [65].
O, can be generated by a massive gauge singlet or S U(2) triplet while Os ¢ can
be generated by a combination of S U(2) doublets and massive gauge singlet. O,
is essentially a threshold correction to the gauge coupling with a moduli field
replaced by the Higgs. Oy exists only in broken supersymmetry but is generated

when redefining away the d = 5 derivative operator, thus we keep it.

Let us consider for a moment the operators Oy_ 14 in the exact supersymme-

try case. We can use the equations of motion to set some of them on shell*:

1 — I —
- D’ (H} e") + uHT (i) = 0, 7 D (H ")+ uHI (i) =0 (5.8)

We find that in the supersymmetric case®:

Oy ~ f d*o HWZ " V2 H, = 16 |u? f d*0H| "' H, (5.9)

and similar for Oyy. Regarding O, ,, they vanish in the supersymmetric case,
following the definition of V* and an integration by parts. Furthermore, O34
are similar to Oy ;9 which can be seen by using the definition of W and the

relation between V?, (ﬁz) and D?, (52).

Summarizing, in the exact supersymmetry case the operators Oy_;4 give at
most wavefunction renormalisations of operators already included. The super-
symmetry breaking terms also bring simply soft terms and u term renormal-

ization. Since these terms are anyway renormalised by O, s, where spurion

2Superpotential convention: fdzﬁ,u H.H, = fdza,u HT (i) Hy = fdzﬂ,u €l Hi Hé; e?=1=
e

3Also using (iop) e = e (ioy); A = A*T¢; (iomy)! = —(ioa); (i02)* = 1
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dependence is included with arbitrary coefficients, then for what follows there
is no loss of generality in ignoring the supersymmetry breaking effects associ-
for the analysis of the Higgs potential performed below. Finally, there can be an
additional operator of d = 6 from the gauge sector, O;s = (1/M?) f d’*6 weaw,
which could affect the Higgs potential?. Using the equations of motion for the
gauge field it can be shown that O;s gives a renormalisation of O, , 3, so its effects

are ultimately included, since the coefficients Z, , ; are arbitrary.

In conclusion, the list of d = 6 operators that remain for our study of the
Higgs sector beyond MSSM is that of (5.5). Let us stress that not all these oper-
ators are necessarily present or generated in a detailed model. Symmetries and
details of the “new physics” beyond the MSSM that generated them, may forbid
or favour the presence of some of them. Therefore, we regard these remaining
operators as independent of each other, although in specific models correlations
may exist among their coefficients Z;. It is important to keep all these operators
in the analysis, for the purpose of identifying which of them has the largest
individual contribution to the Higgs mass, one of the main interests of this anal-
ysis. Finally, some of the d = 6 operators can in principle be present even in
the absence of the d = 5 operators, if these classes of operators are generated
by integrating different “new physics”. In specific UV completions, one simply

keeps the terms generated by the model and sets all the rest to zero.

4Its complete gauge invariant form is [d*0 Tr ¢ W™V D*(e" Woe™).
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5.2 The Scalar Potential

Following the previous discussion, the overall Lagrangian of the model is

8
Ly=Lo+ L+ Z o} (5.10)

with the MSSM Higgs Lagrangian £, of eq. (5.1), £, of eq. (5.2) and O, s of

eq. (56.5).

In order to calculate the scalar potential we need the bosonic expansion of

the Lagrangian. For the dimension-six operators we have:

0,

O,

1

M2fd49 Zi(S,S) (H] e" Hy)?

2a1 | (hjh) [(Dyuh)' (D hy) + = S+ FIF ]+ | W F P+ (h{ D h)(h} Dyhy)|

[2 aq My (hIhl)(FIhl) + h.c.] + @ my (hI 1)? + fermionic part (5.11)
1 4 ¥ T ,V2

szdezz(s Sy (H] e"* H,)?

2az |(3ha) [ (Do) (Do) + 0 22 > 2y + FyFa ]+ [ FoP + (B0 o) (WD)

|2 21 mo (Wh2)(Fi o) + hc.| + iz m (hyho)? + fermionic part (5.12)

L f d*0 7y(S,S") (H! "' H)) (H] " H»),

a0 {(h 1) |(Duha) (D"hy) + i 2 > b+ FyFa| + (| F)(Fyh) + (1 © 2)
s [ Dh)WLD hy) + he| + {a31 mo | (W) (Fho) + (hyho)(Fhy) | + h.c.)
sy my (hihy) (WS hy) + fermionic part (5.13)
A;Z f d*0 Z4(S,S") (Hy . Hy) (H, . Hy)',

o 0u(ha.hy) & (hy.hy)' + [eay mo (ho.hy) (ho. Fy + Fyhy) + hc.

g my (hy.hy) (ha.hy)' + o lhy - Fy + Fy - by|* + fermionic part (5.14)
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1
Os = Wfd“e Z5(S,S") (H] "' H)) H,. H, + h.c.

D .
asof|(Duh1)" (D) + ] 71 hy + F{Fy|(hohy) + (WD) & (o))

+

[0150 (Fhy) + @ty mo (b hl)] (hy.Fy + Fa.hy) + mg [0/51 (Fih) + a3, (hJ{Fl)] (h2.hy)

+

s m(z) (h;hl) (hy.hy) + h.c. of all + fermionic part (5.15)

1
O¢ = ﬁfd‘*e Zs(S,S™) (Hi " Hy) Hy. Hy + h.c.

D .
aeof[(Duh) (Do) + I 72 hy + FYF |(ho.hy) + (WD, o) & (o))

+ |0 (Fiha) + oy mo (W )| (ha.Fy + Fy.hy) + mo |y (Fiha) + @y (WyF) | (ha-hy)
+ g m(z) (h;hz) (hy.hy) + h.c. of all + fermionic part (5.16)
_ 1 1 2 @
01 = hTege ) OZS0) T W' W, (Hy Hy) + hc.
1 . . -
= S (D, +D}) |70 (ha.) + g (o hy)'| + fermionic part (5.17)

1 .
Os = -5 f d*0 [Zg(S,S') [(H2H1)2+h.c.]]

2&’;1 my (hzhl) (hz.Fl + Fz.hl) + m% g (l’lg . ]’11)2 + h.c. + fermionic part(518)

The notation is as follows: D*h; = (* + i/2Vi) h;, hj@ﬂ = (D*h;)". Further,
D, =D,T+(=1/2) Dyand D, = D,, T + (1/2) Dy, T* = 0*/2. Finally, one rescales
inallO; (i #7): Vi »2&V,, V, 5 2g V,. Then Vi, =2, V,, T +2g,(F1/2) V,
with the upper sign (minus) for V;, where V, , enter the definition of O, ,. Other
notations used above: H; - H, = €/ H| Hé. Also |hy - hy|* = |1} €7 hél2 = | |h)> -

b} hol?; €7 € = §%; € e = 6% 67 — 5" 6%, €% = 1, with

W | ho|_|
h = = , th =-1; hy = = , Yhz =+1 (519)
hy ) \h ) \ b

With these results we find the following contributions to the scalar potential:

&K
B Oh; Ok

0’ K
- FiF; = |F\P +|Ff + ° F,F* (5.20)

Ry ”
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where Ks is the contribution of O(1/M?) to the Kahler potential due to O;_s.

Also,
F' = e h [u+210 (hihy) + piil + B pra}
Fy' = —{e’h [u+ 2o (i ho) + par] + by poo} (5.21)

where p;; are functions of 5, »:

pii = —Qaop + asu + @ mol* — (@so p + asou + @ mo) ol

—(ajy; mo + asop) (ho.hy)™ + [(aeo + 2 aso) 1 + 2ag, mol (hy.hy)

pi2 = Qajmg+ &gl > + (&, mo + @y ) 1ol
—[Qayo + azp) u + as; mol (hy.ho) + a5, mg (hy.hy)* (5.22)
pa1 = —Qangp + auopt + g mollhal® — (@30 + @aop + @ mo) [y

—(ay; mo + agy ) (hahy)" + [(aso + 2 aeo) 1t + 2ag, mo] (hy.hy)

2 * % 2
(a5, my + ago Wlhal” + (@) mo + agy 1) 1|

P22

—[(2an + az0) u + g mol (hiho) + agy mo (hy.hy)” (5.23)

The first two terms in the rhs of (5.20) give (h; denote S U(2), doublets, |h|* =

h hy):

Vil |F\* + | Fy

I+ 210 hyhol* (P + hof*)

—+

|1 (111 a1 + 11l 1y + (1) (p2a + pio)) + hoc (5.24)

The nontrivial field dependent Kahler metric gives for the last term in Vy of

eq. (5.20):
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Veo = |/1|2[2 (a1p + azo + a/40)|h1|2 |hz|2 + (@30 + @) (|h1|4 + |h2|4)
+2 (a9 + ano + @30) |h1-hz|2 + (|hl|2 +2 |h2|2)(050 hy.hy + h.c.)

+ QI + 1P Yo by + hc)| (5.25)

so that Vy = Vg + Vpy. Furthermore, from the gauge part we have:

DY = —gu| BT h L+p)+ T hy (L +5y)]. T*=0")2
-1 1
Dy = —gi| hj— b (L+p)+hyshy (1+52) (5.26)

with notation:

P1(h12) = 2a0 |h|* + a0 lhol* + [(aso — a70) hahy + hec.]

Da(h12) = 2000 |hal* + 30 1y |* + [(ago — @70) ho.hy + hc.] (5.27)
This gives
2
a a g ~ ~ ~ ~
D! DY = f [ (1 +p) P = (0 +p2) 1) + 41+ p)(A + p) k] haf*]
2
g - -
D} = Zl (L + ) P = (1 + p) o) (5.28)

So the gauge part of the scalar potential is written as:

1
Veauge = E(va + D) [1 + (70 hy.y + h.c.)]

2 2
- & ;gz (P =1l [+ fit ) Il = (1 + folhi2)) 1hal]
2
£ 2+ A2l hof 5.29)

obtained with (5.26) and where f , ; are functions of A ,:
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fithia) = dayp il + [ Qasy — an) hahy + h.c.)]

falhi2) 4ay lhol* + [ Qago — az0) ha.hy + h.c)]

f(hi2)

ﬁl +ﬁ2 + ((1’70 hz.hl + hC) (530)

The scalar potential also has corrections Vg3 from supersymmetry breaking,
due to spurion dependence in higher dimensional operators. In addition we

also have the usual soft breaking term from the MSSM. As a result

Vssp = —my [0/12 Il + ax ol + @z Il 1hal* + @ 1ho P (5.31)
+ (s i (he.y) + hc) + (@ ol (ha.hy) + )|

—[ mg agy (hy.ho)? + &1y mo (ha.hy)* + pu Bmg (hy -h2)+h-C-] +mg (¢l [* +calhof*)

Finally, in O, _s there are non standard kinetic terms that can contribute to V
when the scalar singlet components (denoted 4?) of h; acquire a vev. The relevant

terms are:

Ly D (Sip + i) O b OhY, i,j=1,2. (5.32)

where the field dependent metric is:

g = Ao )P + (as0 + ao) (W = 2 (aso Y Iy + h.c.)
g = (a3 + @) hY" by — a5y 1) = aeo B3, 8210 = g
g0 = dang W + (@30 + o) 1K1 — 2 (aso A ) + h.c.) (5.33)

For simplicity we only included the S U(2) higgs singlets contribution, that we
actually need in the following, but the discussion can be extended to the general
case. The metric g;;- is expanded about a background value (h?) = v,/ V2, then

tield redefinitions are performed to obtain canonical kinetic terms. They are:
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g h?(l—gll)—gﬁhg

2 2
8\ &Gix -

These bring further corrections to the scalar potential.

Since the metric has corrections which are O(1/M?), after (5.34) only the

MSSM soft breaking terms and the MSSM quartic terms are affected. The other

terms in the scalar potential, already suppressed by one or more powers of the

scale M are affected only beyond the approximation O(1/M?) considered here.

Following (5.34) the correction terms O(1/M?) induced by the MSSM quartic

terms and by soft breaking terms in Vs are:

Vi,

P N Lo o o
= i (=g AP+ (=g |y P - 3 (R} + 3) (8- )" h3 + h.c.)

1
+ 5 [Bmo,u((gll* + ggz*) h(l) I’lg + ng* I’l(l)z + g21* hgz) + ]’lC]
2
- % (IR = 1A P @i | ) 1P = 8o |31 + hec) (5.35)

Using equations (5.20), (5.29), (5.31) and (5.35), we find the full scalar potential.

With notation i} = ¢;m§ + |ul?, i = 1,2 one finally has:

%

+

Vil + Via + Vo + Vssp + Vi, (5.36)
Vir, + il |* + islha|* = [u Bmo by - hy + h.c.]

it 2 Ul P o+ Al P

( % (hy - b)Y + A Ly [P (b - ho) + A7 [y P (hy - o) + hec)

2
% (P = 1haP)(fi(ha2) T = falhi2) 1hal?) + 4 (200l R kol (P + (ol

I ;
32 fa(hio) IRyl

where g* = g} + g5, and fi,3(h,) are all quadratic in &, see eq. (5.30). Except Vi,

all other fields are in the SU(2) doublets notation. A; are given by
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/2 = A0/2 =l (@30 + aso) — m§ arn — 2mg Relas; ul (5.37)

112 = 25/2 = |u* (@3 + ag) — mi @z — 2mo Re[ag 1]

A = A3— 2 |l (@10 + @ + aug) — mg sy — 2mg Re[(as; + ae1) 1]
Ay = A= 2 |uf (@0 + @0 + az) — mg as — 2mo Re[(as; + agr) u]
As/2 = —mou(as + ag) —my i — myag
ds = |ul(aso+2a50) + myasy +mou(2ay + sz +aq) +2mop* ay + 240"
A7 = |ul (aso + 2 as0) + my g + mop (2 ag + @z +ag) + 2mopt @y + 240 p"
where

1 1 1 1
A7/2 = 3 (g +g), 2= 3 (g +g), A= 1 (-8, A= -5 g, (5.38)

denote the pure MSSM contribution. One can include MSSM loop corrections

by replacing A? with radiatively corrected values [73].

Equations (5.36) and (5.37) show the effects of various higher dimensional
operators on the scalar potential. As a reminder, note that all @y ~ O(1/M?)
while {11, {10 ~ O(1/M). In principle, the dimension-five pieces are the domi-
nant. However, as we will see later, when tanf is large the effect on a physical
observable of dimension-five and six terms can be of similar size. In specific
models correlations exist among these coefficients. The above remarks apply to
the case when the d = 5 and d = 6 operators considered are generated by the
same “new physics” beyond the MSSM (i.e. are suppressed by the same scale).
However, as mentioned earlier, this may not always be the case; in various mod-
els contributions from some d = 6 operators can be independent of those from
d = 5 operators (and present even in the absence of the latter), if generated by
different “new physics”. A case by case study is then needed for a thorough

analysis of all possible scenarios beyond the MSSM higgs sector.
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The overall sign of the i° terms depends on the relative size of aj, j =
1,2,5,6,7, and cannot be fixed even locally, in the absence of the exact values
of these coefficients. )y also contributes to the overall sign, however this alone
cannot fix it. At large fields” values higher and higher dimensional operators
become relevant and contribute to it. We therefore do not impose that V be
bounded from below at large fields. For a discussion of stability with d = 5

operators only see [75].

Eq. (5.36) is the main result of this section. For simplicity, one can take g,
and 2,;- to be real, possible if for example a5y and as are real and there is no vev
for Imh;. Bmou can also be taken to be real. In the next section we shall adopt

these simplifications.

5.3 Corrections to the MSSM Higgs Masses

Having obtained the general expression for the scalar potential, we proceed
with the computation of the mass spectrum. The general expression for the
mass of the CP-even Higgs fields &, H is:

, 18V

mh’H = EW (539)

(hiy=vi/ V2,(Im h;)=0

In the leading order O(1/M) one has (upper signs for my):

ms  Bmou@u® + 1) w . .
mi,H = TZ + O'u2u + \g_ +1? [(2510,11) q; + (=2my 1) qg] + 5m,21’H(5.40)
with
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1

+

a1

T 42 (1 + D) v
x[ = (1= 6u” + utyu Vw F (mu(l — 140 + u*) = Bmop(1 + u?)(1 + 100° + u4))]
£ _ 2u 2 2
q, = +m[—3m0/x(l+u )—mzu] (541)
where
w=my + [ — Bmou(l + u?)® + 2miu(l — 6u* + u4)]M u =tanp (5.42)
z z 21+ u?)’
In eq. (5.40)
omj = O(1/M?) (5.43)

and we also used that m; = gv/2. One also shows that the Goldstone mode has

mg = 0 and the pseudoscalar A has a mass:

2 2

, l+u I +u

my = GopV? +2mg & v+ omh,  omh = O(1/M?) (5.44)

Bmgp -

These results agree with the independent calculation up to order O(1/M) of the

previous chapters.

Ignoring for the moment the corrections O(1/M?), one eliminates Bmou be-

tween (5.40) and (5.44) to obtain:

1
miu = 3| VR
. m2 + m2 -2 m v2 (m2 _ mz) 0082 2ﬁ
+ (24op) v Sln2ﬁ[li A\/T Z] ( 5112 0) [ _ (my 37 ]
W w
+ S, §'mi ;= O(1/M?) (5.45)

where the upper (lower) signs correspond to i (H) respectively and

W= (mi + mk)? —4mi ms cos? 28 (5.46)
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This is important if one considers m, as an input; it is also needed if one consid-

ers the limit of large tan 3 at fixed m, (see later).

The O(1/M?) corrections ém, ,,, 6m} and §'m;, ,; of equations (5.40), (5.44) and
(5.45) in the general case of including all operators and their associated super-
symmetry breaking, have a rather complicated form. For most purposes, an
expansion in 1/ tanf is accurate enough. The reason for this is that it is only at
large tan 8 that d = 6 operators bring corrections comparable to those of d = 5.
The relative tan 8 enhancement of O(1/M?) operators compensates for the extra
suppression factor 1/M that these operators have relative to O(1/M) operators

(which involve both &, and &, and thus are not enhanced in this limit).

If we neglect supersymmetry breaking effects of d = 6 operators (i.e. a; =
ap =0,aj#0,j=1,..,8) and with d = 5 operators contribution, one has® for
the correction 6m; ,, in eq. (5.40) (upper signs correspond to ém;)

7
Sy =" vt ety Lolu+vE Gy +vi G (5.47)

Jj=1
The expressions of the coefficients y* are provided in Appendix A and can be
used for numerical studies. While these expressions are exact, they are compli-
cated and not very transparent. It is then instructive to analyse an approxima-
tion of the O(1/M?) correction as an expansion in 1/ tan 3. We present in this limit
the correction 6m; ,, of eq. (5.40), which also includes all supersymmetry break-
ing effects associated with all d = 5,6 operators, (i.e. @j # 0,ap # 0, {11 # 0,

j =1,..8) in addition to the MSSM soft terms. This has a simple expression:

2 2 2 2 2
om, = =2v [(lzzmo + 2a61 mop + (@30 + @a0) 4= — @2 mz]

°In the case of including the supersymmetry breaking effects from effective operators, asso-
ciated with coefficients «i, ajp j = 1,2,..8, the exact formula is very long and is not included
here.
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VZ

tanﬁ[4 62 m(2) + 4:“ mg (2@21 + a3 + a4 + 20’81) + 4/,(2 (2(}'50 + agp)

V2

(Bmop)

— m}, Qargo — 3az) - QLo p)*| +0(1/ an’ ) (5.48)
which is obtained with Bmou kept fixed. The result is dominated by the first
line, including both SUSY and non-SUSY terms from the effective operators.
This correction can be comparable to linear terms in ¢y, {1, from d = 5 operators
for (2 £10u) = 1/ tan B (see later). Not all O, ,_s are necessarily present, so in some

models some «;;, {10, {11 could vanish. Also:

V2 tan B

1
om2, = _Z(Bmo'u) v g tan’ B + [ — 8Bmou azy — 4asrmg

— AumyQLay + az + as + 2ag;) — 4,112 (Lasp + aeo) + 2agy — aqo) m%]
2

+ _3B 2( + )+
Mo v-(a a
1 0 50 60 Y ﬁ

— dumy(—6ay; + 8ay; + a3y + au + 2ag;) — 4uP(Sasy — 2ae0)

[ - 8Bmo,ualo + (120’52 — 16(1’62)1’”3
2 8v 2 2
+ (6aso + 2006 — 13a70) miy + —— 2o ) |+ 01/ tan’ ) (5.49)
mopd

which is obtained for (Bmou) fixed. Note the O(1/M?) effects from d = 5 operators

(¢o)-

Similar expressions exist for the neutral pseudoscalar A. The results are sim-
pler in this case and we present the exact expression of ém? of (5.44) in the most
general case, that includes all supersymmetry breaking effects from the opera-

tors of d = 5,6 and from the MSSM. One finds

v2

oy = - 2B + [~ (das; + 4ay + Sag +8
my 8tan2,8(1+tan2,3)[ mopt aso + [ — (4asy + 4y + 8agy + 8aqy) mou

- 4&521’]’1% — 8Bm0,uoz]0 —4 (a50 + 2“60)/12 + (2&50 — 070) m%] tanﬂ

+

[2B mo U (10&50 + 3(160) + 16&821’1’13 + 16((151 + a/61)m0,u] tan2,8

+

2 [— 4B mou(ao + @ + 2 30 + 2 g0)— 6(aso + o) 1° — (@50 + @0 — a0) M5
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2 3
- 2ae + asy) my — 4@ + @z + a3 + agy + 2az;) mou] tan’ B

+

[2Bmoﬂ (3(1’50 + 10 agp) + 16&82111% + 16(@5] + 06])1’}10/1] tan4ﬁ

[8B mopt iz + 4 (2aso + @e0) > — (Qaso — a70) M + dagy my

+

4 (2(1’21 + a3 + a4 + 2a81)m0,u] tansﬁ - ZBm(),LLCY6() tan6ﬁ] (550)

We also showed that dm; = 0 so the Goldstone mode remains massless in
O(1/M?), which is a good consistency check. A result similar to that in eq. (5.48)

is found from an expansion of (5.50) in the large tan g limit:

anf |

1
(5mfx = ~7 (Bmgu) agg v? tan® B+ 2 v - 8Bmouayy — 4062m3
- (8&21 + 4(1’31 + 4&41 + 8agl)m0,u — (8&50 + 4(!60)/12 + 2060 m% — 7 m%]

2

%

Z[Bmoﬂ(30lso + Lago) + 8mgass + 8mop(as; + 061)]

+ v
8tanp

— dasymg — (daso + 8ago)” — (2aso + dagy — 3a70)m§] +0(1/ tan’ B) (5.51)

—+

[ — 8Bmou (1o + 230 + 2a40) — 4 Qg + @31 + @4 + 2as1) mou

We emphasise that the large tan 8 limits presented so far were done with (B mou)
tixed. While this is certainly an interesting case, a more natural expression to
consider at large tang is that in which one keeps m, fixed and Bmou arbitrary.
We present below the correction O(1/M?) to m;, ,, for the case m, is kept fixed to
an appropriate value. The result is (assuming my >my, otherwise ¢'m; and &' my,

are exchanged):

_ (2 floﬂ)z vt

2 _ >
my —myz

2 2 2 2 2
6’mh = =2v [(1’22 my + (a30 + (1’40)/,[ + 20’61 moy i — Qg mz]

V2 1

+ Am> ((Qaa; +az; +aq +2asy) mo u+Qaso+a 24 agym?

tanﬁ[(mi—m%)( A (Qan+aszi+ag 81) Mo u+(2aso+aeo) 1 62 1)

8 (m} +m3) (umo 10 &)V
(mf\—mé)2

+ O(1/tan*p) (5.52)

— (2060 — 3@70) I’I’li m% — (2(160 + CY7()) mé) +
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A similar formula exists for the correction to my:

2 2.4
5’}’}’1%_1 = [ - 2(m0/,¢ (as) + ag) + ag mg) v2 + %]
4 My

2

V 1
+4| 2m% (2 (aq; =) mout + (g —a 2 Hasp—ag) m2 — 2
tanﬁmi_m%( 4 (2 (@11 —a21) mop +(@e0—aso) 1~ +(@s2—er) Ny — Qoo y)

— [4(an + az + a1 + aq) + 2a5)) mop + 6(aso + @) 1 + 2asy + ag) mg
8 (m3 +m§)(pm0§10§11)v2]
(m} — m2)?

+ O(1/tan*p) (5.53)

29 .2 4
— (aso+Sas0—2a70) myl m; — (aso— o) mZ)—

Corrections (5.52) and (5.53) must be added to the rhs of eq. (5.45) to obtain
the value of m; ,, expressed in function of m,. The corrections in equations (5.47)

to (5.53) extend those of the previous chapter to include all O(1/M?) terms.

From equations (5.48) and (5.52) we are able to identify the effective oper-
ators of d = 6 that give the leading contributions to m;, which is important
for model building. These are O, 34 in the absence of supersymmetry breaking
and O, when this is broken. It is however preferable to increase m; by super-
symmetric rather than supersymmetry-breaking effects of the effective opera-
tors, because the latter are less under control in the effective approach and one
would favour a supersymmetric solution to the fine-tuning problem associated
with increasing the MSSM Higgs mass above the LEPII bound. Therefore O34
are the leading operators, with the remark that O, has a smaller effect, of order
(mz/p)? relative to Os 4 (for similar @y, j = 2,3,4). At smaller tang, Os can also

give significant contributions while O; has a relative suppression factor (mz/u)*.
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5.4 Analysis of the Leading Corrections and Effective Opera-

tors

One expects that when in the Lagrangian appear effective operators of mass
dimension five and six, coming from the same UV physics, those of dimension
six will be subleading. However, this is not the case when an extra suppression
makes the two classes comparable. In our case, some dimension five operators
are suppressed by 1/(M tanB) but dimension six only have 1/M?. Thus, in the

limit of large tan 8 these two classes can be comparable.

In the particular case of the Higgs mass, by comparing O(1/M) terms in
eq. (5.45) against O(1/M?) terms in equations (5.52) and (5.53), one identifies

the situation when these two classes of operators give comparable corrections:

4my | Lopl 5 2(Lop)?*V?

2 2
anny + (30 + @)™ + 2a61mMop — a2omy +

~
~

m; — m; tanf m2 — i
4m; Lo 2(Lwp)’ vV

Snmy + — £ 2{ s %'(moﬂ(aﬁ+G61)+@82m(2))——£21 a 2 (5.54)
my — m; tan 3 o — Ny,

In this case O(1/(M tanp)) and O(1/M?) corrections are approximately equal (for
M = my tanB). Similar relations can be obtained by comparing (5.40) and (5.44)
against 6m; ,, of (5.48), (5.49) and (5.50).

Note that we don’t have to consider operators of dimension > 6 since they
do not receive any tan 8 enhancement in order to become comparable withd = 6

and will always be subleading.

Let us now examine more closely the corrections to the Higgs masses due to

d = 6 operators. The interest is to maximise the correction to the MSSM classi-
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cal value of m;,. From equations (5.48) and (5.52) and ignoring SUSY breaking
corrections (@, k # 0), we saw that at large tan Os 4 bring the largest correc-
tion and also O, to a lower extent. At smaller tang, Oss; can have significant

corrections. All this can be seen from the relative variation:

€rel = M — Mz = \/5r [ — 1, (555)
mgz
with
5. = 1_ﬂL+ v {2510,11 4m; N (=211 mg) 2 (mfs + m3)
rel = mi - m% tanzﬁ m% tan,B mi — Wl% tan2/3 (mi _ m%)z

(2 Lo ) v?
- [2 (0’22 mg + (30 + Qo) f° + 2 gy mo jt — g m%) + %]
mA - mZ

1 1
3 [4 my ((2%1 + a3+ aq + 2ag1) mo + (2aso + CY()O),U)

tan B m3 — m?

2.2 2 2 4
+4 agy mymy —Lasy—3 az9) my my; — (2 aso+ag) my+8 1o {11 pmyv

2 2

2 2
ZmA+mZ]}
A "Mz

+ O(1/tan* B) +O@n /(M tan® B)) + O(/i? /(M? tan® B)) (5.56)

where /1 is some generic mass scale of the theory such as u, mz, my or v. The
arguments of the functions O in the last line show explicitly the origin of these
corrections (MSSM, d = 5 and d = 6 operators, respectively). Eq. (5.55) gives the
overall relative change of the classical value of m, in the presence of all possible
higher dimensional operators of d = 5 and d = 6 beyond the MSSM Higgs
sector, for large tan 8 with m, fixed. Depending on the signs of coefficients @y, {19
and ¢, this relative variation can be positive and increase m;, above the MSSM
classical upper bound m;. The accuracy of the expansion at intermediate tanf

depends on //M; in any case one can use the exact én, ,, in (5.47).

The same expansion in large tan 8 can also be computed keeping Bmou fixed,

instead of m4. Then
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4 Vv (4Q0op) 2 2my (2 Lo p)
O = 1—— —2{ Ewn 3 ((—2411 mo) + ;)
tan°f  m; | tanp tan- 8 Bmypu

1 12&ow?* v
2 2 2
- 2[azzm0+2a61m0,u+(a3o+a/40),u _a20m2]+tan,8[ —Bmgyu

+ 42y +as+au+2as) mop+ 4 (2 aso+ag) 1 +dag my — (2 g —3a) mg]}

+ O(1/tan*B) + O(n/(M tan® B)) + OG> /(M? tan’ B)) (5.57)

In (5.55) and (5.57), the d = 6 operators (a;; dependence) give contributions
which are dominated by tan-independent terms. One particular limit to con-
sider for ém; or &'m; is that in which the effective operators of d = 6 have coef-
ticients such that these contributions add up to maximise 6,,;. Since coefficients

«@;; are not known, we can choose them equal in absolute value
—p =~ = —@30 = —Q = @0 >0 (5.58)
In this case, at large tanf:

5m,21 ~ 2 vzozzo[m(z) +2mou + 24 + m3] (5.59)

and similar for ¢'m;. A simple numerical example is illustrative. For my = 1 TeV,
u =350 GeV and v ~ 246 GeV, one has ém; ~ 2.36 ay x 10" (GeV)?. Assuming
ay ~ 1/M? for M = 10 TeV and the classical MSSM value of m, to be equal to m;
(reached for large tan 8), we obtain an increase of m,, from d = 6 operators alone
of about Amj, = 12.15 GeV to m;, ~ 103 GeV. An increase of ay, by a factor of 2.5
to ay ~ 2.5/M? would give Am;, ~ 28 GeV and my;, = 119.2 GeV, which is above
the LEPII bound.

The discussion above indicates that if we persist on using the loop correction
to increase the Higgs mass, the effect of these operators will be to relax the strain

of the little hierarchy. Indeed, the relative increase of Am;, due to d = 6 operators
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alone is mildly reduced, however, the effective quartic coupling of the Higgs is
increased. This amounts to a reduction of the fine tuning for the electroweak
scale [76]. The above choice of M = 10 TeV was partly motivated by the fine-
tuning results of [71] and on convergence grounds: The expansion parameter of
our effective analysis is m,/M where m, is any scale of the theory, in particular
it can be the susy breaking scale m,. For my ~ 3 TeV and ¢, ~ 2.5 (of eq. (5.1)),
one finds for M = 10 TeV that ¢, my/M =~ 0.75 which is already at the limit of

validity of the expansion in the effective approach considered.

These simple estimates demostrate that mass dimension six operators can
indeed bring a significant increase of my, to values compatible with the LEPII
bound. However, the amount of increase depends on implicit assumptions like
the type and number of operators present and whether their overall sign, as gen-
erated by the UV physics, is consistent with an increase of m,,. Take for example
the case of the leading contribution to mj; in the large tanS case. One would

prefer to generate the leading operators with supersymmetric coefficients satis-

tying
ary >0, az <0, asp <0 (560)

in order to increase my;,. We have already mentioned that O, , 3 can be generated
by integrating out a massive gauge boson U(1)" or SU(2) triplets while O, by
a massive gauge singlet or SU(2) triplets. Let us discuss the signs that these

operators are generated with:

(a): Integrating out a massive vector superfield U(1)’ under which Higgs fields
have opposite charges (to avoid a Fayet-Iliopoulos term), one finds a» <0 and
a3 > 0 (also @9 < 0), which is opposite to condition (5.60). However, this can

change if for example there are additional pairs of massive Higgs doublets also
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charged under the new U(1)" since then O; could be generated with a3, < 0.
(b): Integrating out massive S U(2) triplets that couple to the MSSM Higgs sec-
tor would bring axy >0, @49 <0, a3y > 0; the first two of these satisfy (5.60). (c):
Integrating out a massive gauge singlet would bring a4 > 0 which would actu-
ally decrease m;,. Finally, if we take into account further constraints coming form
the p parameter [69], it turns out that it is @49 and @3 that can have the largest
correction to m;. For generating them, the case of a massive gauge singlet or ad-
ditional U(1)" vector superfield would have the advantage of preserving gauge

couplings unification at one-loop.

For smaller tan 8, operators Os ¢ 7 could bring significant corrections to m;, but
it is more difficult to generate these in a renormalisable setup. For example,
Os¢ can be generated by integrating out a pair of massive Higgs doublets and a
massive gauge singlet but the overall sign of @56 would depend on the details
of the model. This discussion shows that while effective operators can in prin-
ciple increase my, deriving a renormalisable model that would generate them
with appropriate signs for their (supersymmetric) coefficients is not a simple is-
sue. However this does not exclude the possibility, since the examples given are
rather simplistic. Other generating mechanisms for O; could be in place® with

appropriate signs to increase m;,.

5For some models with extended MSSM Higgs sector see [128, 129, 130, 131].
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CHAPTER 6

NONLINEAR MSSM

In the previous chapters we used EFT to study in a model independent way
the effects of new physics beyond MSSM in the multiTeV scale. Nevertheless,
MSSM itself contains new physics at scale +/f, the SUSY breaking scale. If we
take this scale to be around multiTeV, new effects appear by the presence of a
goldstino, which is the dominant component of the gravitino. Goldstino cou-
plings are best described in terms of nonlinear supersymmetry, as briefly pre-
sented in section 2.3. One way to realize symmetries in a nonlinear fashion is
by using appropriate constraints. In supersymmetry, these are constraints on
superfields. In the following we apply the method of constrained superfields in

order to construct the most general couplings of a goldstino to full MSSM.
6.1 The Model

We couple the constrained superfield X,; of eq. (2.44) to the SUSY part of the
MSSM, to find the “nonlinear” supersymmetry version of MSSM. At energy
scales below my,;, similar constraints can be applied to the MSSM superfields
themselves, corresponding to integrating out the superpartners. Here, the only
difference from ordinary MSSM is in the supersymmetry breaking sector. Su-

persymmetry is broken spontaneously via a vacuum expectation value (v.e.v.)
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of Fx, fixed by its equation of motion. The Lagrangian of nonlinear MSSM is:
L=Ly+Lx+Lu+L,+Lapg+ L, (6.1)

Let us detail these terms. £ is the usual MSSM SUSY Lagrangian

-EO — Z fd4g(I)Teviq)+{deH[ﬂH1H2+H2QUC+QDCHI+LECH1]+h'C'}

®,Hy»

1 o
Z deHTr[W“ W,]+ h.c., ®:Q,D U EL, (62)
SM groups 6g2K

where « is a constant canceling the trace factor and the gauge coupling g is
shown explicitly. The family matrices in the superpotential are implicit to

lighten the notation.

The SUSY breaking couplings originate from the MSSM fields couplings to
the goldstino superfield; this is done by the replacement S — my, X,/ f [54],
where S is the usual spurion also used in the previous chapters, with § = 00 m,,
and m,,, a generic notation for the soft terms (denoted below m; ,,m). One has

for the Higgs sector

Ly = Zc,- f d*0 X! X,, H' " H,

i=1,2

Z ci{loxP [|D i + F} Fy, + i % hi + (é%ﬁ-" Dy, — % hi Ay, + hc.)|
i=1,2

1 - — |

+ S h D+ D)y Foal” + U, v, = 5 [0}, (@ - ) o1 (D, — D) ]
1

| V2 |

+ é Wy T ) (W Dy, ) + % (B0, bx) @y, T ) + éaxa—*‘ @, — 3,) bx (W)

] —
+ [ = 305x 07 U (D = D~ — Sl W Ashi = G Fl h, + @4 Fx i by

= UxFx Uy hi+ he] +|0,050"¢x + FyFy + (%JX oy +he)|lnf)  (6.3)

Here D, 8, (D, (('7) act only on the first field to their right (left) respectively and
hi, Y, Fy, denote SU(2) doublets. Also

= —m%/fz, cy = —m%/fz. (6.4)
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Similar terms exist for all matter fields

2
m
L, = Z Co f d'0 X' X, ®'e" ®,  co= —f—‘;, ®:Q,U D, LE°, (6.5)

(0]

One can eventually set mg = my (all ®). Thebi- and trilinear SUSY breaking

couplings are

B’
£AB = 7 d29Xn1H1 H2 (66)

Ay A,
+ ffdzeanHzQU‘ - fa’zHXn,QD‘H1+7fdzexn,LE"H1+h.c.
B
= 7 {¢x[h1 Eny + Epy - hy = Y, 'whz] = hy - xn,) = Wxn,) - ha + Fx hy 'hz}

A,
+ {7[¢x Iy (¢ Fu—wo Wy +Fo ¢u) — bx W, - boWbu + i, * Wodu — Fi, - b du)
— Ux (- $oWu +ho - Yo du + - o du) + Fx - dodu| ~|U — D, Hy - Hi|

- |U>E.Hy > H.. Q> L]} +he (6.7)

where B' = Bmou. Finally, the supersymmetry breaking couplings in the gauge

sector are
3 2my, ’ N
Lg = l:EI 16g p f d HanTI'[W Wa]i-i'h.C.
> mﬂ 1
= T ex 20000 AT~ 5 FFy 4 DD - o "VP‘TFZVFSG]

i=1

— 2y A FY, — N2y 2D + Fx 2°0°) +he. (6.8)

with m,, ,, the masses of the three gauginos and gauge group index i for U(1),
SU(2), SUQ3) respectively. Above we introduced the notation Aﬂa = 6#7 -
gt vh A". Equations (6.1) to (6.8), along with (2.45), define the model, with

spontaneous supersymmetry breaking ensured by non-zero (Fx).

Since ¢x ~ 1/f, the Lagrangian contains terms of order higher than 1/f%. In

the calculation of the onshell Lagrangian we shall restrict the calculations to up
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to and including 1/f? terms. This requires solving for F,; of matter fields up to
and including 1/f? terms and for Fx up to and including 1/f? terms (due to its
leading contribution which is -f). Doing so, in the final Lagrangian no kinetic
mixing is present at this order. Using the expressions of the auxiliary fields, one

then computes the F-part of the scalar potential of the Higgs sector, to find:

\f +(B'/f)hy - ol

L+c |+ ey |hof?

Vie = P [ + o] + +0(1/f%) 6.9)
with iy - hy = h) W — by b and |h)* = hl.Thl- = h)*hY + h; *h;. One can work with this
potential, however, for convenience, if lciallhiaf < 1, we can approximate Vg
by expanding the denominator in a series of powers of these coefficients. Our
analysis below is then valid for |c,|lh2|* < 1. After adding the gauge contri-

bution, we find the following result for the scalar potential of the Higgs sector:

Vo= 4l +m) 1P+ (u? + m)lhol + (B hy - by + hec) (6.10)
1 , 2 g2 + g2 2 g2 N

+PmeMWWW+Bmw4+4§imm—mﬂ+§wwﬁ+auﬂ
This is the full Higgs potential. The first term in the last line is a new term, ab-
sent in MSSM (generated by eliminating Fy of X,;). Its effects for phenomenol-

ogy will be analyzed later. The ignored higher order terms in 1/f involve non-

renormalizable h? , interactions in V.

6.2 New Couplings in the Lagrangian

In this section we compute the new interactions induced by Lagrangian (6.1),

which are not present in the MSSM. Many of the new couplings are actually
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dimension-four in fields, with a (dimensionless) f-dependent coupling. The
couplings are important in the case of a low SUSY breaking scale in the hidden
sector and a light gravitino scenario. Some of the new couplings also involve

the goldstino field and are relevant for phenomenology.

As mentioned earlier, from the SUSY breaking part of the Lagrangian only
terms up to 1/ were kept in the total Lagrangian. After eliminating all terms
proportional to F-auxiliary fields of X, H;, Q, D¢, U¢, E¢ and L, one obtains new
couplings L™ beyond those of the usual on shell, supersymmetric part of

MSSM, which are unchanged and not shown. One finds the on shell Lagrangian
LM = L%+ Lo+ L7+ L (6.11)
Let us detail these terms. Firstly,
Ly = Ly + Ly, (6.12)
with

2 2 2 2 2 2 2
e = =+ il + m3lho + m, |gal)|

1
- [B/ h1 . h2 + Au h2.¢Q ¢U + Ad ¢Q¢D.h1 + Ae ¢L¢E'hl + 5 my, Aid; + I’ZC] (613)

recovering the usual MSSM soft terms and the additional contributions:

e = | Uiy

FO) = |G +m3) Iy - = (3 -y 4 - S = +mi +miph - G

— (m3 + my + mydody - ha+ (B hy = Agdodp — Ac br $) (uhs — dodp — b1 $)
+ (B'hi = Ao du) (whi = do $u) + (Aa g i = Ayl 1) (¢ i = o )

& Al + e )+ Aulha - 0oF + Al iF | + bl = 75 [B -

+ Ads - B Bu+Asbo 9o b+ Ay e b+ 1A+ Gl P+ g

1 — — —
7 | Wil by + M0, o+ m g do + | + O/ f) (6.14)
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A summation is understood over the SM group indices i = 1,2, 3 in the gaugino
term and over ® = Q,U¢, D¢, L, E° in the mass terms; appropriate contractions
among S U(2), doublets are understood for holomorphic products, when the or-
der displayed is relevant. The leading interactions O(1/f) are those in the last
line and are dimension-four in fields. Similar couplings exist at O(1/f?) and

involve scalar and gaugino fields. Yukawa matrices are restored in (6.14) by re-

placing ¢odp — dovidp, Podu — oYuPu, rdr — PrY.PE, as already explained.

There are also new couplings from terms involving the auxiliary components

of the vector superfields of the SM. Integrating them out one finds:

-1« 1 - 1
-E%MXZ 7 [Dl + 4—](2 (mﬂl lﬂxgﬁx + l’lC) Dl + \/_Tf(m/ll lﬁX /11 + I’l.C.)]2
-1 1 ~ 1 2
+ 7 I:Dg + 4_ﬂ (m,lz l//xl//x + hC) Dg + \/_Tf(m/lz I,DX ﬂg + hC)]
1

T (ma, x 24 + he)| + O 16.15)

_1 ~ 1 _
* B3 [D3 + 4_f2 (ma, Yx¥x + h.c) D5 +

with notation:

1 ; ;
Dy = =& (=hih+ o+ 1/3 dppo =413 $ydu +2/3 $pdp — b6+ 2 8 ¢x)
- 1 ; ; '
Dg = _E F) (l’lJ{O'al’ll + héO’ahz + (]5&0'“¢Q + ¢1LO'H¢L)
~ 1
Dy = =58 @ot"bo — ¢y 1'bu = 6 1"¢p) (6.16)

for the corresponding MSSM expressions; here “/2 are the SU(3) generators.
From (6.15) one can easily read the new, f—dependent couplings in the gauge

sector, absent in the MSSM.

The total Lagrangian also contains extra terms, not proportional to the aux-

iliary fields, and not present in the MSSM. In the matter sector these are:
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Lo = 10,00l + (5955 G + hc) (6.17)

4f2
2 . .
- Z T {0l 0t 3] 5 G 0 0 D)+ S B T+ e

i=1

/

~ [ i H > ] { [ 5 i, — I ) — Wi )

f [2f
A,
f[ fl/’xlﬁx(hz WUy + Ui bo Wy + Yi, o du) — Ux (hado by + habg du

+ Y, ¢Q¢U)] [f (2f
— Ux(bophy + g dphnt+dy ¢D.whl))+(D—>E,L—>Q)]+h.c.}+0(1 /£16.18)

Uxx Wo¥p.hy + do¥pn + Yo dpbn,)

Note the presence of interactions that are dimension-four in fields (B'/f hiyx¥s,,
etc) that can be relevant for phenomenology at low f. There are also new cou-

plings in the gauge sector

3
extra ley[/X a 1 a a uy l Voo a a
£ = Z; f[ f(z Vo AT = 2 Fy ¥ = 2™ F, F,)
- V2yxo" A FL | + he.+ 001 £), (6.19)

with i = 1,2,3 is the gauge group index and ¢*” = i/4 (c#c" — 0*c"). The new
couplings of L™ together with the on shell part of the purely supersymmet-
ric part of the MSSM Lagrangian (on shell £, of (6.2)) gives the final effective

Lagrangian of the model. From this, the full scalar potential is identified.

6.3 Implications for the Higgs Masses

Let us consider the Higgs scalar potential found in (6.10) and analyze its im-
plications for the Higgs masses. From the neutral Higgs part of the potential
one finds the masses of the CP even and CP odd Higgs fields. Since eq. (6.10) is

valid up to 1/f? terms, it is sufficient to restrict the expressions up to this order.
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Firstly, at the minimum of the scalar potential one has:

2 (=1 + \Vwo) (=B’ + m? sin2,
m—mi = cot2,8[ f C 0 z F) ]
VUl + m2 cos? 23 + B’ sin23

5 1 o f_z(—l + Vwo)(B' + 2 u? sin2p) 6.20
ml +m2 - . + b 2 2 2 s ( * )

sin 23 V< 2u* + m3 cos* 23 + B’ sin2f3

where
2

wo=1- 7 (4p* +2m% cos’ 2B+ 2 B sin2p) (6.21)

One finds the following results (upper sign for m;):

1 2B v
2 _ ’ Y 2 2 2 .
Mg = 5 |m3 + YR F Vi |+ 7 {4B'| 2B’ + (4 + 2m}, cos> 2B)/ sin 28|
+ 4 [ZB'2+8,u + 2 ma(42 + m2) cos 2,8+SB’uzsm2,B]
29
+ BB B2+ 4y + Ayl + 6+ 8 (2t — B (442 + m2)) cos 48
\/v_v o)y z 4 Z
1
— my (6 B + 8u* + 4u*m3 + my) cos 88 — 8 B’ (B”* — 8u*) sin 23
/ 2 2.2 4N o r o4 s 3
+ B'(-8B” + 16u"m; + my;) sin 68 + B'm sin 108|{ + O(1/ f°) (6.22)
zZ zZ Z
with
2B\ 2B
— 2 2 (40 2
wp = (mZ+M) - mz(siHZﬁ) COS Zﬁ (623)

Further, the mass my4 of the pseudoscalar Higgs has a simple form (no expan-

sion):

2

ap b

OB (31
2 = —_ —_
Ma = sin2,8{4+4 Vivo -

’ sin 2/3} (6.24)
and, as usual, the Goldstone mode has mass mg = 0.
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Figure 6.1: The tree-level Higgs masses (in GeV) and expansion coefficients as func-
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tions of \/j—f (in GeV).In (a), (b) u = 900 GeV, tan 8 = 50, m, increases upwards from 90 to
150 GeV in steps of 10 GeV. Larger my has little impact on m;, for relevant \/7 .In (0), (d),

my = 150 GeV, and my, increases as u varies from 400 to 1200 GeV, in steps of 100 GeV. In
(c) tanB = 50 while in (d) tan 8 = 5, showing a milder dependence on tan 8 than in MSSM.
For tang > 10 there is little difference from (c). In (e), (f) the expansion coefficients are
shown, for my = [90,650] GeV with steps of 10 GeV, u = 900 GeV, tan = 50; they are

less than unity (even at larger i), as required for a convergent expansion.
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It is instructive to consider the limit of large u = tan 8, with B’ < 0 fixed, when

2

3
I

b= |my+00/w]+ zv—fz[(z (2 + ) + g B 4% +m3) + O(1/1)] + O(f)(6.25)
5 2B vZ B’
| 2ﬁ+0(1/u)]+ Ve

|1 + my)u+4 B + i(Z,uz—11m§)+0(1/u2)]+0(f_3)

which shows that a large u can increase m;, (decrease my). However, for phe-
nomenology it is customary to use m, as an input instead of B’, in which case

the masses my, ; take the form

1 S|
mi’H = —[mf,+m%¢ \/W]+ Y —[16m[2hu4+4mf‘/12m§+(m/24—8,u2)m4z

2 T 162 yw

— 2mS +2(=2m; p* + 8u* + 4uP my + m) \w + m3 mj cos 8

m'’ (mA —8u* —3m2) sin® 28+cos 43 [ — 2m> (8u* +4u> m2 +m —mAi (6> +m2))

+

+

2Q@Qmi? + 4Pm} + mi) Nw - mi(m) + Sm3) sin’ 281]+O(1/f%)  (6.26)

where the first term (bracket) is just the MSSM contribution. The upper (lower)
signs correspond to my, (my) and w = (m} + m3)* — 4m? m3 cos®2B. At large tan
with my fixed one finds' (with u = tan )

V2

m’ |3 + 001/ + e | +m2)? + 01 /uh)| + 01/ f%)

2
mg

| + 0| + %2 O(1/u?) + O(1/£3) (6.27)

In this limit the increase of m;, is driven by a large 1 and is apparently of SUSY
origin, but the quartic Higgs couplings giving this effect involved combinations
of soft masses (see (6.10)). These soft masses combine to give, at the EW mini-

mum, the y-dependent increase in (6.27).

'In (6.27) my > my is assumed, otherwise just exchange m? with m?,.
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Some simple numerical examples are relevant for the size of the corrections
to the Higgs masses, relative to their MSSM values. The largest correction to m,
for large tan 8 is dominated by p and f. For example, if (u/ \/?)2 =(1/2.25)* = 1/5,
v = 246 GeV, with u = 900 GeV then \/7 = 2 TeV, giving m;, = 114.4 GeV.
Another example is with u = 1.2 TeV, \/? = 2.7 TeV, ((u/ \/7)2 ~ 1/5), giving
again m;, = 114.4 GeV. Smaller u ~ 600 GeV can still allow m; just above the
LEP bound if \/]7 = 1.35 TeV, for similar value for (u/ \/7)2 = 1/5 and for the
rest of the parameters. This shows that one can have a classical value of m; near
or marginally above the LEP bound and larger than the classical MSSM value
(= myz). The plots in Figure 6.1 illustrate better this change of m, and my for
various values of \/? . For a low value of \/? near or above 1.35 TeV, the LEP
bound is still satisfied for m,, while at large \/f the MSSM case is recovered.
By varying +/f our results can interpolate between low and high scale (in the

hidden sector) SUSY breaking. Quantum corrections increase m, further, just as

in the MSSM.

Regarding the usual MSSM tree-level flat direction Ih(l)l = Ihgl one can show
that the potential in this direction can have a minimum for the case (not consid-
ered in MSSM) of m7 +m3 +2|uf* < 2|B’|, equal to V,, = f*—(1/4)f*(m7 +mj +2|ul* +
2B')*/(m? + m3 + B')*. Compared to the usual MSSM minimum, the former can
be situated above it only for values of f which do not comply with the original
assumptions of miZ, |B’| < f. On the other hand, the case with V,, situated below
the MSSM minimum does not allow one to recover the MSSM ground state in
the decoupling limit of large f, and in conclusion the “flat” direction is not of

physical interest here.
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6.4 Other Phenomenological Implications

6.4.1 Fine Tuning of the Electroweak Scale

The increase of m;, beyond the MSSM tree level bound and the presence of new
quartic Higgs couplings have implications in the fine tuning. In MSSM the
smallness of the effective quartic coupling A (fixed by the gauge sector) is at the
origin of an increased amount of fine tuning of the electroweak scale for large
soft masses. For soft masses significantly larger than the electroweak (EW) scale,
(also needed to increase the MSSM value for m;, above LEP bound via quantum
corrections), fine tuning increases rapidly and may become a potential problem
(sometimes referred to as the “little hierarchy” problem). Let us see why in the

present model this problem is alleviated. One can write v> = —m?*/1 where

2 2

+ 1 2
A = %[cos2 2B + 6sin4,8] + ]72 ‘mf cos’ B+ m3sin”* B+ (1/2) B’ sin2B
m?> = (uf* +m?) cos* B+ (lu* + md)sin* B+ B sin2p (6.28)

The first term in A is due to MSSM only, while the second one, which is positive,
is due to the new quartic Higgs terms in (6.10). Here 6 accounts for the top/stop
quantum effects to ||* term in the potential, which becomes (1+6) (g7+g3)/8 Ihal*;
usually 6 ~ O(1) (ignoring couplings other than top Yukawa). This quantum
effect is only included for a comparison to the new quartic Higgs term. The
important point to note is that a larger A gives a suppression in the fine tuning
measure A:

_0Inv? _ 9ln(-m?*/A)
~ dlnp  dlnp

i p=A,B mj i’ mj,. (6.29)

Here p is an MSSM parameter with respect to which fine tuning is evaluated.
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In the large tan g limit, the fine tuning of the electroweak scale becomes (see the

Appendix in [71]):
(ul* + m3y s (|l +m3)
- O(1/ tanp), "= ——— (6.30
a2+ (L+ o) ni )2 +O(1/tanp) (|pl” + my) oInp (6.30)

For small tanf a similar result is obtained in which one replaces m, by m;. The
tirst term in denominator comes from the new correction to the effective quartic
coupling A. Larger soft masses m; , increase A and this can actually reduce fine
tuning, see the denominator in A. Therefore, in this case heavier superpartners
do not necessarily bring an increased fine tuning amount (as it usually happens
in the MSSM). The only limitation here is the size of the ratio miz/ f <1 for
convergence of the nonlinear formalism. In the limit this coefficient approaches
its upper bound (say ~ 1/3), the two contributions in the denominator have
comparable size (for 6 ~ 1 and v = 246 GeV) and fine tuning is reduced by a
factor ~ 2 from that in the absence of the new term in the denominator (i.e. the

MSSM case).

6.4.2 Limiting Cases and Loop Corrections

Some interesting limits of our “nonlinear” MSSM model are worth considering.
Firstly, in the limit of large f (i.e. large SUSY breaking scale in the hidden sector)
and with m, », B’ tixed, the new quartic term in (6.10) vanishes, while the usual
explicit soft SUSY breaking terms specific to the Higgs sector remain. This is
just the MSSM case. All other couplings suppressed by inverse powers of f
are negligible in this limit. Another limiting case is that of very small f. For

our analysis to be valid, one needs to satisfy the condition B’, m}, < f. When
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f reaches this minimal bound, the new quartic couplings in (6.10), not present
in the MSSM, increase and eventually become closer to unity. The analysis is
then less reliable and additional effective contributions in the Lagrangian, sup-
pressed by higher powers like 1/f* and beyond, may become relevant for SUSY

breaking effects.

Finally, one remark regarding the calculation of radiative corrections using
(6.10) and the electroweak symmetry breaking (EWSB). In our case EWSB was
assumed to take place by appropriate values of mj,, B'. However, the same
EWSB mechanism as in the MSSM is at work here, via quantum corrections
to these masses, which near the EW scale turn mj + u* negative and trigger
radiative EWSB. Indeed, if the loops of the MSSM states are cut off as usual
at the high GUT scale (well above +/f) and with the new Higgs quartic cou-
plings regarded as an effective, classical operator, radiative EWSB can take
place as in the MSSM. A similar example is the case of a MSSM Higgs sec-
tor extended with additional effective operators of dimension d = 5 such as
(1/M) f d*6(H,H,)* giving a dimension-four (in fields) contribution to the scalar
potential V > h;h, (M + |ho?); this is regarded as an effective operator and ra-

diative EWSB is implemented as in the MSSM, see for example [65, 71].

It is interesting to remark that that the loop corrections induced by the (ef-
fective) quartic couplings proportional to 1/f? in eq. (6.10), can be under control
at large f. Indeed, the loop integrals this coupling induces can be quadratically
divergent and are then cut-off at momentum p? < f; but the loop effects come
with a coupling factor that behaves like 1/f?2, so overall they will be suppressed
like 1/f and can then be under control even at large f. It would be interesting

to check if for a large enough f, radiative EW breaking is still achievable if the
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usual MSSM effects are also cut at this scale (with less an energy range to trigger

EWSB).

6.4.3 Invisible Decays of Higgs and Z Bosons

Let us analyze some implications of the interactions involving the goldstino
field, described by the Lagrangian found above. An interesting possibility, for a
light enough neutralino, is the decay of the neutral higgses into a goldstino and
the lightest neutralino x! (this is the NLSP, while the goldstino is the LSP). The
coupling Higgs-goldstino-neutralino is only suppressed by 1/f. It arises from
the following terms in £ and from the terms in the on shell, supersymmetric
part of usual MSSM Lagrangian (6.2), hereafter denoted L

B’
L+ Ly 5 —— [m1 U B+ m3 Y b3 | — = |wxwsg 1+ W 1)

f Zl - Diuxdi - \}i[gzﬂi — g1 |[A0 0 — WS 0] + hc.(6.31)

KH

The last term (present in the MSSM) also brings a goldstino interaction. This is
possible through the goldstino components of the higgsinos ¢;0 and EW gaugi-
nos 4. The goldstino components are found via the equations of motion, after

EWSSB, to give (see also [54]):

1 1
p = m(—mévz—B’vl—Ev2<g2Dg—ng1>)lﬁx+"'
1 1
py = ﬁ( mi vy — sz+§V1 (g.D; 81D1>)¢x+"'
-1
4= m(DOlﬁx*‘“', ﬂgz—f\/—<D>l/fx+ (6.32)

which can be further simplified by using the MSSM minimum conditions in
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the terms multiplied by 1/f (allowed in this approximation). As a consistency
check we also showed that the determinant of the neutralino mass matrix (now a
5x 5 matrix, to include the goldstino) vanishes up to corrections of order O(f™).
This is consistent with our approximation for the Lagrangian, and verifies the
existence of a massless goldstino (ultimately “eaten” by the gravitino). Using
(6.31) and (6.32), one finds after some calculations (for previous calculations of

this decay see [77, 78, 79]):

4
L 4 Lonshell f_\/_ ; l//XX, HS, X Jk i %”x)(j O 5, ] + he. (6.33)
where
0 = my sin 6, [m,, cos(a + B) + psin(a — B)],
0, = —myzcosb,[m,, cos(a+ )+ usin(a - )],
8y = —m?sing sin(a - B) — u* cos
8y = micosp sin(a —B) -y’ sina, 0 =0; a2 (6.34)

X is the matrix that diagonalizes the MSSM neutralino mass matrix*: M3 =
XM M' X', and can be easily evaluated numerically (see [80] for its analytical
expression). Further H°, h° are Higgs mass eigenstates (of mass my, y computed
earlier) and 10 = 1/ V2 (v; + 1’ + io;) with (k%) = 0, (o) = 0; the relation of H°, i’
to 47, is a rotation, which in this case can be just that of the MSSM (due to extra

1/f suppression in the coupling®). The angle « is
2

L+
tan2a = tan 2 ——, -n/2<a<0 (6.35)
my —my
2The exact form of M is: My, = m,,, My = 0, M3 = —mzcosBsin6,,, My, = myzsinBsiné,,

M21 = O, M22 = my,, M23 = Mmy COSﬁCOS Hw, M24 = —Mmy SiHﬂCOS Qw, M33 = 0, M34 =M, M44 = O,
also M;; = Mj;. Note the sign of u related to our definition of the holomorphlc product of SU(2)
doublets. With this notation, in the text /\/ = X &, with &=y, /12, dxho (j/ho)

3The relation is ho = H%cosa — h¥sin @, and hO = H%sina + K cos a.
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If the lightest neutralino is light enough, m,» < m, then h°, H° can decay into it
and a goldstino which has a mass of order f/Mpjua ~ 107° €V; if this is not the
case, the decay of neutralino into 4° and goldstino takes place, examined in [79].

In the former case, the partial decay rate is

my, ! , 2 m)2(? 2
Cin-ston = T [ > 6. (1 - ) (6.36)
k=1

ho

The partial decay rate has corrections coming from both higgsino (X3, X14) and
gaugino fields (X, X},), since they both acquire a goldstino component, see
egs. (6.32). The gaugino correction arises after gaugino-goldstino mixing, SUSY
and EW symmetry breaking, (as shown by m,,, m; dependence in ¢;) and was

not included in previous similar studies [77, 78, 79].

The partial decay rate is presented in Figure 6.2 for various values of u, my4
and m,,, which are parameters of the model. A larger decay rate requires a light
u ~ O(100) GeV, when the neutralino x! has a larger higgsino component. At
the same time an increase of m,, above the LEP bound requires a larger value for
u, close to u ~ 700 GeV if \/7 ~ 1.5 TeV, and u ~ 850 GeV if \/7 ~ 2 TeV, see
Figure 6.1 (c). The results in Figure 6.2 show that the partial decay rate can be
significant (~ 3 X 107° GeV), if we recall that the total SM Higgs decay rate (for
my, ~ 114 GeV) is about 3x 10~ GeV, with a branching ratio of h/° — yy of 2x 107,
(Figure 2 in [81]). Thus the branching ratio of the process can be close to that of
SM K’ — yy. The decay is not very sensitive to tang (Figure 6.2 (b)), due to the

extra contribution (beyond MSSM) from the quartic Higgs coupling.

An interesting coupling that is also present in the 1/f order is that of gold-
stino to Z, boson and to a neutralino. Depending on the relative mass relations,

it can bring about a decay of Z, (X?) into X? (Z,) and a goldstino, respectively.
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Figure 6.2: The partial decay rate of i° — yxx) for (a): tanp = 50, m;, = 70 GeV,
my, = 150 GeV, u increases from 50 GeV (top curve) by a step 50 GeV, my = 150 GeV.
Compare against Figure 6.1 (c) corresponding to a similar range for the parameters. At
larger u, my, increases, but the partial decay rate decreases. Similar picture is obtained
atlow tanf ~ 5. (b): As for (a) but with tan = 5. Compare against Figure 6.1 (d). Note
that the total SM decay rate, for m;, ~ 114 GeV, is of order 1073, thus the branching ratio

in the above cases becomes comparable to that of SM Higgs going into yy (see Figure 2
in [81]).

The relevant terms are

— 1 — _
L4 LM D =2 DTy (82V3 = &1 Vi + 7 Ui g (82V3 — &1 Vi |

\’/’"z - Uy X FC + he. (6.37)

[
'M“’MH

1l
—_

1

where the last term was generated in (6.19) (i labels the gauge group). Since the
higgsinos acquired a goldstino component («x ¥x/f) via mass mixing, the first
line above induces additional O(1/f) couplings of the higgsino to goldstino and
to Z, = (1/8) (g2V; — g1 V1), with g2 = g + g5. After some calculations one finds

the coupling Z, x9 yx:

Lnew""l:(o)mhe” = f‘/_z [wXO—quZ (wmzw;— mZvl) Yy (@0 - Va”))(g vV j

+ h.c. (6.38)
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where

wj=cosfXy —sinfX, v;=—sind, X} +cos, X}y, Z,=0,Z,-8,2,(6.39)

If mp is lighter than Z, then a decay of the latter into XV + ¢y is possible. The
decay rate of this process is (with j = 1):
my 2 2 N m)Q(j 2
Tzt = W[{llel F WP+ G+ wivl(1 - m—%) (6.40)
with & = 2Q + ) p?/m3, & = 28 + rH)(1 + 2r%), & = =2(4 + 5r*)u/mz where r =
my,/mz (in (6.38) and subsequent one can actually replace u by m,; and w; — w7,

with Xj4 g X]?,).

The decay rate should be within the LEP error for I';, which is 2.3 MeV [82]
(ignoring theoretical uncertainties which are small). From this, one finds a lower
bound for +/f, which can be as high as /f ~ 700 GeV for the parameter space
considered previously in Figure 6.1, while generic values are +/f ~ O(400) GeV.
Therefore the results for the increase of m;, that needed a value for \/7 in the
TeV region, escape this constraint. This constraint does not apply if the lightest
neutralino has a mass larger than m;, when the opposite decay (y; — Zyx) takes

place (this can be arranged for example by a larger m,,).

There also exists the interesting possibility of an invisible decay of Z, gauge
boson into a pair of goldstino fields, that we review here [54, 56, 69]. This is
induced by the following terms in the Lagrangian, after the Higgs field acquires
a VEV:

I — _
L1 L7 {1 DT (82V3 = g1 Vi (/2 = 3 v3/2)

1— _ 1— _
~2 Ui Wio(82V5 — &1 Vi) + 1 Ui ie(g2Vs — g1 Vi, } + h.c.(6.41)
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With (6.32) and (6.41) one finds the coupling of Z boson to a pair of goldstinos:

2
m - J—
L 4 Lol 5 ﬁ Wy T Wx Z,(Dz) + h.c. (6.42)

where (D7) = cos Oy (D3) — sinfy (D) = —(m3/g) cos 2B + O(1/f). The decay rate
is then

4 2
myz m
FZ_WWX = 24—7rg2[2_;2] COS2 2,3 (6.43)

in agreement with previous results obtained for B’ = 0 [56, 54, 69]. The decay
rate is independent of m, and should be within the LEP error for I'; (2.3 MeV
[82]). One can then easily see that the increase of the Higgs mass above the
LEP bound (114.4 GeV) seen earlier in Figure 6.1 is consistent with the current
bounds for this decay rate, which thus places only mild constraints on f, below

the TeV scale (~ 200 GeV) [56, 69].

Similarly, £"" can also induce Higgs decays into goldstino pairs. The terms
in £ that contribute to Higgs decays are Li{,, L5, L™ together with the

MSSM higgsino-Higgs-gaugino coupling (last term in (6.31)). After using (6.32),

expanding the Higgs fields about their v.e.v., one finds:

L 4 Lol 5 % m3 cos 28 Yy [h(l)’ sing — hy’ cosﬁ] + h.c.+O(/f%) (6.44)

which, similarly to Z couplings, is independent of gaugino masses. Here v = 246
GeVand h) = 1/ V2 (vi+hY +io), (h)")y = 0, (o) = 0. In the mass eigenstates basis
one simply replaces the square bracket in (6.44) by [H° sin(3 — @) — h° cos(B — @)].

One can also replace my by m3 = m; + mj, —m2 + O(1/ f*), where the Higgs masses
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can be taken to be the MSSM values (up to higher order corrections in 1/f). The

decay rate of A° into a pair of goldstinos is then

r = g2
ho—“ﬁX’ﬁX - 87Tf4 gholpx(px

(6.45)
where gj0,,4, is the coupling of K’y xyx of the above Lagrangian. For relevant
values of f above ~1 TeV it turns out that this decay rate is very small relative
to other partial decay rates of the Higgs in the MSSM /SM. For example, for a
total decay rate near 10 GeV (valid near a Higgs mass of order O(100) GeV),
the branching ratio of this decay mode is well below the usual ones and below

that of SM Higgs going into yy, by a factor ~ 107 — 1072
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CHAPTER 7

SUMMARY OF RESULTS

This part of the thesis consists of two different effective analyses in the con-

text of MSSM.

In the first one, covered in chapters 3, 4 and 5, we considered an extension
by the complete set of R-parity conserving, mass dimension 5 operators for the
MSSM and by dimension 5 and 6 for its Higgs sector. This set included all su-
persymmetric and supersymmetry breaking terms, the latter being incorporated
by the use of spurions. Some of these operators are not physical since they can
be related to each other by field redefinitions. We performed the appropriate,
spurion dependent, redefinitions that allowed us to write down the full irre-
ducible set of dimension 5 and dimension 6 operators. We further restricted the
parameter space by applying phenomenological constraints, in particular from
flavor changing neutral currents. We then studied the phenomenological conse-
quences of the model both in the production of new couplings and in the mass

of the Higgs.

The new couplings include “wrong” Higgs Yukawa terms which are also
generated at one loop in pure MSSM. One significant effect of these terms is
the tan 8 enhancement of the mass of the bottom quark. If the scale of the ef-

fective operators is at the multiTeV scale, the effective contribution is compa-
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rable or even bigger than the loop contribution. We also found couplings of
type 2 quarks - 2 squarks and 2 quarks - 2 sleptons. These are also relevant for
LHC since they contribute to processes of squark production. The correspond-
ing pure MSSM channels become weaker for higher collision energy, contrary
to the effective contribution which is simply suppressed by 1/M. The two can

become comparable for energy of the TeV scale as in LHC.

The effective analysis presented offers a solution to the little hierarchy prob-
lem of MSSM. This problem is related to the fact that the tree level calculation
for my;, in pure MSSM reveals an upper bound, equal to m; = 91.2 GeV, which
is in complete disagreement with the lower bound of 114 GeV from the LEPII
experiment. The only way to overpass this discrepancy in pure MSSM is to
suppose significant loop corrections implying very heavy stops or large stop
mixing. In any case fine tuning is reintroduced and this is what we call the little
hierarchy problem. However, we showed that effective operators can signifi-
cantly raise the mass of the Higgs thus reducing the fine tuning. This result
suggests an alternative interpretation of the little hierarchy. Instead of viewing
it as a deficiency of MSSM, it can be viewed as an indication for new physics at

the multiTeV range.

The second effective analysis, presented in chapter 6, is not related to some
“new physics” but to the SUSY breaking sector. Models of low energy SUSY
breaking predict a very light gravitino. In the low energy regime, the dynamics
of the gravitino can be accurately described by the dynamics of its goldstino
component. So if the breaking scale is around TeV, apart from the pure MSSM

spectrum we need to include the goldstino mode.

The effective description of the goldstino mode is done via nonlinear real-
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ization of supersymmetry. There are various ways to study such systems. We
chose the language of “constrained superfields” as the most general and easy
to reproduce the couplings of goldstinos to MSSM fields. We wrote the full set
of couplings and studied their phenomenological significance. One important
effect is again related to the mass of the Higgs. It is shown that the presence of a
goldstino can also increase m;, providing us with yet another way to alleviate the
little hierarchy, even without the hypothesis of new physics. Furthermore, we
found that invisible decays of Higgs to goldstinos and other neutralinos can be
of comparable size with the standard decay to two photons. Finally, assuming
that the lightest neutralino is lighter than the Z gauge boson, we got a bound on

the SUSY breaking scale of around 700 GeV from invisible Z boson decays.
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CHAPTER 8

PRELIMINARIES

8.1 The Dirac Born Infeld Action as the Effective Action of a

D-brane

In 1934, a few years before the development of Quantum Electrodynamics, M.
Born and L. Infeld proposed a generalization of Maxwell’s electrodynamics that
was free of the notorious divergence in the self-energy of the electron [83]. Their
inspiration derived from how Special Relativity (SR) accommodated what they
called “the principle of finiteness”, that consistent theories should not allow

physical quantities to become infinite.

In SR, the Newtonian kinetic energy of a particle is replaced by a function

that imposes an upper limit in the velocity.

2
%mv2 - mcz(l— l—v—). (8.1)

The deeper reason behind this replacement is the principle of relativity, that

the kinetic action be invariant under Lorentz transformations. Born and Infeld
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suggested a similar replacement for electrodynamics

%(HZ—EZ) - bz[\/l + %(Hz—Ez)—l , (8.2)

where b is a constant with the same dimension as the fields. They supported it
by constructing a general expression for the Lorentz invariant action of a tensor
tield A,,. In a few lines, this is what they did: Under a coordinate transfor-
mation, the measure d*x becomes Jd*x and the determinant |A| becomes J 24|,
where J is the Jacobian of the transformation. It is obvious then that V]A|d*x
forms an invariant piece. As for any arbitrary tensor, we can split A4, into a sum
of its symmetric and antisymmetric part. The symmetric part was identified
with the metric g,, and the antisymmetric with the field strength F,,. A general

expression for an invariant Lagrangian is then:

L= +-lg+Fl+ay-lgl+BvV-IF|. (8.3)

However, the last piece is a total derivative and can be ignored. Also, a = -1
by the requirement that we reduce to Maxwell’s electrodynamics in the limit of
small fields. After restoring dimensions we find that in flat space the Lagrangian

takes the form:

F F, Fw (FNVF V)z
2 2 yzi M
[ =b (1_ /_|n+_|]_b 1_\/1+ Yo _ 6he , (8.4)

where F w = €upoeFP7 /2 is the dual field strength. We see that their derivation led

to the suggested action (8.2) up to the piece FF that does not affect the resolution
of the electron self energy problem. In fact, we see that the electric field E has
a maximum value b, in direct correspondence to the maximum velocity ¢ of a
particle in SR. As a consequence, the electric potential at zero distance doesn’t
diverge as 1/r but rather takes a maximum value proportional to Vb/e, with e

the electron charge.
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The Born Infeld (BI) action offered an ingenious solution to the apparent di-
vergence of the electric field at short distances. However, it was a classical solu-
tion to a problem that is purely quantum mechanical. The advent of Quantum
Electrodynamics and renormalizable quantum field theories in the following

years resolved, beyond many other things, the self energy problem.

Little attention was paid to the BI action until 50 years later. In a paper by
E. Fradkin and A. Tseytlin in 1984, it was shown that the low energy effective
action for open bosonic strings propagating in a background of constant field
strength is given precisely by the Bl action [84]. The same action is obtained in
the superstrings case, too [85, 86]. In this framework, the maximal value ‘b” of
the field strength is interpreted as the string tension 7' = 1/27a’. At such extreme
values, higher harmonics of the string can be excited and thus the energy of the
tield is transferred into these modes. In a way, the extended nature of strings
smears the singularity. This was a remarkable discovery as it provided a closed

expression where o’ corrections are summed up to all orders.

The connection with D-branes, which were discovered some years later,
didn’t take long to reveal. It was soon demonstrated that the effective action
for the coupling of a D-brane with NSNS bulk fields is given by the Dirac-Born-
Infeld (DBI) action [87]. The DBI action is merely a dimensional reduction of a
generalization of BI action to include the coupling to the dilaton and the anti-
symmetric tensor. The effective action of a D-brane was extended after it was
discovered that these non perturbative objects break half of the bulk supersym-
metries and act as sources for the RR fields of the closed string spectrum [88].
This introduced a second piece in the effective action given by Wess-Zumino

terms [89]. All in all, the bosonic part of the world-volume effective action of a
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Dp-brane at the string tree level is given by:

Spp =T, fd”+1xe_¢(\/—|g| ~ g + 21a’F + Bl) + fz "IN G (85)
!

at string frame. T, is the brane tension, u, is the brane’s charge for the various
RR fields denoted by C; (so [ is even in type IIB and odd in type IIA) while B is
the NSNS 2-form.

In the previous paragraph we mentioned that D-branes are objects that break
half of the bulk supersymmetries and that their low energy effective action is
described by the DBI action. To be more precise, it has been shown that the
broken half of the supersymmetry is realized nonlinearly on the worldvolume
of the D-brane. These facts lead us to the following question: Is it possible to
apply the tools of nonlinear realizations developed in the previous part of the
thesis, in order to “reproduce” the low energy effective action of a D-brane? In
the following chapters we show that for the general case of N' = 2 bulk super-
symmetry, it is. We do this by defining appropriate N' = 2 superfields and then
upgrading the constrained supertfields technique to N = 2 superspace. The con-
straint breaks one supersymmetry leaving one linear and one nonlinear in the
effective theory. The result comes out to be precisely the DBI action plus Wess -

Zumino terms.

8.2 Quaternion-Kihler and Hyper-Kidhler Manifolds
Supersymmetric Lagrangians of interacting matter typically contain compli-

cated, field dependent terms in their kinetic part forming a nonlinear o model.

An efficient way to study the structure of the allowed couplings is to view the
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tields as coordinates of a Riemannian manifold. Restrictions that supersymme-
try imposes on the couplings are translated into restrictions on the correspond-

ing manifold of the o model.

N =1 global supersymmetry requires that the manifold of hypermultiplet
scalars is Kdhler while for N = 1 supergravity it is further restricted to be
Hodge. Adding one more supersymmetry brings further conditions: The scalar
manifold in global N = 2 is restricted to be hyperKéahler while in local N' = 2 it
is quaternion-Kéhler. Since we will focus on N = 2 supersymmetric models, we

briefly present some basic facts about these two manifolds.

A quaternion-Kéhler manifold is a 4n real dimensional Kdhler manifold with
holonomy contained in S p(2) X S p(2n). It has three complex structures
JJE = =% + X! (8.6)
with i, k, [ = 1,2, 3 and a hermitian metric such that, for each i
8op LY = g
It is also Einstein, which means that its Ricci tensor is proportional to the metric:

Ra,B = 2/0(2 + n)ga,li’ .

and is strictly non-vanishing. In addition, it has a self-dual Weyl curvature
(Weyl tensor is the traceless component of Riemann tensor). In 4D (n=1) the
holonomy is S p(2) x S p(2) ~ S O(4) so the holonomy condition is empty. In this
case the proper condition is self-duality of the Weyl tensor. In N' = 2 nonlinear
o models coupled to SUGRA the Einstein parameter is identified as p = —k*
where k? = 827Gy (Gy is Newton’s constant). In the zero curvature limit (k — 0)
we obtain global supersymmetry and a manifold which is Ricci-flat (Ricci tensor

is zero).
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By properly taking the global supersymmetry limit in a SUGRA theory with
matter couplings, we should reduce to some global matter coupling theory
which, as we mentioned, is described by a hyper-Kédhler manifold. Hyper-
Kihler manifolds are defined as the 4n real dimensional, connected, Rieman-
nian manifolds whose holonomy group is contained in S p(2n). All hyper-Kéhler
manifolds are also Kdhler and Ricci-flat, that is R, = 0. This matches with the
zero curvature limit of the quaternion-Kédhler. However, hyper-Kahler are not
a subclass of quaternion-Kdhler whose Ricci scalar and S p(2) connection are

strictly non-zero.

8.3 Superspace Conventions

The notation used henceforth is somewhat different from the one of the previous
part, being more suitable for the work done here. We present the notation as

well as some ingredients that will be proven useful in the following chapters.

The N = 1 supersymmetry variation of a superfield V; is 6V, = (eQ + €Q)V,,

with supercharges verifying the algebra

{Qm Qa} = _2i(0-ﬂ)ad (9;1- (87)
On V), the supersymmetry algebra is
[61, 52]V1 = -2 (610#52 - 620"‘?1)6#%. (88)

The covariant derivatives

9 —i(0"6)4 0, D %—i(eo#)day (8.9)

D,=—
006~ 50
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anticommute with supercharges and verify
{D(ta 5(r} = _2i(0'#)<m (9;1 (810)

as well.

The second supersymmetry will transform V; into another superfield V, and
these two will form an N = 2 supermultiplet. It is known that the covariant
derivatives themselves offer a good differential realization of the supersymme-
try algebra; this is easily seen here by comparing (8.7) and (8.10). So we choose
to realize the second supersymmetry algebra on the covariant derivatives by

postulating the following transformations:
% i RS * ; N
oV, = —$(17D +nD)V, §*V, = iV2(nD + D)V, . (8.11)

where 1, is the spinorial parameter of the second supersymmetry. What we
have presented here is the realization of N' = 2 supersymmetry in terms of N = 1
superfields. We will see later that for our purposes, we can also define N' = 2

chiral superfields, which will be very useful in simplifying various expressions.

The N = 1 supersymmetry variations of the components (z, ¥, f) of a chiral

superfield @, D,® =0, are

6z = V2 ey,
o = —V2Ife +i(0€),0,2], (8.12)
§f = —V2idpore.

The bosonic expansions of the chiral superfields that will appear later are:

Wo(3,0) = 0,d(y) + 5(004T o Fn (),

_%Hac(y) + };(QO-HEV)Q byv(y)’ (813)

Xo(y,0)

(y, 0)

d(y) — 00f5(y),
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and any other chiral superfield has an expansion similar to ®. In this notation
Xs = (xo)" but W, = —(W,)". Since L = D%, — D;x", the linear superfield has
bosonic expansion
L(x,6,0) = C + 6c*6v, + 16000 OC,
(8.14)
Vi = 260pe 0D = 1€,4pe 0V D7) = 164, HPY .

6

With these expansions,
2 1 O+D 2

[ o

is the Lagrangian of a free, canonically-normalized, single-tensor N' = 2 multi-

plet. Its bosonic content is
1 1 p
E(ayC)(é“C) + EH,WPH , H,,, =30,b,.
For more details on the single tensor multiplet see section 9.1.
The identities
- — 1 — 1 —
DD 60 = DD 66 = —4, f d*0d*6 = -7 f d*60DD = - f d*6 DD, (8.15)

only valid under a space-time integral [ d*x, are commonly used. Also,

D,Djs = Le,sDD, DDy = —Le,;DD,
[Dq, DD] = —4i(0#D),0,, [Dg, DD] = +4i(D0o*)40,,,
DD W, = 4i(c#0,W),, DD W, = —4i(0,Wc*),.
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CHAPTER 9

THE LINEAR N =2
MAXWELL-DILATON SYSTEM

Our first objective is to describe, in the context of linear N' = 2 supersym-
metry, the coupling of the single-tensor multiplet to N' = 2 super-Maxwell the-
ory. Since these two supermultiplets admit off-shell realizations, they can be
described in superspace without reference to a particular Lagrangian. Gauge
transformations of the Maxwell multiplet use a single-tensor multiplet, we then

begin with the latter.
9.1 The Single-Tensor Multiplet

In global N = 1 supersymmetry, a real antisymmetric tensor field b,, is de-

scribed by a chiral, spinorial superfield y, with 85 + 8 fields [90]":
1 | _ —
Xao = 1 L(C+iC) + 1(90'“0' Yo buy + ... (Dsxo=0), 9.1)

C and C’ being the real scalar partners of b,,. The curl £, = 3 9,0, is described
by the real superfield

L = D%, — Dsx". (9.2)

1The notation mp + np stands for “m bosonic and » fermionic fields’.
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Chirality of x,, implies linearity of L: DDL = DDL = 0. The linear superfield L is

invariant under the supersymmetric gauge transformation?
Xa = Xo+7DDD,A Yo — Xe+7DDDiA  (93)

of y,: this is the supersymmetric extension of the invariance of 5, under
0b,, = 20,A,). Considering bosons only, the gauge transformation (9.3) elim-
inates three of the six components of b,, and the scalar field C’. Accordingly,
L only depends on the invariant curl 4,,, and on the invariant real scalar C.
The linear L describes then 45 + 4 fields. Using either y, or L, we will find
two descriptions of the single-tensor multiplet of global N' = 2 supersymmetry

[17, 18, 19].

In the gauge-invariant description using L, the N' = 2 multiplet is completed
with a chiral superfield ® (8 + 8 fields in total). The second supersymmetry

transformations (with parameter ,) are

S*L = —%(nchchD),
(9.4)

5D iV2nDL, 5® = iV2nDL,

where D, and D, are the usual N = | supersymmetry derivatives verifying
{D,, Dy} = —2i(0%)q30,. It is easily verified that the N' = 2 supersymmetry alge-

bra closes on L and ®.

We may try to replace L by y, with second supersymmetry transformation
Yo = —\LFZGD Na, as suggested when comparing egs. (9.2) and (9.4). However,
with superfields y, and ® only, the N' = 2 algebra only closes up to a gauge
transformation (9.3). This fact, and the unusual number 12z + 12 of fields,

indicate that (y,, ®) is a gauge-fixed version of the off-shell N' = 2 multiplet.

%A is an arbitrary real superfield.
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We actually need another chiral N = 1 superfield Y to close the supersymmetry

algebra. The second supersymmetry variations are

oY = \/577)(,
X = —Z5O1a = 21, DDY = V2i(0¥7)ad,Y (9.5)
§'® = 2V2i|4DDny + id o7

One easily verifies that the Y-dependent terms in 6"y, induce a gauge trans-
formation (9.3). Hence, the linear L and its variation 6L do not feel Y. The
superfields y,, ® and Y have 165 + 167 field components. Gauge transformation
(9.3) eliminates 45 + 4F fields. To further eliminate 45 + 45 fields, a new gauge
variation

] —
Yy — Y- DDA, (9.6)

with A’ real, is then postulated. We will see below that this variation is actually
dictated by N' = 2 supersymmetry. There exists then a gauge in which ¥ = 0
but in this gauge the supersymmetry algebra closes on y, only up to a transfor-
mation (9.3). This is analogous to the Wess-Zumino gauge of N' = 1 supersym-
metry, but in our case, this particular gauge respects N' = 1 supersymmetry and

gauge symmetry (9.3).

Two remarks should be made at this point. Firstly, the superfield Y will play
an important role in the construction of the Dirac-Born-Infeld interaction with
nonlinear N' = 2 supersymmetry. As we will see later on?, it includes a four-
index antisymmetric tensor field in its highest component. Secondly, a constant
(f-independent) background value (®) breaks the second supersymmetry only,
0 Yo = —%{@)na + ... Itis a natural source of partial supersymmetry breaking

in the single-tensor multiplet. Notice that the condition 6*(®) = 0 is equivalent

3See section 9.4.
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to Dy(Dy — Dy) = 0.

An invariant kinetic action for the gauge invariant single-tensor multiplet in-
volves an arbitrary function solution of the three-dimensional Laplace equation

(for the variables L, ® and @) [18]:

. 2 2
Lsr = fdzedZZJ(H(L, D, D), 2 72{ b2 2T
oL oD

0. (9.7)

In the dual hypermultiplet formulation the Laplace equation is replaced by a
Monge-Ampere equation. We will often insist on theories with axionic shift
symmetry 6@ = ic (c real), dual to a double-tensor theory. In this case, H is a
function of L and ® + @ so that the general solution of Laplace equation is

Lsr = f d*0d%9 H(V) + hec., V="L+ %(cp + D), (9.8)

with an arbitrary analytic function H(V).

The single-tensor multiplet as well as its Poincaré duals will play a central
role in what follows. For this reason in Appendix C we give a detailed presen-
tation of these multiplets and the duality transformations that switch from one

to the other.

9.2 The Maxwell Multiplet, Fayet-Iliopoulos Terms

Take two real vector superfields V, and V,. Variations
5V, = —%[nD +7D|V, 5'V2 = V2i|nD + nD|V; (9.9)

provide a representation of N' = 2 supersymmetry with 165+ 16 fields. We may

reduce the supermultiplet by imposing on V; and V, constraints consistent with
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the second supersymmetry variations: for instance, the single-tensor multiplet

is obtained by requiring V, = L and V, = ® + ®. Another option is to impose a

gauge invariance: we may impose that the theory is invariant under*

6(](1) V1 = Ag s 5U(1) V2 = AC + KC s (910)
where A, and A, form a single-tensor multiplet,
Ar=Ag, DDA, =0, DyA. =0, (9.11)

with transformations (9.4). Defining the gauge invariant superfields®

W, = -iDDD,V,, W, = -1DDD,V,,
(9.12)
X = 1DpDVy, X = 1pDvy,
the variations (9.9) imply®
5°X = N2in W, 5X = V2in, W',
§'Wa = V2i[1neDDX + i(c*7)a 8,X]. (9.13)

§Ws = V2i |$7,DDX - i(no*), 8,X| .
While (V,, V,) describes the N' = 2 supersymmetric extension of the gauge po-

tential A, (W,, X) is the multiplet of the gauge curvature F,, = 29,A,; [91].

The N = 2 gauge invariant Lagrangian depends on the derivatives of a holo-

morphic prepotential F(X):

Lo = 4 [ @o[F0oww - 45 00DD] + ce.

=1 f POF"(X)WW +c.c. + 1 f d*0d*0|F* (X)X + ?’(}?)X] +0,(...).
(9.14)

“For clarity, we use the following convention for field variations: ¢* refers to the second
(N = 2) supersymmetry variations of the superfields and component fields; dy1) indicates the
Maxwell gauge variations; 6 appears for gauge variations of superfields or field components
related (by supersymmetry) to 6b,, = 2 0, A,

SRemember that with this (standard) convention, W, is minus the complex conjugate of W,.

®There is a phase choice in the definition of X: a phase rotation of X can be absorbed in a
phase choice of 7.
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In the construction of the Maxwell multiplet in terms of X and W,, one ex-

pects a triplet of Fayet-Iliopoulos terms,
1 1 —— -
Lpr = _Z(f‘ +ia) | d*0X — Z(f‘ — ia) f d*0X + & f d*0d*0v,, (9.15)

with real parameters ¢, & and a. They may generate background values of
the auxiliary components fy and d, of X and V, which in general break both

supersymmetries:
§X = V2inf{dyy + ..., §Wa = V2in, (fy) + ... (9.16)

In terms of V; and V, however, the relation X = %EVI implies that Im fx is the
curl of a three-index antisymmetric tensor (see section 9.4) and that its expec-
tation value is turned into an integration constant of the tensor field equation

[92, 93]. As a consequence,
1 . 2 1 . 20V 20 127 o
—Z(fl +ia) | d°OX — Z(fl —ia) | d0X =& | d°6d°0V, + derivative
and the Fayet-Iliopoulos Lagrangian becomes
Lo = [deraiey,+ e, 9.17)
with two real parameters only.

The Maxwell multiplet with superfields (X, W,) and the single-tensor mul-
tiplet (Y, xo, ®) have a simple interpretation in terms of chiral superfields on
N = 2 superspace. We will use this formalism to construct their interacting

Lagrangians in section 9.5.
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9.3 The Chern-Simons Interaction

With a Maxwell field F,, = 24d,,A,) (in W,) and an antisymmetric tensor b, (in

Xeo OF L), one may expect the presence of a b A F interaction
€ b, Fpr =2€"7A,0,b,, + derivative.

This equality suggests that its N' = 2 supersymmetric extension also exists in
two forms: either as an integral over chiral superspace of an expression de-
pending on y,, W,, X, ® and Y, or as a real expression using L, ® + @, V, and

V5.
In the ‘real’ formulation, the N = 2 Chern-Simons term is’
Los = —¢ f d*0d*0 [Lv2 + (D + E)VI], (9.18)

with a real coupling constant g. It is invariant (up to a derivative) under the
gauge transformations (9.10) of V; and V, with L and ® left inert. Notice that the
introduction of Fayet-Iliopoulos terms for V, and V; corresponds respectively to

the shifts ® + ® » ® + ® — & /gand L — L — & /g in the Chern-Simons term.

The ‘chiral” version uses the spinorial prepotential y, instead of L. Turning

expression (9.18) into a chiral integral and using X = 1DD V; leads to
1 — —w 11—
Les, =8 f d*0 "W, + E<1>X] +g f &0 -, W + Ecpx], (9.19)

which differs from Lcs by a derivative. The chiral version of the Chern-Simons

term L¢s, transforms as a derivative under the gauge variation (9.3) of y,. Its

invariance under constant shift symmetry of Im ® follows from X = DD V. It

1
2

does not depend on Y.

’The dimensions in mass unit of our superfields are as follows: Vi,V : 0, X,Y : 1, Wy, xo :
3/2,®,L: 2. The coupling constant g is then dimensionless.
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The consistent Lagrangian for the Maxwell — single-tensor system with

Chern-Simons interaction is then
Lsr + Lygar. + Lcs or Ls7 + Lyax. + Lecs - (9.20)

The first two contributions include the kinetic terms and self-interactions of the
multiplets while the third describes how they interact. Each of the three terms

is separately N = 2 supersymmetric.

Using a N = 1 duality, a linear multiplet can be transformed into a chiral su-
perfield with constant shift symmetry and the opposite transformation of course
exists. Hence, performing both transformations, a single-tensor multiplet La-
grangian (L, ®) with constant shift symmetry of the chiral ® has a “double-dual’
second version. Suppose that we start with a Lagrangian where Maxwell gauge

symmetry acts as a Stiickelberg gauging of the single-tensor multiplet:®
L= | d*6dOHL—-gV,,®+ D —gV>). (9.21)

The shift symmetry of Im ® has been gauged and £ is invariant under gauge

transformations (9.10) combined with
5U(1)L = gAg . 6U(1)(I) = gAC . (922)

and under N' = 2 supersymmetry if H verifies Laplace equation (9.7). If we

perform a double dualization (L, ® + D) - (O + 5, L), we obtain the dual theory

L +c.c. (9.23)

-~ . = 1.
f d*0d*0 H(L,® + D) + g f d*o (" w, + 5c1>X

f 0% [ﬂ(z, & + @) - gZVZ] +$ f PODX + c.c.

8Strictly speaking, the coupling constant g in this theory has dimension (energy)®. There is
an irrelevant energy scale involved in the duality transformation of a dimension two L into a
dimension two chiral superfield. Hence, g in eq. (9.23) is again dimensionless.
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where H is the result of the double Legendre transformation
H@, %) = H(x,y) - Zx - jy. (9.24)

The dual theory is then the sum of the ungauged Lagrangian (9.7) and of the
Chern-Simons coupling (9.18). This single-tensor — single-tensor duality is actu-
ally N = 2 covariant: if H solves Laplace equation, so does H, and every in-
termediate step of the duality transformation can be formulated with explicit

N =2 off-shell supersymmetry.

We have then found two classes of couplings of Maxwell theory to the single-
tensor multiplet. Firstly, using the supersymmetric extension of the b A F cou-
pling, as in egs. (9.20). Secondly, using a Stiickelberg gauging (9.21) of the
single-tensor kinetic terms. The first version only is directly appropriate to per-
form an electric-magnetic duality transformation. However, since the second
version can always be turned into the first one by a single-tensor — single-tensor
duality, electric-magnetic duality of the second version requires this preliminary

step: both theories have the same ‘magnetic’ dual.

9.4 The Significance of V;, X and Y

In the description of the N' = 2 Maxwell multiplet in terms of two N = 1 real
superfields, V, describes as usual the gauge potential A, a gaugino 4, and a real
auxiliary field d, (in Wess-Zumino gauge). We wish to clarify the significance
and the field content of the superfields V, and X = %EVI, as well as the related
content of the chiral superfield Y used in the description in terms of the spinorial

potential y, of the single-tensor multiplet (Y, y,, ®).
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The vector superfield V, has the N' = 2 Maxwell gauge variation 6y,V, = A,
with a real linear parameter superfield A,. In analogy with the Wess-Zumino

gauge commonly applied to V;, there exists then a gauge where

- — 1 1— | — I — 1 —
Vl(x, 9, 9) = 00 Vig — 599} - 599)6 — %G’H&px - @999(&){ + 599900,’1 (925)

This gauge leaves a residual invariance acting on the vector field v;, only:
1
SumVy = €0y (9.26)

This indicates that the vector v/ is actually a three-index antisymmetric tensor,

1
Vi = 2" Ay (9.27)

with Maxwell gauge invariance

SutyAup = 3 Ouhyp)- (9.28)

By construction, X = DDV, is gauge invariant. In chiral variables,

1
2

X(y,0) = x + V260yx — 00(d, + id,"). (9.29)
Hence, while Re fy = d,

1
Im fy = 9V = —€"""F Fupr = 401,A,p0) (9.30)

2% HUvpo s
is the gauge-invariant curl of A,,,. It follows that the field content (in Wess-
Zumino gauge) of V; is the second gaugino ¢y, the complex scalar of the
Maxwell multiplet x, a real auxiliary field d; and the three-form field A,,,, which
corresponds to a single, non-propagating component field. The gauge-invariant

chiral X includes the four-form curvature F,,,.

At the Lagrangian level, the implication of relations (9.30) is as follows. Sup-

pose that we compare two theories with the same Lagrangian L(u) but either
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with u = ¢, a real scalar, or with u = 9,V¥, as in eq. (9.30). Since L(¢) does not
depend on d,¢, the scalar ¢ is auxiliary. The field equations for both theories are
0 0
%L((ﬁ) =0 aV a_ﬁ(u) u=0, V¥ =0
The second case allows a supplementary integration constant & related to the
possible addition of a ‘topological” term proportional to d,V* to the Lagrangian
[92, 93]:
0
EL(M) =k

u=0, V*

In the first case, the same integration constant appears if one considers the fol-

lowing modified theory and field equation:

0
L) k¢ — %L(flb) = k.

Returning to our super-Maxwell case, the relation is ¢ = Im fy and the modifi-

cation of the Lagrangian is then
ik [,
—kIm fx = -3 d0X +c.c. (9.31)

This is the third Fayet-Iliopoulos term, which becomes a ‘hidden parameter’

[92] when using V; instead of X.

Consider finally the single-tensor multiplet (Y, x,, ®) and the supersymmet-
ric extension of the antisymmetric-tensor gauge symmetry, as given in Egs. (9.3)
and (9.6):
1— | —
6Y = -3 DDA, X = iDDDaA, 50 =0,

Using expansion (9.29), there is a gauge in which Y reduces simply to

Y = —i60 Im fy (9.32)
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and one should identify Im fy as a four-index antisymmetric tensor field,

1
Im fy = = €"°C

o o (9.33)

with residual gauge invariance
(5 C,uvpo' = 4 a[lv,Ava—]. (934)

The antisymmetric tensor C,,,, describes a single field component which can be
gauged away using A,,,. Applying this extended Wess-Zumino gauge to the
N =2 multiplet (Y, yo, ), the fields described by these N = 1 superfields are as

given in the following table.

N = 1superfield | Field | Gauge invariance | Number of fields
Xa by Sbyy =201, 65— 35 =35
C 1p
Xa 4F
® @ 2p
fo 25 (auxiliary)
Yo 4F
Y Cuvpor | 0 Crypr = 401\ por Ip—15=0p

The propagating bosonic fields b,,, C and @ (four bosonic degrees of freedom)

have kinetic terms defined by Lagrangian L7, eq. (9.7).

9.5 Chiral N =2 Superspace

Many results of the previous section can be reformulated in terms of chiral su-
perfields on N = 2 superspace. We now turn to a discussion of this framework,

including an explicitly N' = 2 covariant formulation of electric-magnetic duality.
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9.5.1 Chiral N =2 Superfields

A chiral superfield on N = 2 superspace can be written as a function of y*, 6, 6:
DiZ=DsZ=0 —  Z=2Z0.6,0 (9.35)

with y* = x* — i60+8 — 0B and D, W= Bd » = 0. Its second supersymmetry
variations are

6°Z = im0 +70)Z. (9.36)
with supercharge differential operators 0, and 5(-, which we do not need to ex-
plicitly write. It includes four N = 1 chiral superfields and 165 + 16 component

fields and we may use the expansions

Z(y,6,0) Z(y,0) + V20w, (v,0) — B9F (y, )

(9.37)

= Z(0.0) + V28 w,(y,0) - 00| 402(y.0) + 1DD Z(y,0)|,
where # and D, are the Grassmann coordinates and the super-derivatives asso-
ciated with the second supersymmetry. The second supersymmetry variations

(9.36) are easily obtained by analogy with the N = 1 chiral supermultiplet:

§Z = V2o,
Fwy = = V2AFny +i(0*a0,Z] = =020 — Y0y DDZ — N2i(0¥7)a0,Z,
§F = —V2id,wr7,

§'0z = 2V2i[LDDnw + id,woy).
(9.38)

We immediately observe that the second expansion (9.37) leads to the second
supersymmetry variations (9.5) of a single-tensor multiplet (Y = Z, y = w,® =

® 7). Similarly, the expansion

W(y,0,0) = X(v,0) + V2iGW(y,0) — 60 %DDX(y, 0), (9.39)

131



which is obtained by imposing ® = 0 in expansion (9.37), leads to the Maxwell
supermultiplet (9.13) [94]. The Bianchi identity D*W, = DW' is required by
0"®z = 0. The N = 2 Maxwell Lagrangian (9.14) rewrites then as an integral

over chiral N = 2 superspace,

Litax. = % f d*o f d*0F (W) +c.c., (9.40)

and the Fayet-Iliopoulos terms (9.17) can be written [95]

Ly = f d*0d*0 £,V + &V = —% f a0 f d*0]60£, - V2006 W +cc. (9.41)

Considering the unconstrained chiral superfield (9.37) with 165 + 16F fields,
the reduction to the 85+ 8 components of the single-tensor multiplet is done by
imposing gauge invariance (9.3) and (9.6). In terms of N = 2 chiral superfields,

this gauge symmetry is simply
oY = -W, (9.42)

where W is a Maxwell N' = 2 superfield parameter (9.39). In terms of N = 1

superfields, this is

—

§Y = =X, o = —iW,, 5O =0, (9.43)

asin egs. (9.3) and (9.6). Hence, a single-tensor superfield Y is a chiral superfield

Z with the second expansion (9.37) and with gauge symmetry (9.42).

The chiral version of the Chern-Simons interaction (9.19) can be easily writ-
ten on N = 2 superspace. Using Y with gauge invariance (9.42) and W to

respectively describe the single-tensor and the Maxwell multiplets. Then

Les, =g f d*o f d*0YW +cec. (9.44)
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It is gauge-invariant since for any pair of Maxwell superfields
i f a0 f dPOWW + c.c. = derivative. (9.45)

Notice that the lowest component superfield Y of YV does not contribute to the
tield equations derived from Lcs ,: it only contributes to this Lagrangian with a

derivative.

Finally, a second method to obtain an interactive Lagrangian for the
Maxwell-single-tensor system is then obvious. Firstly, a generic N' = 2 chiral

superfield Z can always be written as
Z=W+2gV. (9.46)

It is invariant under the single-tensor gauge variation (9.42) if one also postu-
lates that

SW =2gW, (9.47)

which amounts to a N' = 2 Stiickelberg gauging of the symmetry of the anti-
symmetric tensor. With this decomposition, F,, and b,, only appear in the 6,05
component of Z through the gauge-invariant combination F,,, — gb,,. The chiral
integral

L= % f d*0 f dOF(W +28Y) +c.c. + Ly (9.48)

provides a N = 2 invariant Lagrangian describing 165 + 165 (off-shell) interact-
ing fields. There exists a gauge in which ‘W = 0, in which case theory (9.48)

describes a massive chiral N' = 2 superfield.

Theory (9.48) is actually related to the Chern-Simons Lagrangian (9.20) by

electric-magnetic duality, as will be shown below.
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9.5.2 Electric-Magnetic Duality

The description in chiral N = 2 superspace of the Maxwell multiplet allows
to derive a N' = 2 covariant version of electric-magnetic duality. The Maxwell
Lagrangian (9.14) supplemented by the Chern-Simons coupling (9.19) can be
written

Lotootric = f d*o f d*o B?((W)ngy(w +cc., (9.49)

adding egs. (9.40) and (9.44). Replace then ‘W by an unconstrained chiral su-
perfield Z (with N = 1 superfields Z, &, and ®) and introduce a new Maxwell

multiplet W (with N = 1 superfields X and W,). Using

l —= ~ ] —  —
X = EDDVI’ Wy = —ZDDDQVZ,

we have

ifdzefd29@2+c.c.

fdze [%®f+ @W] +c.c.

- f d204%0 [T/l(ci) + &) + VD0, — Dado)|.
(9.50)

Consider now the Lagrangian

L= f d%0 f 420 Bﬂﬁ) + %2((‘7/ +2gY)| +c.c. (9.51)

Invariance under the gauge transformation of the single-tensor superfield,
eq. (9.42), requires a compensating gauge variation of W, as in eq. (9.47). Elim-
inating W leads back to theory (9.49) with Z = ‘W. This can be seen in two
ways. Firstly, the condition

ifdze fd%@ZA + c.c. = derivative

leads to Z = ‘W, a N = 2 Maxwell superfield, up to a background value. Sec-

ondly, using egs. (9.50), we see that V, imposes the Bianchi identity on & while
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V; cancels ® up to an imaginary constant.” We will come back to the (impor-
tant) role of a nonzero background value in the next section. For the moment

we disregard it.
On the other hand, we may prefer to eliminate Z, using its field equation
F(Z) = —iV, V=W+2Y, (9.52)

which corresponds to a Legendre transformation exchanging variables Z and

V. Defining
F(V) = F(2)+iVZ, (9.53)
we have
F(V) =iZ, F(Z) = —i'V, FWVF(Z)=1.  (9.54)

The dual (Legendre-transformed) theory is then

— 1 L —
Linagnetic = 5 f d*o f d*OF (W +2gY) +c.c. (9.55)

or, expressed in N = 1 superspace,'”

Enuic = [ 0] 77X+ 20%) (7 = 2107 - 2igo),
15X +2gY) DD(X +2g7) - 2ig (X + 2g¥)®] + c.c.
(9.56)
We then conclude that the presence of the Chern-Simons term in the electric

theory induces a Stiickelberg gauging in the dual magnetic theory.

As explained in ref. [95], the situation changes when Fayet-Iliopoulos terms
(9.41) are present in the electric theory. In the magnetic theory coupled to the

single-tensor multiplet, with Lagrangian (9.56), the gauging 5W = 2gW forbids

9 An unconstrained X would forbid this constant.
10The free, canonically-normalized theory corresponds to F (W) = $W? and (V) = V2.
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Fayet-Iliopoulos terms for the magnetic Maxwell superfields V; and V,. Sponta-
neous supersymmetry breaking by Fayet-Iliopoulos terms in the electric theory

tinds then a different origin in the magnetic dual.

For our needs, we only consider the Fayet-Iliopoulos term induced by V;,

i.e. we add

Lrr =& f arev, = _4115‘ f d*o f d*0060W + c.c. (9.57)

to Leiecrric, €9- (9.49). In turn, this amounts to add

1 o A
—Zgl f d*o f d*600 Z + c.c.

to theory (9.51). But, in contrast to expression (9.57), this modification is not
invariant under the second supersymmetry: according to the first eq. (9.38), its

0" variation

2
—%& fdze nw + c.c.
is not a derivative.!’ To restore N = 2 supersymmetry, we must deform the 6*
variation of W, — 2igy, into
1

V2

the second term being the usual, undeformed, variations (9.13) and (9.5). Hence,

Seformed Wa = 2i8Xa) = —=E€1Ma + 6" (W, — 2igxa), (9.58)

the magnetic theory has a goldstino fermion and linear N' = 2 supersymmetry
partially breaks to N = 1, as a consequence of the electric Fayet-Iliopoulos term.

Concretely, the magnetic theory is now

-Emagnetic — %deQ deQ%((W + Zgy + éfléé) + C.C.
_ %fdzg fdzé [9’5(@(/ + zgy) + %gléé%'(fﬁ/ + Zgy)] +cc.  (9.59)
[% f d6 f POF(W +28Y) + £ f d*0F (X + 2gY)

1Tt would be a derivative if w, would be replaced by the Maxwell superfield W,, as in
eq. (9.57).

+ C.C.
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One easily checks that N' = 2 supersymmetry holds, using the deformed varia-

tions (9.58).
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CHAPTER 10

NONLINEAR N =2
SUPERSYMMETRY AND THE DBI
ACTION

In the previous sections, we have developed various aspects of the coupling
of a Maxwell multiplet to a single-tensor multiplet in linear N = 2 supersymme-
try. With these tools, we can now address our main subject: show how a Dirac-
Born-Infeld Lagrangian (DBI) coupled to the single-tensor multiplet arises from

nonlinearization of the second supersymmetry.

It has been observed that the DBI Lagrangian with nonlinear second super-
symmetry can be derived by solving a constraint invariant under N' = 2 su-
persymmetry imposed on the super-Maxwell theory [20, 21]. We start with a
summary of this result, following mostly Rocek and Tseytlin [21], and we then

generalize the method to incorporate the fields of the single-tensor multiplet.
10.1 The N = 2 Super-Maxwell DBI Theory

The constraint imposed on the N = 2 Maxwell chiral superfield ‘W is [21]

2
w — Lggw - (w i} ié@) _o. (10.1)
K 2k

1See also Ref. [96] and very recently Ref. [54] in the context of N = 1 supersymmetry.
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It imposes a relation between the super-Maxwell Lagrangian superfield W? and
the Fayet-Iliopoulos ‘superfield” 86W, eq. (9.57). The real scale parameter « has
dimension (energy) 2. In terms of N = 1 superfields, the constraint is equivalent
to

X’ =0, XW, =0, WW—%HMWzlx (10.2)
K

The third equality leads to
2WW
X=—— (10.3)
2+ DDX
which, since W,W;W, = 0, implies the first two conditions. Solving the third
constraint amounts to express X as a function of WW [20]*. The DBI theory
is then obtained using as Lagrangian the Fayet-Iliopoulos term (9.57) properly

normalized:

1 1
Lppr = I{fdzeX +c.c= 32 [1 - \/—det(nﬂv + 2\/§KFW) +... (10.4)

K2

The constraints (10.1) and (10.2) are not invariant under the second linear su-
persymmetry, with variations ¢*. However, one easily verifies that the three

constraints (10.2) are invariant under the deformed, nonlinear variation
1 1 ——
6Zef0rmedW(Y = \/El [2_770 + ZU(YDDX + l(o-”ﬁ)a aqu s (105)
K

with 6°X unchanged. The deformation preserves the N' = 2 supersymmetry
algebra. It indicates that the gaugino spinor in W,, = —id, + ... transforms inho-
mogeneously, 6", = —%K Mo+ . .., like a goldstino for the breaking of the second
supersymmetry. In other words, at the level of the N = 2 chiral superfield W,

1. ~ —= ~ —= 1 ..
5;kleformed W= __977 + l(’]Q + T]Q)(W = 1(77Q + ﬁQ) ((W - 2K69) .
K

%
deforme

The deformed second supersymmetry variations ¢ , act on W as the usual
variations 6" act on the shifted superfield ‘W — 5-60. In fact, this superfield trans-

forms like a chiral N' = 2 superfield (9.37) with Z = X, w, = iW, verifying the

2See Appendix B.
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Bianchi identity and with ®; = —i/k. The latter background value of ®; may be

viewed as the source of the partial breaking of linear supersymmetry.

Hence, the scale parameter « introduced in the nonlinear constraint (10.1)
appears as the scale parameter of the DBI Lagrangian and also as the order
parameter of partial supersymmetry breaking. The Fayet-Iliopoulos term (10.4)
has in principle an arbitrary coefficient —¢,/4, as in eq. (9.17). We have chosen

& = —«! to canonically normalize gauge kinetic terms.

The DBI Lagrangian is invariant under electric-magnetic duality.® In our N =
2 case, the invariance is easily established in the language of N = 2 superspace.

We first include the constraint as a field equation of the Lagrangian:

1 1 1.\’
Lopr = f d*0 f d*0|—00W + —A|W - —84] |+c.c. (10.6)
4k 4 2K

The field equation of the N = 2 superfield A enforces (10.1). We then intro-
duce two unconstrained N = 2 chiral superfields U and Y and the modified
Lagrangian

1 1

Al 1L zn 1 -
LDBI:fdzedeG —00W + —AU> - =T |U—-W+—00
4k 2k

4 ) + C.C.

Since the Lagrange multiplier  imposes U = ‘W — 560, the equivalence with
(10.6) is manifest. But we may also eliminate ‘W which only appears linearly in

the last version of the theory. The result is

T = —i’W—l(l —ig)éé
2\«
where W is a Maxwell N = 2 superfield dual to ‘W and ¢ an arbitrary real
constant. As in subsection 9.5.2, N = 2 supersymmetry of the theory with a

Fayet-Iliopoulos term requires a nonlinear deformation of the ¢* variation of

3For instance, in the context of D3-branes of IIB superstrings, see Ref. [97]. Our procedure is
inspired by Ref. [21].
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W: W -1 (l — il ) 66 should be a ‘good” N = 2 chiral superfield. Replacing T in

K

the Lagrangian and taking £ = 0 leads to

" S
Ly = fd26 fdze AU+ iU[W— ie@]+iwee +ec.
4 2 2% T ax

Finally, eliminating U gives the magnetic dual

A1 (= 0 i~ s
Lop = f d* f 61249[H (W—iee) +4iwee +ec. (10.7)

2k K

One easily verifies that the resulting theory has the same expression as the initial
‘electric’ theory (10.4). The Lagrange multiplier A~' imposes constraint (10.1) to
—iW, which reduces to eq. (10.3) applied to —iX. The Lagrangian is then given

by the Fayet-Iliopoulos term for this superfield.

10.2 Coupling the DBI Theory to a Single-Tensor Multiplet:

a Super-Higgs Mechanism without Gravity

The N = 2 super-Maxwell DBI theory is given by a Fayet-Iliopoulos term for
a Maxwell superfield submitted to the quadratic constraint (10.1), which also
provides the source of partial supersymmetry breaking. The second supersym-
metry is deformed by the constraint: it is W —5-60 which transforms as a regular
N =2 chiral superfield. Instead of expression (9.44), we are thus led to consider
the following Chern-Simons interaction with the single-tensor multiplet:
Lesay = i [0 [ @09 (W= £00) + cc.
(10.8)
= gfdze [%(DX + X' W, — iY] + c.c. + derivative.

The new term induced by the deformation of §*W, is proportional to the four-

form field described by the chiral superfield Y, as explained in section 9.4 [see
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eq. (9.33)]. This modified Chern-Simons interaction, invariant under the de-
formed second supersymmetry variations, may be simply added to the Maxwell

DBI theory (10.6). We then consider the Lagrangian

2
Low= [0 [ @aliy(w- 3.08) - JedW A (W a0 |+ce.
2k 4 2 2k

(10.9)
for the constrained Maxwell and single-tensor multiplets, keeping the Fayet-
Iliopoulos coefficient ¢; arbitrary. For a coherent theory with a propagating

single-tensor multiplet, a kinetic Lagrangian Ls7 [eq. (9.7)] should also be
added. Since

N .
f d*o f d*o [igM(W—Zfl%"W

we see that the Fayet-Iliopoulos term is equivalent to a constant real shift of ®

1
+c.c. = fdzé? [g)(W + §®X - Z&X +c.c.+deriv.,

which, according to variations (9.5), partially breaks supersymmetry. We will

choose to expand ® around (@) = 0 and keep &, # 0.

Again, the constraint (10.1) imposed by the Lagrange multiplier A can be

solved to express X as a function of WW: X = X(WW). The result is [20]
WWWW ]

1+ KA+ V1 +2CA + B2

where A and B are defined in Appendix B. The DBI Lagrangian coupled to the

X(WW) = kWW — DD

(10.10)

single-tensor multiplet reads then

1 ;
Lppr = fdzé [Z 2gD - &) X(WW) + gxy* W, — ;—gY +c.c.+ Lgr. (10.11)
K

The bosonic Lagrangian depends on a single auxiliary field*, d, in W, or Va:

Losrvos. = 5(28Re® - &) (1 - \/ —8Kk2d? — det(n, + 2 V2k F,M) - £Cd,

2k WP

+g€ﬂvpo- (i Im (DF,uVFpO' - zllb.uVFl’fT + LC ) + LS T, bos.-
(10.12)

4Since X(WW)|y-o is a function of fermion bilinears, the auxiliary fo does not contribute to the
bosonic Lagrangian and y,, does not include any auxiliary field.
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The real scalar field C is the lowest component of the linear superfield L. Con-
trary to (®), its background value is allowed by N = 2 supersymmetry. How-
ever, a non-zero (C) would induce a non-zero (d,) which would spontaneously
break the residual N' = 1 linear supersymmetry. This is visible in the bosonic

action which, after elimination of

gC | —det(n,, +2V2«F,,)
dZ bos. = ~

, 10.13
(2gRe @ — &))? + 242C? ( )
becomes
~£DBI,erS. = é(Zg Re ® — fl) ll - \/1 + (Zgliiis &) \/ det(nﬂv +2 \/_K F#v)]
+ger? (ﬁ I ®F,, Foo = 3buFpo + 5 CWP(’) + Ls.vos.
(10.14)

First of all, as expected, the theory includes a DBI Lagrangian for the Maxwell
tield strength F,,,, with scale ~ k. With the Chern-Simons coupling to the single-

tensor multiplet, the DBI term acquires a field-dependent coefficient,

1
ry \/(Zg Re @ — &) + 2g%C? \/— det(n,, + 2 V2k F.). (10.15)
K

It also includes a F A F term which respects the axionic shift symmetry of Im ®, a
b A F coupling induced by (linear) N = 2 supersymmetry and a ‘topological’ C,
term induced by the nonlinear deformation. These terms are strongly reminis-
cent of those found when coupling a D-brane Lagrangian to IIB supergravity.
The contribution of the four-form can be eliminated by a gauge choice of the
single-tensor symmetry (9.34). We have however insisted on keeping off-shell

(deformed) N = 2 supersymmetry, hence the presence of this term.

The theory also includes a semi-positive scalar potential®

2¢Re @ - & 2g%C?
Re®d) = —— —=— 1 -1 10.1
V(C,Re D) — N * B Red B (10.16)

>We only consider 2g Re ®—¢ > 0, in order to have well-defined positive gauge kinetic terms.
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which vanishes only if C is zero.® The scalar potential determines then (C) = 0

but leaves Re ® arbitrary. Since

=52 (0gre@ 617+ 202C7) "
K

the vacuum line (C) = 0 is compatible with linear N' = 1 and deformed second

supersymmetry. While @ is clearly massless, C has a mass term

Ry C?=_ g 2
¢ 4k2Re® - &)

2

The same mass is acquired by the U(1) gauge field coupled to the antisymmetric
tensor b,,, and by the goldstino (the U(1) gaugino in W,) that forms a Dirac
spinor with the fermion of the linear multiplet y,. In other words, the Chern-
Simons coupling yW pairs the Maxwell goldstino with the linear multiplet to
form a massive vector, while the chiral multiplet ® remains massless with no

superpotential.

At (C) = (Re®) = 0, gauge kinetic terms are canonically normalized if & =
—x~!'. The Maxwell DBI theory (10.4) is of course recovered when the Chern-
Simons interaction decouples with g = 0. Notice finally that the kinetic terms
Lgr of the single-tensor multiplet are given by eq. (9.7), as with linear N' = 2
supersymmetry. Since the nonlinear deformation of the second supersymmetry
does not affect 6L or 5*® even if (Re @) # 0, the function H remains completely

arbitrary.

The phenomenon described above provides a first instance of a super-Higgs
mechanism without gravity: the nonlinear goldstino multiplet is ‘absorbed” by
the linear multiplet to form a massive vector N' = 1 superfield. One may won-

der how this can happen without gravity; normally one expects that the gold-

5With respect to Re @, the potential is stationary, 012% =0, only if C = 0. All local minima are

then characterized by C = 0 and Re @ arbitrary and are then (supersymmetric) global minima.
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stino can be absorbed only by the gravitino in local supersymmetry. The reason
of this novel mechanism is that the goldstino sits in the same multiplet of the
linear supersymmetry as a gauge field which has a Chern-Simons interaction
with the tensor multiplet. This will become clearer in Section 10.6, where we
will show by a change of variables that this coupling is equivalent to an ordi-
nary gauge interaction with a charged hypermultiplet, providing non derivative
gauge couplings to the goldstino. Actually, this particular super-Higgs mecha-
nism is an explicit realization of a phenomenon known in string theory where
the U(1) ftield of the D-brane world-volume becomes in general massive due to
a Chern-Simons interaction with the R-R antisymmetric tensor of a bulk hyper-

multiplet.7

We have chosen a description in terms of the single-tensor multiplet because
it admits an off-shell formulation well adapted to our problem. Our DBI La-
grangian (10.9), supplemented with kinetic terms Ls7, admits however several
duality transformations. Firstly, since it only depends on W, we may perform
an electric-magnetic duality transformation, as described in section 10.4. Then,
for any choice of Lg7, we can transform the linear N' = 1 superfield L into a
chiral @’. The resulting theory is a hypermultiplet formulation with superfields
(@, @) and N = 2 supersymmetry realized only on-shell. As already explained
in section 9.3, the b A F interaction is replaced by a Stiickelberg gauging of the
axionic shift symmetry of the new chiral @: the Kéhler potential of the hyper-
multiplet formulation is a function of @’ + D - gV, Explicit formulae are given
in the next section and in section 10.6 we will use this mechanism in the case of
nonlinear N = 2 QED. Finally, if kinetic terms L7 also respect the shift symme-

try of Im @, the chiral ® can be turned into a second linear superfield L, leading

"This can be avoided in the orientifold case: the N = 2 bulk supermultiplets are truncated by
the orientifold projection.
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to two formulations which are also briefly described below.

10.3 Hypermultiplet, Double-Tensor and Single-Tensor Dual

Formulations

As already mentioned, using the single-tensor multiplet is justified by the exis-
tence of an off-shell N' = 2 formulation. The hypermultiplet formulation, with
two N = 1 chiral superfields, is however more familiar and the first purpose of
this subsection is to translate our results into this formalism. In the DBI theory

(10.11), the linear superfield L only appears in
Lor + gfdze)("Wa +cc. = fd20d25 [7—((L, O, D) + gLVz] + derivative.

These contributions are not invariant under ¢* variations: the nonlinear defor-
mation acts on W, and on V,. Nevertheless, the linear superfield can be trans-
formed into a new chiral superfield ®’. The resulting ‘hypermultiplet formula-

tion” has Lagrangian

LDBI, hyper. = deHdzg 7{(‘1), + 6, - gV2, O, 6)

(10.17)
+fd29 |+ 2@ - &) X(WW) - £Y| +c.c.
The Kéhler potential is given by the Legendre transformation
K@ + @ ,D,®) = HU,O,0) - U@ + D), (10.18)
where U is the solution of
%W(U, D,D) =D +D. (10.19)

In the single-tensor formulation, N' = 2 supersymmetry implies that H solves

Laplace equation. As a result of the Legendre transformation, the determinant
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of K is constant and the metric is hyperkéhler [18]. It should be noted that the

Legendre transformation defines the new auxiliary scalar fo of @ according to

PH P
oUsD ), "

for = ( (10.20)

Hence, the hypermultiplet formulation has the same number of independent

auxiliary fields as the single-tensor version: d, and f.

The second supersymmetry variation §* of @’ is also defined by transforma-
tion (10.19): in the hypermultiplet formulation, N' = 2 is realized on-shell only,
using the Lagrangian function. The nonlinear deformation of variations ¢* acts

on V,. Since W, = —;DDD, V,, eq. (10.5) indicates that
, i — _ . —
§*Vy = —— (8000 — 660n) + V2i (nD + nD)V.
V2k

The k-dependent term in the §* variation of the Kiahler potential term in
Lps1, nyper. is then the same as the k-dependent part in g 6* f d*0 xy*W, + c.c, which
is compensated by the variation of the four-form field. This can again be shown
using eqs. (10.18) and (10.19). This hypermultiplet formulation will be used in
Section 10.6, on the example of nonlinear DBI QED with a charged hypermulti-

plet.

For completeness, let us briefly mention two further formulations of the
same DBI theory, using either a double-tensor, or a dual single-tensor N' = 2
multiplet. These possibilities appear if Lagrangian (10.11) has a second shift
symmetry of Im®. This is the case if the single-tensor kinetic Lagrangian has
this isometry:

Lor = f d*0POH(L, D + D).

We may then transform ® into a linear superfield L’ using an N' = 1 duality

transformation. Keeping L and turning ® into L’ leads to a double-tensor for-
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mulation with superfields (L, L’). The Lagrangian has the form

_ 1 '
Lpr = f d*0d*0G(L. L' - gVi(WW)) - f d*0 [Z§1X(WW) — g W, + ;—gY +c.c.
K
(10.21)
The function G is the Legendre transform of H with respect to its second vari-

able @ + ® and the real superfield V,(WW) is defined by the equation
—
X(WW) = DD Vi(WW). (10.22)

It includes the DBI gauge kinetic term in its d; component and the Lagrangian
depends on the new tensor b, through the combination 3 9,0/, o1~ & Wuvps where

Wyyp = 3 A, F,p is the Maxwell Chern-Simons form.

Finally, turning ® and L into L’ and @’, leads to another single-tensor theory
with a Stiickelberg gauging of both ®" and L’, as in theory (9.21). In this case,
the Lagrangian is
Lsr = f d*6d*6 ﬁ(@' +@ —gVs, L — ng(WW)) - f d*o L%IX(WW) + ;—‘iy +c.c.

(10.23)
While in the double-tensor theory (10.21) the second nonlinear supersymmetry
only holds on shell, it is valid off shell in theory (10.23). The function H veri-
fies Laplace equation, as required by N = 2 linear supersymmetry.® Using the
supersymmetric Legendre transformation, one can show that the nonlinear de-
formation of &*V,, which affects 6*H, is again balanced by the variation of the

four-form superfield Y.

8See eq. (9.7).
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10.4 The Magnetic Dual

To perform electric-magnetic duality on theory (10.9), we first replace it with

Low = [0 [@dlisy(w- 150) - jedow
(10.24)

+HAU? =17 (U - W + £80)| + c.c. + Lsr.
Both U and T are unconstrained chiral N' = 2 superfields. The Lagrange mul-
tiplier T imposes U = ‘W — 566, which leads again to theory (10.9). The first
two terms, which have gauge and N = 2 invariance properties related to the
Maxwell character of ‘W are left unchanged. The term quadratic in W has been

turned into a linear one using the Lagrange multiplier. Hence, the Maxwell

superfield ‘W, which contributes to Lagrangian (10.24) by
N A U DU
do |dowWligV + ET - Zfl 00|+ c.c., (10.25)

can as well be eliminated: Y should be such that this contribution is a derivative.
In terms of N' = 1 chiral superfields, W has components X and W, and since
there exists two real superfields V; and V, such that X = %ﬁ Vi, and W, =

—iﬁDa V,, we actually need to eliminate V; and V, with result
— 1 »

In this expression, W is a Maxwell N = 2 superfield, the ‘magnetic dual’ of the
eliminated ‘W. There is a new arbitrary real deformation parameter ¢, allowed
by the field equation of V,. Notice however that & + i{ can be eliminated by
a constant complex shift of ®. Invariance of T under the single-tensor gauge

variation (9.42) implies that oW = Zg;M\/ = —2g6Y and

Z=W+23Y (10.27)
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is then a gauge-invariant chiral superfield. As already mentioned, any uncon-
strained chiral N = 2 superfield can be decomposed in this way and our theory
may as well be considered as a description of the chiral superfields Z and Y

with Lagrangian

~rl 1 i o I~
- |2 2 2 .
Lo = fd Hfd Q[ZAU + zU(EZ iGR i£)00) + 100(Z - 2gy)] +c.c. + Lsr.
(10.28)
Invariance under the second supersymmetry implies that Z + (& + i{)f6 trans-

forms as a standard N = 2 chiral superfield and then
eformea Z = iE + i) + (10 + 1OV Z. (10.29)
Eliminating U leads finally to
- ~r 1 i N2
R 2 -
Logr = f d20 f d Q[H(z R i)d0)" + 100(Z - 28Y)| +c.c. + Lsr, (10.30)

which is the electric-magnetic dual of theory (10.9).° The Lagrange multiplier

superfield A™!' implies now the constraint
i -\ o
0= (z I+ i{)H@) = 224 i +i0)FZ. (10.31)
Using the expansion (9.37),

Z,6,0) = Z(y,0) + V2 8w(y,0) — 00 %CDZ(y, 0) + %DDZ(y, ),

with Z = X + 2gY, w, = iW, + 2gx. and @z = 2g®, this constraint corresponds to
5 1 —— . .
Z°=0, Zw, =0, EZDDZ + ww = —iZ[Oz - (& +i0)].

In this case, and in contrast to the electric case, the constraint leading to the DBI

theory is due to the scale (®z) = 2g(®): we will actually choose ¢ = 0, absorb ¢,

Tt reduces to eq. (10.7) if g = 0.
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into ®7 and consider the constraint Z* = 0 with a non-zero background value

(®z) breaking the second supersymmetry. Our magnetic theory is then
—_ ~r 1 .
Low = f 420 f PO+ —00(Z ~ 26| + c.c. + L, (10.32)
4A 4k
with constraints
1 —
7> =0, Zw, =0, EZDDZ+QMH:—Z®Z, (10.33)

the DBI scale arising from ®z = ¢z + (Oz). As in the Maxwell case, the third

equation, which also reads
lww
Z = - -,
®, - iDDZ

implies Zw, = Z? = 0 and allows to express Z as a function of ww and @, Z =

(10.34)

Z(ww, D), using Oz = 2gd — ¢&,. The magnetic theory (10.32) is then simply
— 1
Lop = =-Im f d*0|Z(ww, ) - 2gY |+ Ls7. (10.35)
K

It is the electric-magnetic dual of expression (10.11). At this point, it is important
to recall that w and ® are actually N' = 1 superfields components of Z = W +
28Y,ie.

Wa = iWy + 28Ya. (10.36)

The kinetic terms for the single-tensor multiplet (L, @), L = Dy —Dy, are included
in Lg7 while Z(ww, ®) includes the DBI kinetic terms for the Maxwell N = 1
superfield W,. As in the electric case, the magnetic theory has a contribution

proportional to the four-form field included in Y.

The third constraint (10.33) is certainly invariant under the variations (9.38),
using Zw, = 0. But with a non-zero background value ® = ¢ + (®), the spinor
w, transforms nonlinearly, like a goldstino:'°

i I

— V2 e
5wy = _ﬁ@ Na — @¢ o= — M DDZ - V2i(0* )0, Z. (10.37)

10Gee eq. (10.29).
q
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10.4.1 The Bosonic Lagrangian

The bosonic Lagrangian included in the magnetic theory (10.35) is

Lobrves. = Ri;fz—%{—@zﬁdet[my—2VZ|<DZ|-1<FW—ng>]

—8d,* (102" +2¢°C%) + 28°C*| D2

1/2
+8gCd, é"P7(F,, — g by )(For — & bpg)} (10.38)
_ Im®, wpo g _ —~ _ 3 —_
BK|®Z[2 [E (Fuy = 8 buy)(Fpo — 8 bpo) 48Cd2]

8 Voo
+5: € Crvpo + LsTobos.

It depends on a single auxiliary field, the Maxwell real scalar d,, with field equa-
tion

gC

_ T F b NFor— abo
2P + 2200 € L = 8buw)(Fpr = 8 bpo)

d2, bos.

- __2Va _(F. _ (10.39)
gCImch\/ det( + gy o = 8bw)
2|q)Z|2 \/(Re q)Z)2 + 2g2C2 .

Eliminating d, and using ®; = 2g® - ¢, to reintroduce the superfield ® of the
single-tensor multiplet and the ‘original” Fayet-Iliopoulos term &;, we finally

obtain the magnetic, bosonic Lagrangian

2¢Red — &

‘LDBI,bos.
8k

1
~ 5o V2eRe @ - )2 + 28°C?
K

_ 2V (F _
XJ det (nﬂV W(Fyv gbyv)))

gIlm®
4k(28°C* + 28D - &)

(10.40)
Euva'(Fyv - gbuv)(FpO' - gpr')

+iﬂ

Voo
€ Cv0'+~£STbos.-
24K HYp s
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As in the electric case, the DBI term has a field-dependent coefficient,

1 1 —~
——(2gRe @ — £))2 + 2g2C? [~ det (1, — (Fuv — 8bw)),
8k 1 (. V22 g —gp 0" )
(10.41)

and, as expected, the scalar potentials of the magnetic and electric [eq. (10.16)]

theories are identical.

Define the complex dimensionless field

S =k+/(2gRe ® — &)? + 2g2C2 + 2ikg Im D, (10.42)

for which «2|S|* = [2g® — &> + 2g*C?. In terms of S, the magnetic theory (10.40)

rewrites as

~ 2gRe® - ¢ 1 1 =
Lpprpos. = Tl -y Re 5 \/— det(lS M — 2 \/EK(FIJV - gbﬂv))

S R -
#2177 (Fy = 8,)Fpr = 8bur) + 52=€" Conpr + Lsns

2gRe® - ¢ 1 =
- BROZE L Res V- det(i — 2 V2SI (B — b))

1 1 ~ ~
+§ Im § eﬂvp(r(F/lv - gbﬂv)(Fp(r gbpfr) + _euvpa'c Hvpo + LST,bos.-

(10.43)
This is to be compared with the electric theory (10.14):
2¢Re®—¢& 1
L3I, bos. P —— Re S \/ det(1,, — 2 V2« F )
+1 ImS €""7F,,F E ooy F 8 e e L
g m uwt po ™ ZE il po + 24K€ uvpo + ST, bos.+
(10.44)

Hence, the duality from the electric to the magnetic theory corresponds to the

transformations
b, — 0, F, — fw—gbw, S —» 8571 N = 1S Muvs (10.45)

which can be also derived from electric-magnetic duality applied on the bosonic

DBI theory only.
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10.5 Double-Tensor Formulation and Connection with the

String Fields

In IIB superstrings compactified to four dimensions with eight residual super-
charges, the dilaton belongs to a double-tensor supermultiplet. This representa-
tion of N = 2 supersymmetry includes two Majorana spinors, two antisymmet-

ric tensors B, (NS-NS) and C,, (R-R) with gauge symmetries

5gauge pr = 26[}1AV]7 0o, C,uv =2 6[,1/\:,] (1046)

gauge

and two (real) scalar fields, the NS-NS dilaton and the R-R scalar, for a total of
45 + 4 physical states. In principle, both antisymmetric tensors can be dualized
to pseudoscalar fields with axionic shift symmetry, in a version of the effective
tield theory where the dilaton belongs to a hypermultiplet with four scalars
in a quaternion-Kéhler manifold possessing three perturbative shift isometries,
since the R-R scalar has its own shift symmetry. It is easy to see that only two
shift isometries, related to the two antisymmetric tensors, commute, while all
three together form the Heisenberg algebra. Indeed, in the double-tensor basis,
the R-R field strength is modified [98] due to its anomalous Bianchi identity
to 301.C,) — 3CV9;B,,). Thus, a shift of the R-R scalar C” by a constant A
is accompanied by an appropriate transformation of C,, to leave its modified

field-strength invariant:
ouC% =2,  64C, = AB,,. (10.47)

It follows that & 8, auce and oy verify the Heisenberg algebra, with a single

gauges ~eauge

non-vanishing commutator
[6gauge7 §H] = 5&:auge . (1048)
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More details about the Heisenberg algebra in local and global supersymme-
try are given in chapter 11 where we obtain the global supersymmetry limit of
the universal hypermultiplet. Our aim is to use the Heisenberg algebra in order
to establish the connection between the general formalism developed so far and
string theory. This formalism would then describe the coupling of a D-brane

with bulk fields in the limit of global supersymmetry.

To this end, we transform the N' = 2 double-tensor into a single-tensor rep-
resentation by dualizing one of its two N = 1 linear multiplet components L’,
containing the R-R fields C,,, and C © into a chiral basis ® + @. In this basis, the
two R-R isometries correspond to constant complex shifts of the N' = 1 super-
tield ®. Imposing this symmetry to the kinetic function of egs. (9.7)—(9.8), one

obtains (up to total derivatives, after superspace integration):
H(L, D, D) = a/(—lL3 + lL(cp +®)) + B(-L* + l(cp +®)’) (10.49)
o 3 2 2 ' '

where @ and g are constants. Note that the second term proportional to 8 can be
obtained from the first by shifting L + g/a. For a = 0 however, it corresponds
to the free case of quadratic kinetic terms for all fields of the single-tensor mul-
tiplet. The coupling to the Maxwell goldstino multiplet is easily obtained using
egs. (10.12), (10.22) and (9.18). Up to total derivatives, the action is:
L = f d*0d*0 o — 117 + LL(@ + ©)?) + B - L? + 1(®@ + DY)
(10.50)
—g(D + 5)v1(WW)] +g f d*6 [X"Wa -iy- j—ng(WW)] +c.c.

In general, the four-form field is not inert under the variation ¢ of eq. (10.47)
[99]. In our single-tensor formalism, 6yL = 0 and 65® = ¢ where ¢ is complex
when combined with the axionic shift ¢;,,,, of In® dual to C,, of eq. (10.46); in
addition

oY = —ickX(WW). (10.51)
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With this variation, the Lagrangian, including the Chern-Simons interaction, is

invariant under the Heisenberg symmetry.

We can now dualize back @+ ® to a second linear multiplet L’ by first replac-

ing it with a real superfield U:

L= | d0d%0|a(-1L + JLU?) + B(~L? + SU?) - U(mL' + gVy)|
(10.52)
+gfd29[/\(“Wa -4y - 2x|+ce.,
where the constant m corresponds to a rescaling of L’. Solving for U,
L' +gV
_ ML TEn (10.53)
aL+p

delivers the double-tensor Lagrangian

— _ 1 (mL" + gV))? I &l

= | a?oa?6| - Sp3 —pr2 - 2= T8V fze W, — —Y — =
/ d=0d [ 3 B TR ]+g d [/\( o 2KY 4gX]+cc
(10.54)

where as before V| = V{(WW) and X = X(WW) = IDDV,(WW). It is invari-
ant under variation (10.51) of the four-form superfield combined with éyL" =

2c(aL + B)/m.

After elimination of the Maxwell auxiliary field (choosing m = V2)

C | —det(n,, +2 F,
d2,bos. = g_ (nﬂ \/_K £ ) ) (1055)

2K (\fgc' fl) +2g2C?

aC+p

the component expansion of the bosonic Lagrangian is

—_ ;7 \2
L = @C+H)|30.07 +10,(:55) + 5G0ubY|

8K
T ach 12(aC+ﬁ) (3 a[ﬂbvp] \/iw,uvp aC+ﬁ3 8[ﬂbVP])

C’ ¢
;1 o ey ) Rl \/( et )T \/ — det(1,, + 2 V2«F,,)

8 uvpo _8 _uvpo
—3€"7hFpo + 5-€"77 Clypo -

(10.56)
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in terms of the Maxwell Chern-Simons form w,,» = 3 A, Fpo-

This is the explicit expression of the interacting action (10.21) and the ki-
netic part for the double-tensor multiplet. It describes the global supersymme-
try limit of the effective four dimensional action of a D-brane coupled to the
universal dilaton hypermultiplet of the perturbative type II string. The precise
identification of the fields will be done in section 11.3 in the dual single-tensor
basis but we can already see the similarities here: As mentioned previously, its
general form in the local case depends also on two constant parameters, upon
imposing the perturbative Heisenberg isometries, that correspond to the tree
and one-loop contributions [28]. We expect that these two parameters are re-
lated to @ and g of our action. Moreover, by identifying the two antisymmetric
tensors b, and b, with the respective NS-NS B, and R-R C,, and the combi-
nation C’/(aC + p) with the R-R scalar C?, as the Heisenberg transformations
indicate, one finds that the two actions match up to normalization factors de-

pending on the NS-NS dilaton that should correspond to the scalar C.

10.6 Nonlinear N =2 QED

We will now show that the effective theory presented above describing a super-
Higgs phenomenon of partial (global) supersymmetry breaking can be identi-
tied with the Higgs phase of nonlinear N' = 2 QED, up to an appropriate choice
of the single-tensor multiplet kinetic terms. We will then analyze its vacuum

structure in the generally allowed parameter space.

In linear N' = 2 quantum electrodynamics (QED), the Lagrangian couples

a hypermultiplet with two chiral superfields (Q;, Q») to the vector multiplet
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Vi, Vo) or (X, W,). The U(1) gauge transformations of the hypermultiplet are

linear, and Q, and Q, have opposite U(1) charges:

Loep = f d*0d°0 [0, 01" + 0,00¢7""| + f a0 %XQI Q2 +c.c.+ Ly + AL,
(10.57)
where Ly, includes (canonical) gauge kinetic terms and AL contains three pa-

rameters:

AL=m f d*60 0,0, +cc. + f d*0d*0 [£,V, + & V). (10.58)
The hypermultiplet mass term with coefficient m can be eliminated by a shift
of X and &, are the two Fayet-Iliopoulos coefficients. Since & f d*0d*0V, =
— f d*0&,X + c.c., the complete superpotential w is

w= (%X'Fm) 010> - ile-

There are six real auxiliary fields, fy,, fo,, di and d, but only four are actually
independent:!! QJQI = QJQZ. Since the metric is canonical, detK; = 1 and
trivially hyperkahler. If ¢ = &, = 0, the gauge symmetry is not broken and the
hypermultiplet mass m +i(X)/ V2 is arbitrary. Any nonzero &, or &, induces U(1)
symmetry breaking with all fields having the same mass. In any case, N = 2

supersymmetry remains unbroken at the global minimum.

In order to first bring the theory to a form allowing dualization to our single-
tensor formulation, we use the holomorphic field redefinition'?

0 =a Voev, 0, =ia VDe™™,
(10.59)

0,0, = id*®, 01/0, = —ie*?,

11We use the same notation for a chiral superfield ®, Q;, Q», ...and for its lowest complex
scalar component field.
12This field redefinition has constant Jacobian.
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with a® = 1/ V2. The QED Lagrangian becomes

Lotp = 5 f d*6d*6 N oD [eq”+5'+vz - e‘q’"q’"VZ] + Litax
(10.60)
+ f &0 |-10(X — V2im) - 16 X| +ce.+ & f d20d*0 V.
While the gauge transformation of @’ is 6y,®’" = A, ® is gauge invariant. Since
the Kahler potential is now a function of @’ + @, witha Stiickelberg gauging of
the axionic shift of @', the chiral ®’ can be dualized to a linear L usinga N = 1

Legendre transformation. The result is
Logp = f d*6d*6 [ 200 + L2~ Lln ( V200 + L2 + L)] + Litar.

- f d*o [%X@ + X Wy — m® + }@X] +cc +& f d*0d*0 V.

(10.61)
The dual single-tensor QED theory has off-shell N' = 2 invariance (the Laplace
equation (9.7) is verified) and the two multiplets are now coupled by a N' = 2
Chern-Simons interaction (9.19). Notice that the free quadratic kinetic terms of
the charged hypermultiplet lead to a highly non-trivial kinetic function in the
single-tensor representation. Moreover, there are only four auxiliary fields, fo,
di and d,. The Legendre transformation defines the scalar field C in L as

, 1 [~ / JroT
eZRetb — _( 2(I)(D+C2+C), e—2Re<D — ( 2q)q)+cz_c)
V20O
(10.62)

1
V200
and egs. (10.59) relate then C and ® with Q; and Q5:
C =101 - 10, ®=-v2i0,0,. (10.63)
According to eq. (10.11), the nonlinear DBI version of N' = 2 QED is obtained

by replacing in Lagrangian (10.61) X by X(WW), which includes DBI gauge ki-

netic terms, by omitting L, which is removed by the third constraint (10.2)
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and by adding the four-form term £ [d*0Y + c.c.:

Loroos = f d20d°0 [ 20D + 12— Lin ( V200 + 12 + L) 1 & VZ]
(10.64)
~ f &0 (30 + 16) XWW) — Lm® + "W, — LY |+ cc.

Notice that two additional terms appear compared to the action studied in Sec-
tion 10: a Fayet-Iliopoulos term proportional to &, and a term linear in ® which
is also invariant under the second (nonlinear) supersymmetry (9.4); they gen-
erate, together with &, the general parameter space of nonlinear QED coupled
to a charged hypermultiplet. Without loss of generality, we choose m to be real,
while the choice ¢, = —1/k would canonically normalize gauge kinetic terms for
a background where ® vanishes. We may return to chiral superfields (®, ®") or
(01, 0») to write the DBI theory as"

Loep = fdz@dZé [élQleVZ + 0,006V + §2V2]
(10.65)

+fd26' [(%Ql 0, — %gl)X(WW) +mQ0,0, + Z—Y] +c.c.
Since X(WW)ls=o only depends on fermion fields, the auxiliary fields f; and f,

only contribute to the bosonic Lagrangian by a hypermultiplet mass term

(AP +1AP), =m* (10 +10aF)
to be added to the scalar potential obtained from eq. (10.16) with the substitu-
tions
2gRe® — & — 2V2Im(010)) — &1, gC — C+&=6+101F - 10,1

(since we have chosen g = 1). The complete potential is then'*

206+ 101 - 1P 1
[2V2Im(Q,Q>) — &2 (10.66)

1
Voeppsr = a(z‘/zlm(Qle)—fl)[\/l'l'

+m? (|01 +1Qa?).

13See eq. (10.17).
14The auxiliary d, is given in eq. (10.13).
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The analysis is then very simple. The first line vanishes only for

& +10iP - 10:%) = 0, 2V2Im(Q,0,) - &) > 0. (10.67)

The first condition is the usual D-term equation (d,) = 0 for the Maxwell su-
perfield. The second condition is necessary to have a well-defined DBI gauge
kinetic term at the minimum. Hence, if m = 0, conditions (10.67), which can
always be solved, define the vacuum of the theory. Choosing (Q;) = v and
(Qy) = m, with v real (and arbitrary), we find a massive vector boson
which, along with a real scalar and the two Majorana fermions
\/ﬁ [VlﬁQl - mlﬁ&] +id,

makes a massive N' = 1 vector multiplet of mass +/v? + &/2. Hence the poten-
tially massless gaugino 4, with its goldstino-like second supersymmetry vari-
ation 6*A, = —ﬁna + ..., has been absorbed in the massive U(1) gauge boson
multiplet. This is possible only because the second supersymmetry transforma-
tion of the four-form field compensates the gaugino nonlinear variation. The

fermion
\/Vz + 62 le + VQ/IQZ

is massless and corresponds to the fermion of the chiral superfield ® in the
single-tensor formalism, in agreement with our analysis in Section 10.2 [see be-
low eq. (10.16)]. With two real scalars, it belongs to a massless N' = 1 chiral

multiplet.

If m # 0, a supersymmetric vacuum has (Q;) = (Q,) = 0. It only exists if
& = 0and & # 0. The second condition is again to have DBI gauge kinetic
terms on this vacuum. In this case, the U(1) gauge symmetry is not broken, the

goldstino vector multiplet remains massless and the hypermultiplet has mass
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m. If m # 0, a nonzero Fayet-Iliopoulos coefficient &, breaks then N' = 1 linear
supersymmetry. Note that the single-tensor formalism is appropriate for the de-
scription of the Higgs phase of nonlinear QED in a manifest N = 1 superfield
basis (with respect to the linear supersymmetry), while the charged hypermul-

tiplet representation is obviously convenient for describing the Coulomb phase.

One can finally expand the action (10.65) in powers of « in order to find the
lowest dimensional operators that couple the goldstino multiplet of partial su-
persymmetry breaking to the N' = 2 hypermultiplet. Besides the dimension-four
operators corresponding to the gauge factors ¢*"2, one obtains a dimension-six
superpotential interaction ~ xQ;0,W? coming from the solution of the nonlin-
ear constraint X = kW? + O(x*); it amounts to a field-dependent correction to the

U(1) gauge coupling.
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CHAPTER 11

THE UNIVERSAL HYPERMULTIPLET

IN LOCAL AND GLOBAL
SUPERSYMMETRY

11.1 On the Heisenberg Algebra and Global Supersymmetry

In the context of IIB superstrings, the Heisenberg algebra is generated by a com-

bination of the gauge symmetries of the two antisymmetric tensors B, (NS-NS)

and C,, (R-R) and of the shift symmetry of the R-R scalar Cy:

6B, = 20, 6C,y =20y A,; + AB,,, 6Co = A.

As a consequence, the theory depends on the invariant three-forms
Hyyp = 301,B,p), Fup = 301,Cp) — CoHpyp
and on 9,Cy. The Heisenberg algebra follows from

[51, 62] Cﬂy = 20[IJ/12A1V] - 26w/11A2V].

(11.1)

(11.2)

(11.3)

After reduction to four dimensions, the gauge symmetries imply that each ten-

sor can be dualized into a scalar field with axionic shift symmetry. The third

global symmetry (with parameter 1) combines then with the axionic shifts to

realize again the Heisenberg algebra on three scalar fields.

163



Indeed, one obtains three scalar fields ¢, T and = C,, with Heisenberg
variations

on = cy, op = cy, 0T = ¢z — Ccx. (11.4)

The scalars ¢ and r are Poincaré dual to C,, and B,,, respectively. The duality

relations are, schematically,
A A
O~ Enpl?, O T+noe  ~  €upH".

The algebra is [X, Y] ~ Z, with Y and Z generating the axionic shifts (with pa-
rameters cy and cz), while X generates the shift of the R-R scalar (with parameter
cx). Notice that the central charge of the algebra is (depending on the represen-
tation) the gauge symmetry of the R-R tensor and the axionic symmetry of 7,

dual to the NS-NS tensor.

The Heisenberg algebra is extended by a fourth perturbative generator M

that rotates X, ¥ and commutes also with the central charge Z:

c
oun = cup, omp = —cum, OyT = TM(n2 - 902). (11.5)

Equivalently, M rotates the phase of the complex R-R scalar 1 + i¢. As a result,
the perturbative symmetry becomes the two-dimensional Euclidean group E,

with central extension Z.

11.1.1 Lagrangians

Consider a N' = 1 globally supersymmetric theory with two superfields, a
chiral ® and a real linear L. It contains three real scalars, Re¢ = Re ®|s,

Im¢ = Im Py, and C = Lly—y, and L also depends on the curl of an antisym-
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metric tensor H,,, = 3 0y,B,,). The Lagrangian (up to two derivatives) is
L= | d6FOH(L, D, D)+ f d*OW(®D) + f d*OW(D). (11.6)

Besides the gauge invariance of B,, which does not act on the superfields, we

also impose a two-parameter global symmetry acting on ® with variations
oD = a — if. (11.7)

In this formulation, all three symmetries trivially commute. Nevertheless, in
the version where B, is dualized to a scalar, or in the version where Im ¢ (for in-
stance) is transformed into a second antisymmetric tensor, the three-parameter
symmetry realizes a Heisenberg algebra acting either on three scalars according
to eq. (11.4), as in the hypermultiplet formulation of IIB strings compactified to
four dimensions, or on two tensors and one scalar according to egs. (11.1) and

(11.3). The Lagrangian compatible with the required symmetry (11.7) has
H(L, ®, D) = F(L) + [AL + B]JdD,  W(®D) = kd, (11.8)

with an arbitrary function #(L) and real constants A and B.! The constant k
generates a C—dependent potential V = [k|*/(AC + B) which does not admit a

vacuum if A # 0. We take then k = 0.

The superfields ® and L provide an off-shell representation of the N' = 2
single-tensor multiplet. On the N' = 1 Lagrangian, the condition for a second

supersymmetry is [18]

PH PH
+2 — =0, (11.9)
oL*  HpoD
which in turn indicates that
A 3 2
Fn=o(L) = ~3 L’ — BL". (11.10)

LOf course, B can be eliminated by a constant shift of L.
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The same theory is given by

~ 1
Fraa(l) = =35 (AL + B)*. (11.11)

Hence, the N' = 2 theory compatible with complex shift symmetry of @ is the
sum
— 1 _ —
Ly, = f d*0d*o [A (—§L3 + LCDCD) +B(-L* + CDCI))] (11.12)
of a trilinear interacting term and of a free term where the symmetry is trivial.
If canonical dimensions are assigned to L and @, A has dimension (mass)™' and

B is dimensionless.

Fur further use, we need the bosonic component expansion of this superfield

theory. Using (8.14) and the expansion of ®
_ _ 1 —
(x.60.6) = ¢(x) — 6060, — 06 ~ 2666600,

we obtain?

Lyrbos. = (AC+ B)|[ 10,00 + (0,6)("G) + 5 H" Hy |
(11.13)

~15A €7 0y = 0. Hipr.
Since, 0j,H,, = 0, the variation (11.7) of ¢ induces a total derivative. Kinetic
terms are positive if AC + B > 0. If A # 0, B can be eliminated by shifting C.
The (shifted) field C will be assumed strictly positive and the two options are an

interacting, cubic theory with A > 0 and B = 0, or the free theory A =0, B > 0.

We may then perform two supersymmetric duality transformations [90] on
theory (11.8), either turning the linear L into a chiral S or turning the chiral ®

into a second linear multiplet L’. The first transformation leads to

L= f d*0d0 | F(Y) + BOD|, (11.14)

2The auxiliary field f vanishes.
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where F () is the Legendre transform of #(L) and the variable is> Y = § + S +
A®O®. Invariance of Y under shift symmetries (11.7) requires a compensating

variation of S:
O0uS = (adx + Boy + yd2)S = —A(a + iB)D + 2iy, (11.15)

where the axionic shift symmetry of Im S is dual to the gauge symmetry of B,,,,
and the subscripts X, ¥, Z make clear the correspondence with the transforma-

tions (11.4). Indeed, since

(6}, 0118 = —A( + iB)5y® + Al + iB)S,® = 2AB - af),  [0m, )] =0,
(11.16)
the chiral theory has Heisenberg symmetry. Moreover, the theory (11.14) has
another symmetry M rotating the chiral superfield ®, as already mentioned in

the Introduction (see eq. (11.5)).

For the N = 2 single-tensor theory (11.12), the dual hypermultiplet theory*
is

3/2

_ 2 _
Ly = f POFPOKY) = o f d*0d*0 (AY + B?) (11.17)

Eliminating some derivatives, the limiting case A = 0 is a free theory. As re-

quired for a hyper-Kéhler sigma-model, the determinant of the Kédhler metric is

constant (and positive).

A useful change of variable is

A A ~ = A —
§S=5- 5@2, Y=8+85+ S(@+ D)% (11.18)

and transformation (11.15) becomes 6,8 = —2Aa® + 2iy. With these variables,

the transformations with parameters g and y only act as shift symmetries of

3Notice that [ d*0d?0 @D = & [ d?0d°0 Y + derivative.
*With positive Kihler metric.
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Im® and Im S respectively. In terms of variables V, Im S, Re ® and Im @, one im-
mediately deduces that the most general Heisenberg-invariant supersymmetric

theory is of the form (11.14).

Performing the second duality transformation of the chiral ® into a linear L,

always leads to the dual theory

: (11.19)

L= f P08 | (L) - - L”
2AL+B

with # givenin eq. (11.10). Expression (11.19) is actually the most general N' = 1

Lagrangian for L and L’ with symmetry
5L’ = a(AL + B). (11.20)

This transformation, which links the two antisymmetric tensors in L and L’ as
in variation (11.1), forms with their respective gauge symmetries a Heisenberg

algebra realized as in type IIB strings.
Instead of Im ®, we could have chosen to dualize ¢“® for any phase a, since
— — 1 — . e
f d0d°0 (AL + BIO® = = f d*0d°0 (AL + B)(€“D + ¢"“®)* + derivative.

The result would be again theory (11.19). This is a consequence of symmetry M,

which is however fixed by the choice of dualization and does not act on L'.

11.1.2 Hyper-Kiahler Metrics with Heisenberg Symmetry

The Kéahler coordinates defined by N' = 1 chiral superfields S and ® are not
necessarily the most appropriate to describe a hyper-Kdhler manifold. There

is a ‘standard’ set of coordinates used to describe hyper-Kdhler metrics with
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shift isometries in the literature. For comparison purposes, we define in this

subsection these coordinates in terms of our superfield components.

For any hyper-Kéhler manifold with a shift symmetry, one can find coordi-

nates in which the metric has the Gibbons-Hawking form [100]
ds* = f(X)dx; dx; + f(X) ' (dt + w; dx;)*, (11.21)

with condition Vx& = V. Imposing the requirement of a Heisenberg symmetry

acting according to
Oy X = \/za/, 6sz:—\/§ﬁ, ogx3 =0, 5HT:—\/§(IX2+’}/ (11.22)

also defines dt + x; dx, as the invariant derivative of v and indicates that & =
(0, x1,0). The value of f(%¥) follows then from Vxd=V f. This last condition is
invariant under @& — @ + VA(), for any gauge function A(%). In turn, invariance

of the metric requires the compensating transformation 7 — 7 — A(X).

From the N = 2 Kéhler potential (11.17), the K&hler metric can be written®

ds = YAY + B[ 1y’ + (dIms + 4@ dT - Bda))|
(11.23)

+AY + BY)!'? dDdO,
using coordinates (Y,ImS,Re ®,Im ®). The supersymmetric duality transfor-
mation from L to S exchanges a real scalar C = L|s-, invariant under Heisen-
berg variations, and Re S with variation (11.15). The Legendre transformation

defines the change of variable from Y to C:
AC + B = VAY + B, (11.24)

Then, in terms of coordinates (C,Im S, Re ®, Im @), the metric becomes

_ 2
ds [d02 + 2dc1>d<1>] + dr + ARe ®dIm cp) .

2 _ AC2+ B (11.25)

2
(AC + B)(

From here on, we do not distinguish chiral superfields S and ® and their lowest complex
scalar components.
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This is the Gibbons-Hawking metric (11.21) with ¥ = ( V2Re ®, V2Im ®, C) and
1 | I
T= E(ImS —ARe®Im®) = EImS.

The function
AC+ B

fo =55

(11.26)

solves the hyper-Kahler condition Vxd=V f with @ = (0, ’%xl ,0). Choosing for
instance A = —4x;x, turns then @ into (-4x,, 0,0) and d7+4x,dx; into dr—$x,dx;.

Similarly, a rotation of ®
Opm X1 = mxa, Opm Xo = —mxy,

which is compatible with the shift symmetry (11.7), corresponds to A(X) =

A (x3 — x7). It is the isometry M of metric (11.25).

The conclusion is that the Gibbons-Hawking ansatz for the hyper-Kéhler
metric corresponds to coordinates where Re § is replaced by its Legendre dual

C, which is also the lowest scalar component of the linear superfield dual to S.

11.2 The Universal Hypermultiplet in N = 2 Supergravity

Hypermultiplet scalars of N = 2 supergravity live on 4n-dimensional
quaternion-Kdhler manifolds with holonomy included in S p(2n) X S p(2). Super-
gravity requires that the curvature of these Einstein spaces is proportional to the
gravitational coupling «* [14]. Hence, the decoupling limit x — 0 turns the hy-
permultiplet manifold into a Ricci-flat hyper-Kédhler space, as required by global
N = 2 supersymmetry [16]. For a single hypermultiplet, or a four-dimensional

quaternion-Kdhler manifold, the defining condition on the holonomy is not per-
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tinent since S p(2) X S p(2) ~ S O(4). The relevant condition is then self-duality of

the Weyl tensor.

11.2.1 The Calderbank-Pedersen Metric with Heisenberg Sym-

metry

Calderbank and Pedersen [101] have classified all four-dimensional Einstein
metrics with self-dual Weyl curvature and two commuting isometries. Using
coordinates (p, 7, ¢, 7) with the isometries acting as shifts of ¢ and 7, their met-
rics are written in terms of any single function F(p, n) verifying

#F O°F 3F
—t=— 11.27
op? " on*  4p? ( )
It is simple to see [28] that metrics with Heisenberg symmetry are then obtained

if F does not depend on 7, i.e. if®

1
Vo Flp) = 510" = X1, (11.28)

with an arbitrary real parameter y. The Calderbank-Pedersen metric with

Heisenberg symmetry (the CPH metric) reads then

2 2
o+ x 4p
dstpy = m(d;ﬂ +di? + dg?) + oo ndg)?’.  (11.29)

The coordinate p is positive, p > 0, and positivity of the metric requires
o* + x > 0, a stronger condition if y is negative. It is an Einstein metric with
negative curvature, and is Kdhler only if y = 0. Notice that if y # 0, the rescaling

0, 7,0,7) = (X1, X1, x1'"?¢, [xIT) turns y in metric (11.29) into +1. This is

®The metric does not make sense without the p*/? contribution to F and the overall normal-
ization of F is a choice of coordinates. Our y is ¥ in Ref. [28].
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not true if we turn on string interactions, such as in the presence of D-branes
where the dilaton, or equivalently the field p, couples to the Dirac-Born-Infeld
(DBI) action in a non-trivial way (see section 11.3). For this reason, we keep
explicitly y throughout the paper. We may use a new coordinate V = p? with

metric

+ dgaz) + add (dT + ndga)z . (11.30)

ds? ., =
cPH (V=x2(V +x)

The particular case y = 0 has extended symmetry: itis the SU(2,1)/SU((2) x U(1)

metric with Kdhler potential
K©S,S,0,0) = —InV, V=5+38—(d+D) (11.31)
and with ® = %(7] +ip), T = —% ImS.

The CPH metric is invariant under four isometry variations acting on coor-

dinates (1, ¢, 7):

oxn = V2, Syn

= 0’ 6277 = 0’ 5M77 = ‘)07
oxp = 0, oyp = —=V2, Oz = 0, omp = -1,
oxt = —V2¢, &1 = 0, o1 = 1, Sut = 3 —¢).
(11.32)
The non-zero commutators are
[X,Y] =27, M, X] =Y, M, Y] =-X. (11.33)

Hence, X, Y and Z generate the Heisenberg algebra and Z is a central extension
of a two-dimensional euclidean algebra generated by M (which rotates ¢ and n),

X and Y (which translate ¢ and 7). With these conventions,

Su® = (aX +BY +yZ2)d = a - iB, ouS =4a® - 2iy (11.34)
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and V is invariant.

The metric (11.30) appears in the one-loop-corrected Lagrangian of the uni-
versal hypermultiplet of type II strings, reduced to four dimensions, with the
NS-NS and R-R tensors dualized to scalars with shift symmetry [28]. At one-
loop order, the four-dimensional dilaton field is related to coordinate V and pa-

rameter y by

e =V -y, X = X1, = XL (11.35)

=5
where y i is the Euler number of the internal CY3; manifold. The real number y,
encodes the one-loop correction [28]. Notice that this relation also indicates that
V —x = V+x > 0, which is stronger than V = p? > 0 if the Euler number is
negative (y > 0). Since positivity of the CPH metric also requires V + y > 0 if

x <0, the domain of V is naturally restricted to V > |y/.

The R-R scalar is
Co=n, (11.36)

and is shifted by symmetry X. Finally, Poincaré duality gives the following

equivalences

dQO ~ F3 = dC2 - T]de,

dr +ndyp ~ H; = dB;.
In the scalar version, the central charge is the shift Z of 7 (related to the NS-NS
tensor B,) while in the two-tensor version, it is the gauge variation of the (R-R)

tensor C,. Writing 7 and ¢ in a complex @ is conventional: we always use

D= %(n + ip).

In the previous section, we found a unique four-dimensional hyper-Kéhler

manifold with Heisenberg symmetry. It also admits the fourth isometry M ro-
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tating ®. In the quaternion-Kédhler case, the theorem of Calderbank-Pedersen
[101] leads then to a very similar uniqueness conclusion. We will see how these
two results are connected when taking an appropriate zero-curvature limit. But
we first want to obtain the N = 2 supergravity coupling of the universal hyper-

multiplet on the CPH manifold.

11.2.2 Coupling to N = 2 Supergravity

There are different methods to construct hypermultiplet couplings to N = 2 su-
pergravity. The simplest procedure, which is however not the most general, is
to use hypermultiplets coupled to local N' = 2 superconformal symmetry [102]
and to perform a quaternionic quotient [29, 30] using supplementary hypermul-
tiplet(s) and non-propagating vector multiplet(s). In this section, we use this
procedure to obtain the supergravity theory of the one-loop-corrected dilaton

hypermultiplet.

Related constructions, using more general but also more complicated meth-
ods, can be found in ref. [108], in the language of projective superspace or in

ref. [109], using harmonic superspace.

Conformal N = 2 supergravity is the gauge theory of S U(2,2]2), which has a
SU@2)r x U(1)gr R-symmetry with non-propagating gauge fields. Pure Poincaré
N = 2 supergravity is obtained from the superconformal coupling of one prop-
agating vector multiplet’ (which may be charged under U(1)g) and one hyper-
multiplet (charged under S U(2)g) by gauge-fixing of the extraneous symme-

tries. These two multiplets include in particular the compensating fields used

"Its gauge field is the graviphoton.
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in the gauge-fixing to the Poincaré theory.

For the superconformal construction of our particular hypermultiplet sigma-
model, we also need a physical hypermultiplet, with positive kinetic metric, to
describe the dilaton multiplet. In addition, for the quaternionic quotient, we
need a non-propagating vector multiplet with gauge field W,, gauging a spe-
cific generator T to be discussed below, and, since the elimination of the alge-
braic vector multiplet involves three constraints and one gauge choice on scalar
tields, we also need a third non-physical hypermultiplet. Its kinetic metric can
have a positive or negative sign, depending on the constraints induced by the
choice of T. Hence, we need to consider the N = 2 superconformal theory of two
vector multiplets and three hypermultiplets. The superconformal hypermulti-
plet scalar sector has then an ‘automatic’ S p(2, 4) global symmetry in which the

gauge generator T of the quaternionic quotient is chosen.

11.2.3 Sp(2,4)

In the following, we consider three hypermultiplets coupled to (superconfor-
mal) N' = 2 supergravity. One (compensating) hypermultiplet has negative
signature, the physical hypermultiplet has positive signature, the third hyper-
multiplet, associated to the non-propagating vector multiplet, may have a pos-
itive or negative signature, depending on the constraints applied to the scalar
tields. In any case, we are considering S p(2, 4)-invariant supergravity couplings

of N = 2 hypermultiplets.

The hypermultiplet scalars are A¢, with SU(2)g index i = 1,2 and Sp(2,4)

index @ = 1,...,6. They transform in representation (6, 2) of S p(2,4) X SU(2)g.
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Their conjugates are®

AL = (A7) = €lpypA (11.37)

with p%pg, = =67 and €”€;. = —5;. We choose the S p(2, 4)-invariant metric as

0 &L
p=5LQio, = (11.38)
-I; 0
and we use
n 0
d= , n = diag(-1,1,-1), pdp=—d. (11.39)
0 n

In our choice of 5, direction 1 corresponds to the superconformal compensator,
direction 2 to the physical hypermultiplet and our choice of quaternionic quo-
tient will require a negative metric in direction 3; otherwise, our construction

does not work. On scalar fields, S p(2,4) acts according to
SAY = g1%pAP OAL = gt A}, te’ = ~pay "5 p". (11.40)

Since relation (11.37) also implies 7,” = (5)*, the choice (11.38) and the invari-

ance of dgAf,Af lead to

U
t= "0 , U' = —nUn, 0=0", f=—dtd. (11.41)
This is an element of S p(2,4): U generates the U(1,2) subgroup (9 generators)
and Q (12 generators) generates S p(2,4)/U(1,2). The (2 x 2) matrix A" d r A, with

matrix elements A, d;#°,A’, is antihermitian, as required by gauge invariance of

A'dA, and traceless.

8We follow the conventions of the second paper of ref. [102].
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11.2.4 The Heisenberg Subalgebra of SU(1,2) and Sp(2,4)

At string tree-level, the universal hypermultiplet of the dilaton in type II strings
lives, when formulated in terms of four real scalars, on the quaternion-Kéhler
and Kéhler manifold SU(1,2)/SUQ2)xU(1) = U(1,2)/U(2)x U(1). Since U(1,2) =
SU(1,2)x U(1)y is maximal in S p(2,4), S p(2,4) has a unique generator commut-
ing with SU(1,2): the generator of U(1),. At one-loop however, the isometry is
reduced and includes the Heisenberg algebra which is known to be a subalge-
bra of SU(1,2). We need to find the most general generator T of S p(2,4) which
commutes with a Heisenberg subalgebra. In the following subsections, we will

perform the quaternionic quotient construction induced by the gauging of T'.

Since elements U of the U(1,2) algebra verify U' = — U n and we have cho-

sen n = diag(-1,1,-1), a generic U is

ia A B
U=| A ib C | (11.42)
-B C ic

with a, b, c real, A, B, C complex and elements of SU(1,2) are traceless. On a

three-dimensional complex vector, U(1,2) variations are 6A = UA.

We may define the Heisenberg subalgebra as the U(1,2) transformations
leaving A, — A invariant: (6yA); — (6gA) = (UA); — (UA), = 0. The transfor-

mations acting on A; and A, are generated by the following three elements

0 0 1 0 0 i i =i 0
X=10 01/ Y=10 0 il|. Z=|i -i 0 (11.43)
-1 10 i —i 0 0 0 0
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which verify

0=XZ=7ZX=YZ=2Y=27?, XY=-YX=Z X'=Y*=iZ (11.44)
The Heisenberg algebra
[X,Y] =2Z, [X,Z]=[Y.Z]=0 (11.45)

is then realized as a subalgebra of S U(1,2), with variations

iy -y a+if A
ogA = (aX +ﬁY + ’yZ)A = iy —iy a + iﬁ A, (1146)
-a+iB a—-if 0 A

in the fundamental representation. Since Z is a central charge of the Heisenberg
algebra, we are interested in the elements of U(1,2) which commute with Z.

They form an algebra generated by five elements, Uy, M, X, Y and Z, with

1 0 O
Uy =ils, M=ilo 1 0 (11.47)
00 -2

(Uy generates the abelian factor of U(1,2) = SU(1,2)xU(1),). Besides the Heisen-

berg algebra generated by X, Y, Z, we also have
M, X]=3Y, [MY]=-3X (11.48)
and M generates a rotation of (X, Y) leaving X+ Y? = 2iZ invariant: [M, X*+Y?] =

2i[M, Z] = 0.

One then easily checks that the most general U(1,2) generator which com-

mutes with the Heisenberg algebra generated by X, Y, Z is proportional to

1+ —x O
T=U+xZ=i| y 1-y 0| Up = il, (11.49)
o 0 1
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where y is an arbitrary real number. If y =0, T = U, commutes with the whole
U(1,2). If y # 0, T commutes with the Heisenberg algebra supplemented by U,

and M. The extension to S p(2,4) is straightforward. Requiring that

(11.50)

() ~>
(@)

~>

in Sp(2,4) commutes with an element of S p(2,4)/U(1,2) corresponds to find
a (nonzero) symmetric matrix Q in eq. (11.41) such that 77Q is also antisym-
metric, which is impossible.” Hence, T is also the most general generator in
S p(2,4) which commutes with the Heisenberg algebra generated by X, Y and Z

in SU(1,2). It actually commutes with X, Y, Z, M and U,.

11.2.5 N =2 Supergravity Scalar Lagrangian

To construct the scalar kinetic metric, the relevant terms of the N = 2 conformal
supergravity Lagrangian are [102, 29, 30]
'L = dy(DAND'AL) + (gdy ALTP LAY YE +cc)
(11.51)
+1R(-XoXo + dgA;Af) +d(XoXo + %dgA;Af).
The complex scalar Xj is the partner of the graviphoton, Y}, Y; = 0, is the triplet

of real auxiliary scalars in the non-propagating vector multiplet with gauge field

W, used in the quaternionic quotient. The covariant derivatives are

DAY = 8,A7 - g W,TA7 - gV, /A",
(11.52)

DA, = 3,A, - gW,TLA, gV, Al

This would not be true for 7' = Z, which commutes with a larger subalgebra of S p(2,4). The
Uy component is necessary.
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where g and g’ are SU(2)z and U(1); coupling constant. The (anti-hermitian)
SU(2) gauge fields V,,;/, V,;// = 0, and the real auxiliary scalar d belong to the

multiplet of superconformal gauge fields:

V,.u'] = EV;(O'X)iJ, Vﬂ’j = Elkejlvykl = (Vyi'/) .
We will commonly use a matrix notation, with a 6 x 2 complex matrix A and
its 2 x 6 conjugate A" replacing A? and A). Condition (11.37) implies that A
contains six complex components only. It also implies, in particular, that A'dA =

1 Tr(AdA) L. Since V, = -V}, the Lagrangian and the derivatives read

e'L = Tre(D,ANA(D'A)+gTrYATdTA +c.c.
+1R(=XoXo + TrATdA) + d(XoX, + 1 TrATdA);
(11.53)
DA = 0,A-gW,TA-gAV,,

DAY = 8,AT-gWAT +gV,A".
Constraints are obtained from the elimination of the auxiliary fields and from

the gauge-fixing of dilatation symmetry in the Poincaré theory:

e Einstein frame gauge-fixing condition and d auxiliary field equation:

1 2

XoXo = = TrATdA = -5 (11.54)

The second condition is invariant under SU(2)z and S p(4,2). With an
S U(2) gauge choice, it allows to eliminate four scalar fields and would
lead to the S p(4,2)/S p(4) X S p(2) sigma-model.
e Auxiliary fields Y:
ATdTA =0. (11.55)
Since this 2 x2 matrix is traceless and antihermitian, these conditions elim-

inate three scalars and the associated abelian gauge invariance removes a

fourth field.
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The S U(2)g gauge fields V,;/ and the abelian W, have then algebraic field equa-

tions:

e Gauge field W, associated with generator 7"

_ Tr(d,ATdTA - A1dT3,A)

o 2¢' Tr(ATTTd TA) (11.56)
e SU(2)g gauge fields V,,;/:
9,A'dA-A"dd,A

“TT g Tr(ATdA) (11.57)

According to the second eq. (11.54), the denominator is —2g/«>.

At this point, the scalar kinetic Lagrangian in theory (11.51) reduces to
e'L = e (L + Lr + Lsve)

(11.58)

Tr(8,ANd(@"A) — g TH(ATTd TAYWHW, — & Tr(VAV,),
The scalar fields are submitted to constraints (11.54) and (11.55) and the gauge
fields W, and V,,;/ are defined by their field equations (11.56) and (11.57).

To study the constraints (11.54) and (11.55) for our specific choice (11.49)
and (11.50) of gauged generator T, we introduce two three-component complex

vectors:

A, A , A A*
A? = , Al = , (11.59)

o Sy
verifying the reality condition (11.37). On each doublet A,,, A_,, a = 1,2,3,
act two different SU(2) groups. Firstly, the superconformal S U(2) acts on +
indices. Secondly, S p(2,4) D Sp(2)1 XS p(2), X Sp(2); ~SUR) xSUR2), x SU(2)3

and (A,,, —A’,) is a doublet of S U(2),. One could define three quaternions

A A
0. = a=123 (11.60)
_Aia Aj—a
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with a left action of SU(2), and a right action of the superconformal S U(2)g.

They verify (for each a)

0.0 =00, =detQ, I, det Q, = |A,[* +]A_J%. (11.61)

The second condition (11.54) from N = 2 supergravity becomes:

=, d -, e 1 -, d - d
AL AL+ A A= ——, A A=ADA = —|A P + 1A, — A5, (11.62)
K

With eq. (11.50), condition (11.55) leads to three (real) equations:

3

A inTA, = A inTA_,
(11.63)
A inT A =0
(linT1" = inT). With the explicit form of T, eq. (11.49), and defining dimension-
less fields a,; = V2«kA.,, the four constraints (11.62) and (11.63) read finally

I: lasi* + lai? = laswal? — lasl® + lagsl + lasf =2,

II: _|a+1|2 + |a+2|2 - |a+3|2 —xlas — a+2|2
(11.64)

= —la_1l? +lal — lasP - xla-y — a-l,
1T - 0=-ana_+apa,—azas—x(ag —ap)a —as).
They are invariant under Heisenberg variations (11.46) of d, and a_. The case
x = 0has been considered by Galicki [29]. Since it leads to S U(1,2)/S U(2)x U(1),

coordinates more appropriate for this larger isometry have been used.

11.2.6 Solving the Constraints

To solve the constraints (11.64), we insist on keeping in d_ a field ® which trans-

forms under the Heisenberg variations'® 6y d_ = (¢X+BY+yZ) d- with a complex

10See eq. (11.46).
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shift:
op®=a-iP. (11.65)

This is the case if a_; = a_,, and a_; is then invariant. We may define ®=a_,/a_s

and constraint /71 reduces to a.3 = (a,, — a,)®P. Since

+ —
Sy (M) = 2iy +2(a+ iﬁ)L = 2iy + 20 64D,
a+2 - a+] a+2 - a+1

we finally define

§=-—2T" Ly, ouS = —2iy + 2(a + if)® (11.66)

and the quantity
Y=§+8§ -200 (11.67)

is invariant under Heisenberg variations. The algebra follows from [¢6},,0x] =

(@B -ap)X,Y] =2a'B - ap)Z:
[6,,041S = 2(c/ + iB)Su® — 2(a + iB)S,, D = —4i(c/B — aff’) = 2B — o) Z.

These definitions are summarized in the choice

) S-Y-1

, K| — 5 1

a—:Z D |, a+:K S-Y+1 |, (1168)
1 a

with complex fields S, ® and a. The four available gauge choices have been
used to take A = |A|, K = |K| and a_; = a_,. Under Heisenberg variations, A and
K are invariant. Hence, we are left with eight real scalar fields submitted to the

four constraints (11.64) which drastically simplify:

I A2~ lanP +lanl - lawl) = K2,
I : 2(S +8) —|af? —4Y = 4y - K2, (11.69)
I a=20.
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Hence, the solution is

i) S-Y-1
Y+2¢v| — 1
a = o | = —=| S-V+1 | (11.70)
\ Y +x T 20+
1 20

The solution implies Y + y > 0if y > O or ¥ + 2y > 0 if y < 0. The scalar kinetic
Lagrangian (11.58) obtained from this solution is"!

(Y + 3x)

2
L 4Y + 20(Y + )2

2 —
@Jf—YI—@mym
X

— 2
20+ 0 + 30 [Im(a”S -20 ‘9/1@)] (11.71)

_ AY +2 _
ﬁm@§—2®@@r+%?fj?@®ym

The first line comes from the basic scalar kinetic terms L;;, in Lagrangian

2T )

(11.58). The second line is the contribution £ of the gauge field of T, the third
line arises from the supergravity S U(2); gauge fields. Each term is separately

invariant under Heisenberg variations. Collecting terms, the final form of the

theory is
0,Y)* —
er = YOI s 00
Y +x)?|4Y +2
(11.72)
Y +2y A 2
I —4Re®9, Imd) ,
+(Y+3)()(Y+X)2(ay mS e®o,Im )
where
S =5+ (11.73)

for whichy =8 +§ — (@ + @) and Im(dS — 2@ d®) = dIm S —4 Re @ d Im ®. From
the existence of solutions (11.70) and positivity of the Lagrangian, the range of

YisY+y>0if y >0and Y + 3y > 0if y < 0 Writing as usual

1
L= = 8a(0:4Y'q") = Ga(9ud)&'), (11.74)

Al fields and parameter y are dimensionless.
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q* = (Y,Re ®,Im ®,Im S ), and comparing ds* = g, dq°dq” with expression (11.30),

we see that the hypermultiplet kinetic metric g, is the CPH metric with
Y=V-2¢=p>—2y, (11.75)

and with!?
1
V2

Positivity of kinetic terms is obtained if V = p* > |y| which is, as explained at the

O = — (5 + ip), Im$ = -2r. (11.76)

end of subsection 11.2.1, the natural domain of V.

As already observed, the case y = 0 corresponds to the SU(2,1)/SU(2) x U(1)
metric

o) _
+ - dOdD. (11.77)

1[1 .
ds® = 7 [Zde + (dImS —4Rec1>dlm<1>)2

With Kihler coordinates S and @, the Kahler potential is K = —InY, with ¥ =
V=5+38 —(D+D)>

This relatively simple construction of the one-loop-corrected dilaton hyper-
multiplet metric allows easily to derive the full N' = 2 supergravity Lagrangian,

using N = 2 superconformal tensor calculus [102, 29, 30].

11.3 Zero-Curvature Hyper-Kdhler Limit

All quaternion-Kéahler metrics are Einstein spaces with nonzero curvature. With

one hypermultiplet, the scalar kinetic Lagrangian (11.74) verifies [14]

Ry = =684, = —6K> Ggp. (11.78)

2This choice is not unique. We may for instance rotate ® using isometry M.

185



The link with global N' = 2 supersymmetry is realized by defining a x — 0
hyper-Kéahler limit of the CPH metric (11.30) or (11.72) in which, if feasible,
the Heisenberg algebra does not contract to an abelian symmetry. As observed
in Subsection 11.2.1, the magnitude of y can be eliminated by rescaling of the
coordinates (in the absence of D-branes). We then have three |y|-independent
cases to examine: firstly, positive y, with V > 0; secondly, y = 0 (V > 0) which
is SU(1,2)/SU(2) x U(1); thirdly, a negative y, with V > |y|. In each case, we
should seek to find a parameter-free zero-curvature limit. The most interesting

case turns out to be y negative, which we first study.

With y negative, we are interested in the CPH metric in the region V + y ~ 0.

We then apply to metric (11.30) the following change of variables:

Vo= 2B BC -y, o = VKPP,
(11.79)

n = \/mkzmﬂ—m 7, T o= lBPuBs,
where 1 is an arbitrary mass scale. Positivity of the metric, V + x > 0 implies C >
0. While the original fields are dimensionless, the new, hatted, fields (C, b, 7, 7%)
have canonical dimension. With this choice of dependence in «, the resulting

metric is

K> uC

2 [(ku)23C +

dc?

2 _ aj,b _—
dS = 8ab dCI dq - 2K2/3,Ll_1/3c+1

+di* + dp*

) (11.80)
Ku? 2k PC+pu [ 1,
dt + —hdp| ,
2C [(k)*C + pJ? Jz
since y = —|yl. Using this metric in Lagrangian (11.74), the overall factor «*
cancels and we can take the limit x — 0, with result
C 2 AN2 AN2 lJ JaS 1 A A 2
Loo=7 0,0 + @, + 0,8 + 2C |t G| - (11.81)

This scalar Lagrangian has the hyper-Kéhler metric with Heisenberg symmetry

(11.25) with A = 1/u and B = 0 and with relations ® = \/%(ﬁ +i®), T = 21. As
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noticed earlier, parameter B can always be absorbed in a shift of C, as long as

A#0.

Notice that to obtain limit (11.81), we only need the change of variables
(11.79) up to higher orders in «. In particular, according to eq. (11.35), we may

write the four-dimensional string dilaton as

e—2¢4 — 2[,\/|K2/3/1_1/3 C - 2/\/’

b4 (pa) — KPPy, (11.82)

e = 2y = 2y, C = 23,

in terms of the fluctuation ¢4 and of the background value (¢,). Since |y| = x| =
xe/(12m), we are considering the case of a positive Euler number yp = 2(hy,—ha1),
with Ay, by, the corresponding Betti numbers of the CY; manifold. A typical
example with a single hypermultiplet would be IIA strings on a CY3 manifold
with h,; = 0. Positivity-related questions with several hypermultiplets, as is in

particular the case with a negative Euler number, should be reanalyzed.

Comparing the scalings (11.79) and the identification of the string coupling
in the last eq. (11.82), we see that the R-R fields 1 and ¢ carry as expected a

supplementrary factor &string-

We could also consider the single-tensor version of the theory. Dualizing 7
into H,,,, we find

Ccl1

1 _
" 5(6HC)2 + —H""H,,,, + (0,0)(0"®)

'LK—>O,S T = 12

(11.83)

4 VOO [y )
_meu P7 (D9, D — ©I,D)H, (-

This is the bosonic sector (11.13) of the single-tensor theory (11.12) with again

A =1/pand B = 0. Then, for negative y, the N' = 2 supergravity hypermultiplet
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with Heisenberg symmetry is described in the global supersymmetry limit by

the unique nontrivial theory with the same symmetry.

For completeness, we may also consider the case of the CPH metric with

positive y. The interesting limiting regionsare V ~ 0and V—y ~ 0. If V = p* < x,
2 [P 2 2 40 2
dscpy = );(dp +dn® +dy°) + X—3(dT +ndp)”. (11.84)
The appropriate rescalings are (o, 7, ¢, 7) = (\Xk0, \Xkil, \[xk{, x7) to obtain
dsepy = K2 |dp* + dif’ +d@* + 4p*(dt + K 7d§)’ . (11.85)

The Heisenberg symmetry acting on the rescaled fields has algebra [X, Y] = 2«*Z.

In the limit k — 0, it contracts to [X, Y] = 0 and we find
1
lim Edsg,,,, = dp* + 4p*d?? + diy* + d@?, (11.86)

which is the trivial four-dimensional euclidean space. The second region of

interest if y > 0is V — y ~ 0. First, we change coordinates to
V=2aC + y, n = A/ x, ¢ = A9/ VX, T=A7 (11.87)
and the metric for 2 — 0 and y finite reads
dstpy = 2%2 |dC? + di + d* + d#?|. (11.88)

This limiting metric is SO(1,4)/S O(4), again with R;; = —6g;; and with radius
~ (C). In the large radius, zero-curvature limit, the metric is trivial. Finally, in

the SU(1,2)/SU(2) x U(1) case y = 0, the zero-curvature limit is again trivial.

The conclusion is that in the zero-curvature limit, the CPH one-loop La-
grangian for the dilaton hypermultiplet is the hyper-Kéhler N = 2 sigma-model

with Heisenberg symmetry (11.12). If the one-loop parameter y is negative, then
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A # 0 and the Heisenberg algebra has a non-trivial realization in this limit. If
x > 0 however, A = 0 and the limit of N' = 2 global supersymmetry is the free
hypermultiplet. In the string context, the above non-trivial limit can be taken
if the string coupling is tuned at a fixed value, according to the third line of

eq. (11.82), which applies with positive Euler number.

In chapter 10 we constructed the interaction of a hypermultiplet with the
Dirac-Born-Infeld Maxwell Lagrangian. The hypermultiplet sector has a full
linear N' = 2 supersymmetry while the second supersymmetry is nonlinearly
realized on the Maxwell superfield W,. As an application of our results, we can
easily use our identification of the string universal hypermultiplet. The bosonic
DBI action, after elimination of the Maxwell auxiliary field and using the single-

tensor formulation, is'3

242C?
1 - \/ |+ —=5 V- detGy, + 2V2FF,)

1 1
= —((2gRed - —
Lppr 877( ghe ?-) (2gRe @ — %)2

1
+ ger” (gImCDFWFW - =B, F,s

(11.89)
In this expression, ¥ is the breaking scale of the second, nonlinearly realized su-
persymetry (with dimension (energy)~?) and g is the Chern-Simons coupling'*
(equal to the string coupling for a D3-brane). The four-form field C,,,. is a com-
ponent of the single-tensor multiplet required by supersymmetry of the nonlin-

ear theory [see section 9.4].

Since we have control of the kinetic Lagrangian of the universal string hy-

permultiplet in the global supersymmetry limit, we can then identify the single-

13In chapter 10, this is the electric version of the theory, induced by a N' = 2 Chern-Simons
coupling gB A F.

4In contrast to chapter 10, we have defined single-tensor fields with canonical dimension so
that ¢ has dimension (energy). We also chose the Fayet-Iliopoulos term to be 1/# so that gauge
kinetic terms are canonically normalized at Re ® = 0.
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tensor fields in terms of string fields. First, C is the global dilaton and B,, is the
NS-NS tensor. Then, the complex scalar ® includes the R-R fields. The super-
symmetric minimum of the scalar potential included in theory (11.89) implies

(C) = 0 and @ corresponds to flat directions of this vacuum.
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CHAPTER 12

SUMMARY OF RESULTS

This part of the thesis constitutes a detailed study, in the context of global
supersymmetry, of the D-brane effective action of N' = 2 compactifications in
type II string theory, including both the gauge part as well as the couplings of
the brane to bulk fields. From a field theoretic point of view, this is the inter-
action of the Maxwell goldstino multiplet of N' = 2 nonlinear supersymmetry
to a hypermultiplet with at least one isometry. The hypermultiplet is described
by its Poincaré dual single tensor multiplet where N = 2 supersymmetry can be
realized off shell. The nonlinear breaking of the second SUSY is realized with a
supersymmetric constraint while the coupling of the single-tensor to the gold-
stino multiplet is realized with a supersymmetric generalization of the usual
Chern-Simons term B A F. This system has equivalent descriptions in terms of
different chiral and tensor multiplets. We proved the equivalence of these de-
scriptions by performing N' = 1 and N = 2 Poincaré type dualities which led us

to a net of theories summarized in the figure below.

Up to appropriate field redefinitions, this system is also equivalent to the
Higgs phase of N = 2 nonlinear QED coupled to a charged hypermultiplet.
The system also explores a phase with all supersymmetries broken and a phase
with the U(1) gauge symmetry unbroken. In the Higgs phase an interesting phe-

nomenon appears. The goldstino multiplet combines with the hypermultiplet to
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Double-tensor
(L,L) (10.21)

|

Single-tensor gT-ST duality Single-tensor  E-M duality Magnetic dual

Stiickelberg  Chern-Simons ____ |  Single-tensor

gauging (L,®) (10.11) (L,®) (10.35)
(L', @) (10.23) I

Hypermultiplet
(@, @)  (10.17)

Figure 12.1: Web of dualities: double arrows indicate duality trans-
formations preserving off-shell N' = 2 supersymmetry, simple ar-
rows are N = 1 off-shell dualities only, leading to theories with on-
shell N = 2 supersymmetry. The N = 1 superfields and the related
equations are indicated.

form a massive vector multiplet and a massless chiral multiplet. In the massive
multiplet, the goldstino combines with a hypermultiplet fermion and becomes
massive, thus realizing a new type of super-Higgs mechanism that doesn’t in-
volve a gravitino. This is possible because the hypermultiplet is charged under

the U(1) partner of the goldstino.

The next step is to find how the Lagrangian of our system eq. (10.14) re-
lates with the global limit of the low energy effective D-brane action in N' = 2
compactifications. In other words, we have to relate the field basis used in our
construction with the string basis of the universal hypermultiplet. To do that we
need to specify the correct global limit of the universal hypermultiplet. At string

tree level, the universal hypermultiplet is described by the symmetric coset
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SU2,1)/SUQ2) x U(1). At the quantum level this isometry structure reduces to
the centrally extended Euclidean algebra E, which contains a Heisenberg subal-
gebra. Requiring that the same isometry structure survive in the global limit we
found that apart from the trivial global limit of canonical kinetic terms (which
destroys this isometry), there is also a limit leading to a hyperKdhler manifold.
An independent derivation of the most general hyperKdhler manifold that sat-
isfies the Heisenberg isometries had as a result precisely the same manifold that
we obtained from this global limit. We could then identify the string basis of the

system.
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Y

APPENDIX A

COEFFICIENTS FOR THE HIGGS
MASSES

For completeness, we present the expressions of the coefficients in eq. (5.47):

X

+

X

—+

X

-+

+1?

2u%(1 + u?)3 wl/iz

[(BOmO,U())Z (1 + u2)4 _ Zm% Lt2 [m%(l _ u2)2 + (1 + u2) (8/1(2) u2 + (u2 _ 1) Wl/z))]

(Bo mopto) u(l + Y’ [m3 (1 + u?) = (£ w'2(1 + %) + 165 1] (A.1)
+1?
2(1 + u?)? wl/2
| (Bomopo)* (1 + 12)* = 2mZa [8u3(1 + u?) + m(1 — 1) £ w'2(1 = u*)]
(Bomopto) u (1 + u?)?[16u3 — m5(1 + u*) + (1 + u?) wl/z]] (A.2)
+ +v° 2 23, .2 2, A\ 2212
Yi = ETEEE {uol—Bomopo (1+u”)” + mzu(l —6u"+ u™) F u(l+u”)" w']
Bomopo u* (1 + u*) m5 + my u® (m5 ¥ w!/?)} (A.3)
Fv° B 21 + 12V (=1 + 302 B 1+ 12
IR — 7| (Bomoo)*(1+ %) (=1 + 3u%) = (Bomopto) u(1 + 1)
[ = 2mo(1 + 5u®) + 2ug (1 + 8u* + 25u* + 2u®) + (1 + u*)Bu?* — 1) w'’?]
W mi[m5(1 — 19u® — u* + 3u®) — 2u5 (1 + u?)(1 — 16 u* — 23u* + 2u®)
(A +u®)*(1+3u®) w1+ 2 [ + (1 + u®)* (1 - 9u® + 2utyw'/? ] ] (A.4)

+1?

8u? (1 + u?)3 wl/2

[2m5(5 + u*) u* — 2u3 (2 + 25 + 8u* + u®) + (1 + u?) (* — 3) u? w''?]

| (Bomopto)? (1 + u?)* (=3 + u®) = (Bomopao) (1 + u?)?
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+

H+

+

+

umz[mz(3 — u* — 19u* + u®) u* — 2u3 (1 + u*)(2 — 23 u* — 16u* + u®)

w? (1 + )G +uH) w1 - 2,u% ul = (1 +u?)? 2 -9 + uhHyw'/?] ] (A.5)
Vi B 1 +12)(1 + 40> — 1140 + 4005 + 1t®

16u2(1+u2)3w1/2[_ omopo (1 + u”)(1 + 40u” — u +40u’ + u®)

m} (u+ 300 + 1) £ u(l + u?)’(1 - 10u” + u) w'"?| (A.6)

8w - 1)t

A (Lt 2w [m3 u — Bomopto (1 + u”)1[2m u — Bomopto (1 + u*) mo pty (A7)

-1 +u®)*V
:LW [m u — Bomo o (1 + 1) (4m) (A.8)

T4
pd u? (1 + u?)3 w32

[ -2 (Bomo/vto)3 u(l+u®)* + mé (1 + uz)(4,u(2)(—1 +u?)? - u2(2m% + w'/?))

(A.9)

2 Bomgpg m% ul — 2/1(2)(1/[4 -1+ u2(m%(1 — 14u® + u*) = (u* - 61 + DHw''?)]

(Bomopo)® (1 + u”)pg (u* = 1)* + 1223 (1 = 14 + ) 7 (1 + ) w')]|(4p)
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APPENDIX B

THE SOLUTION OF THE QUADRATIC
CONSTRAINT

In sec. 10.4, the quadratic constraint Z? = 0 must be solved to obtain the

magnetic DBI theory coupled to a single-tensor multiplet. Using the expansion
~ ~ ~~ | l —
2(7.6.6) = 2(.6) + V28u(y.6) - 68| S0z + 7 DDZ(y.6) |,

in terms of the N = 1 chiral superfields Z, w, and ®z, the constraint is equivalent

to the single equation
ww

Z e —
i®z + 1DDZ

(B.1)

The electric constraint equation (10.3), which was solved by Bagger and
Galperin [20] using a method which applies to eq. (B.1) as well, corresponds
to the particular case w, = iW,, ®z = —i/k and Z = X. Following then Ref. [20],

the solution of eq. (B.1) is

[ — WWWW
Z(ww,P7) = — |ww + DD , (B.2)
b4 D22 + A+ |Oz* + 24|02 + B2
where
A = -XDDww+DDww) = A%,
B = -{(DDww-DDww) = -B".
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Another useful expression is

Z(ww,Dz) = (DLZ((UCU

. (B.3)
+DD {10z +A - \/|<I>z|4 +2A[02 + B?) )
(DDww)(DDww)
In the text, we need the bosonic content of Z(ww, ®7). We write:
Lo,
w,(y,0) =6,p + 5(90’”0‘ YaPu + ..., (B.4)

where p is a complex scalar (2 bosons), P,, a real antisymmetric tensor (6 bosons)

and dots indicate omitted fermionic terms. Hence,

ww

00 0> + PPy, + 46T Py P | + ...

A

20> +p°) + 2P Py + ...,

B = 20> —p)+ie"" Py Ppy+ ...
Since the bosonic expansion of w, carries one 6,, it follows from solution (B.2)
that the bosonic Z(ww, ®z) has a 69 component only, and that this component
only depends on p, P,, and the lowest scalar component of ®, (which we also
denote by ®z). As a consequence, the bosonic Z(ww, ®z) does not depend on

the auxiliary scalar fo, of ®z. We then find:

Z(q)z, ww)bos. =

l'az laz ( 2 \/
— QO|D-|*+ A = /|D-|* +24|D 2+Bz) . (B.5
DL o 1P [Pzl + 24102 + B7) . (B5)

The parenthesis is real. In terms of component fields:

Z = 22 06|02 ~ i Py Por — 207 ~ 7))

T 4ogP

i 2
+—4f$§|z 06102 + 2(0* +5°)) = 16p%5" + 4(0* — p)ie"* Py P,y (B6)

0L PP, — (PP, ) [

The decomposition (10.27), Z = W + 2gY, indicates that

p= —§C + 1672, Pyv = gbuv - F/lV’ (DZ = qu) (B7)
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In Lagrangian (10.35), we need the imaginary part of the #6 component of

Z(ww, Dz):

ImZ(ww, Dl = -5 + 8§f®?2{16g4|c1>|4 + 82D (gC? — 4d2) — 16g*C2d?
+1682|(D|2(Fyv - gb,uv)(Fﬂy - gbIJV)
+8ng~2 GNVPO—(FuV -8 bﬂv)(prr -8 bpcr)

1/2
—_ — 2
_[ENVPO—(F;W -8 byv)(Fp(r -8 bp(r)] }

+ m b [Gﬂyp(r(fyv -8 b,uv)(fptr - gbptr) - 4gC672:| .

8gl®P2
(B.8)
We now use
—det( @l + 2 Py) = IO det(py + 22 Py)
(B.9)
D2 y vpo
= |OF + B-PP,, — (€7 P Py )
to rewrite
ImZ(ww, q)Z)l% = _nge(D + 42?52{_4g4|®|4 det [77,uv - ﬁ(ﬁuv - gbuv)]
~4g2d3(210P + C?) + 25*C?| 0P
(B.10)

1/2
+2ng2 e'uypo-(F,uv -8 b/lv)(Fp(T -8 bpo)}

+81;I|1¢q|)2 [E#VPO—(F/JV - gb,uv)(i;pa' -8 bp(r) - 4gCJ2] .

As a check, choosing ® = —1/(2g«) and g = 0 to decouple the single-tensor

multiplet leads back to theory (10.4) since in that case d, = 0.
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APPENDIX C

EQUIVALENT DESCRIPTIONS OF THE
DILATON MULTIPLET

We present in detail three dual descriptions of the dilaton multiplet as well
as the duality transformations that take us from one to another. We start by
repeating the analysis of section 9.1 on the single-tensor multiplet, this time with

more details, and then we go on to the hyper- and the two-tensor multiplets.
C.1 The Single Tensor Formulation

The single-tensor multiplet [18, 103, 104] is the N = 2 extension of the antisym-
metric tensor field b,, with gauge symmetry d,uugebyy = 20,A,). It admits two
descriptions, either in terms of the gauge-invariant curl 9,0, or in terms of the

antisymmetric tensor field submitted to its gauge transformation.

In the case of N = 1 supersymmetry, a real linear superfield L, DDL = 0,
L = L, describes the curl of the antisymmetric tensor. It can be expressed in

terms of a chiral spinor potential including the antisymmetric tensor:
L = D%, — D", (C.1)

with Dyy, = 0. The gauge invariance of the two-form field acts on the potential
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Xeo according to
Yo — Xa+iDDD,A, Xy — X4+ iDDDA, (C.2)

which, since D*DDD,, = BQDDBQ, leaves invariant the linear superfield L for
any real A. The potential y, includes the antisymmetric tensor in its  compo-
nent:

1 1
Xa= o= 70uC + SO0 T )y by + .. (C.3)

C being the real scalar partner of b,,. The two descriptions of the N' = 2 single-
tensor multiplet use either L or y,, completed with one or two chiral N' = 1

superfields.

In the gauge-invariant description using L, the N' = 2 multiplet is completed
with a chiral superfield ® (8 + 8 fields in total). The second supersymmetry

transformations are

&L = —<5(uD®+nDO),
(C4)
&® = iV2yDL, 5@ = iV2nDL,
The supersymmetry algebra closes (off-shell) on L and ®.
Alternatively, in terms of y, and @, egs. (C.3) suggest the variations
Ok = —H O, 0%, = =07,
§'® = 2V2i|} DDy + idxo|, (C.5)

5D —22i [:1; DDny — in(r”ﬁ#)?] .
On y, however, the supersymmetry algebra closes up to a gauge transformation
(C.2):

[67,05xe = =2i(n20"7; — m0*N) O
(C.6)

+5 DDD, [im 07X — imOnox = im0y +imbnx|.
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This result suggests that the N' = 1 superfields ® and y,, do not complete a true
off-shell supermultiplet of N' = 2 supersymmetry. Another hint is given by the
degrees of freedom: ® and y, contain 12;+12 fields and gauge invariance (C.2),
which is only compatible with N = 1, removes 45 +4 fields, to give the expected
85 + 8F degrees of freedom in L and ®. We should then expect that the N' = 2
supermultiplet of the potential y, (including the antisymmetric tensor among its
component fields) has 165 + 16 fields, with an extended gauge transformation

using a Maxwell N = 2 multiplet and removing 85 + 8 components.

From the structure of relation (C.6), one may guess that the introduction of
another chiral superfield Y (with 45 + 4F fields) with 6*Y ~ ny would be appro-

priate if we also add to 6%y, a gauge transformation proportional to
i DDD, [indY — infY] = -n,DDY — 4i(c*7), 9,Y.

This modification, being a gauge transformation of y,, does not affect 6*L. One

then easily verifies that the second supersymmetry variations

V2ny,

oY
(C.7)
FXe = =@ — P, DDY - N2i(0*Dud,Y ,
with 6*® as in (C.5), close the N = 2 superalgebra.

It is then natural to generalize gauge transformation (C.2) to N = 2, using a

Maxwell supermultiplet with N = 1 superfields W, and X:

— —

6gaugeXa/ =iW,, 6gaugeY =X, 5gaugeq) = 0. (CS)

Since L = Dy — Dy, the Bianchi identity verified by W implies the gauge in-
variance of L. The second variation, which is the same as transformation (C.2),
contains in particular 6y byy = F,y- This N = 2 gauge transformation removes

85 + 8F component fields, leaving as expected 85 + 8 fields.
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It may be useful to remark that giving a constant background value to the
chiral N' = 1 superfield ® seems to break N' = 2 supersymmetry to N' = 1.
According to the second variation (C.7), x, transforms like a Goldstino if @ ac-
quires a background value. The lowest component of y, does however trans-
form under gauge symmetry (C.2) and a Goldstino is generated only if a gauge-
invariant quantity is created in a theory where the single-tensor multiplet in-
teracts with other fields. In a theory depending only on the gauge-invariant L
and @, a background value of ® does not break the second supersymmetry: it is

invariant under transformations (C.4).!

The chiral superfield Y does not contain any physical state: neither L nor ¢
do depend on Y. There is a gauge similar to the Wess-Zumino gauge of N =1
supersymmetry in which ¥ = 0. This gauge choice respects N = 1 supersymme-

try and gauge symmetry (C.2).

An invariant kinetic action for the single-tensor multiplet involves an arbi-
trary function solution of the three-dimensional Laplace equation (for the vari-

ables L, ® and @) [18]:

— — lig g
Lsr = f d*0d°0 H(L, D, D), 72{ 2 77, (C.9)
OL* Do
It is in particular straightforward to show that
Lo = f d*6d*6 H(V) + h.c., (C.10)

with
i —
V=L+—(®+ D)
V2
transforms with a derivative under the second supersymmetry for any function

H(V). It is also invariant under a constant shift of Im ®, the symmetry which

! A background value of the scalar C in y, [see expansion (C.3)] does not break supersymme-
try. It corresponds to a constant background value of L.
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allows dualization of @ into the second linear superfield of the double-tensor

multiplet.

C.2 Hypermultiplet Formulation

In terms of N = 1 superfields, a hypermultiplet has two chiral superfields ® and
T. The linear L of the single-tensor multiplet has been dualized to a chiral 7 with
axionic shift symmetry. Since the duality involves a Legendre transformation
using the Lagrangian function, the second supersymmetry transformations will
not any longer hold off-shell when acting on ® and 7': the hypermultiplet does

not admit an off-shell formulation.
We start with the single-tensor Lagrangian
Lgr = f 0P H(L, D, D). (C.11)
To dualize the theory, use a real vector superfield U and rewrite
L = f d*0d0 |H(U, ®,®) - m(T + T)U|, (C.12)
with an arbitrary real parameter m. Eliminating U with
o _ _
— HU,®, D) = m(T +T), (C.13)
oUu
one obtains the dual hypermultiplet theory
Lor = f d*0d’0 K(T+T, ®, D), K(T+T,®,®) = ﬂ(u, o, 6)—m(T+T)u, (C.14)

where U = u(T + T, ®, @) is the solution of the Legendre transformation (C.13).
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One can then derive various relations between derivatives of the Kdhler po-

tential K and derivatives of H:

m2 7'{[](1)7‘{ D
Kz = _7‘[UU’ Kog = Hog - TUUCD’
"y 7 (C.15)
K= = m UE, K., = m U(D,
TO 7_{UU T 7_{UU
using the notation
O*H O*H
7'[ = T 7‘{ > —  —>
IR * T 90 9
As a consequence, the determinant of the (2 x 2) Kdhler metric is
H
Ki7Ko5 — KrgKor = —m” 7%@ : (C.16)
uu

In this N = 1 Legendre transformation, the condition for N' = 2 supersymmetry
has not been used. Hence for a single-tensor multiplet, the second eq. (C.9)
implies [105, 106]

L

K7 Koo — KrgKor = Em (C.17)

(Monge-Ampere equation). This result implies Ricci-flatness which, for a two-
dimensional complex manifold, indicates that the hypermultiplet scalar mani-
fold is hyper-Kéhler, as expected in general [16]. Hypermultiplet scalar kinetic
terms are’
Ky [a,,T ¥ %ﬁaﬂ@] [aﬁ ¥ ﬁ—;f;a@] + 20,00
(C.18)
=~ |m 9,1 - Hyo a,,cb‘2 — L Hy(3,0)(9"D).

using the same notation 7 and @ for the chiral superfields and for their lowest

scalar components. The chiral superfields 7" and ® are Kéhler coordinates.

One should remark that adding to H the quantity

AH = L[g(®) + g(D)] (C.19)

2Positivity of kinetic terms requires that Hyy < 0.
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does not change the single-tensor theory:> its superspace integral is a derivative.
Since

AHy = g(®) + g(D), AHyo = go(D),

the Legendre transformation (C.13) and the kinetic terms (C.18) are affected by
a modification of T
g(®)

T -  r-52 (C.20)
m

Hence, for a given single-tensor theory defined by the function H, we have a
family of hypermultiplet theories generated by the arbitrary function g(®). In
other words, the chiral superfield dual to L can be defined as T — %, for any

function g.

The hyper-Kéhler scalar metric is commonly expressed in “mixed” coordi-
nates where u, the solution of the Legendre transformation (C.13), is used in-

stead of Re T. Defining then coordinates
¢ = (r,X)=(mT, V2Re ¢, V2Im¢,u),  a=0,i, i=123,  (C21)
the line-element can be written

ds? gadq dq”

— . — 72
= W 4 + My d®d® — £ [dIm T + o (Hyo d® - Hy5dD)| .

(C.22)
With the condition for N = 2 supersymmetry, Hyg = —1Hyy, this is
dst = MU QR +2d®dD) - 2 [dImi + 5 (Hyo dD - Hy dD)|
- 4 Hyy 2mT U uo
(C.23)
= %(de" dx' + V1 dr - of dxi]z),
with functions V(x) and w'(x/) given by
yo Moo g ImHe - p R s oy
2m \V2m \V2m

31t is a trivial solution of Laplace equation.
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Using again the condition for N' = 2 supersymmetry, which implies that the

metric is hyper-Kahler, one finds that
VV=VAd. (C.25)
This indicates that V solves Laplace equation
8'0'V = (02 +20905)V = 0, (C.26)

in agreement with its definition (C.24). A (four-dimensional) hyper-Kéhler met-
ric with shift symmetry of 7 = Im T is then defined by V and «' related by equa-
tions (C.25) [100]. Given a metric of this form, the single-tensor formulation of
the N = 2 supersymmetric theory is then obtained by integrating eqs. (C.24) to
tind H. Notice that eq. (C.25) remains valid if

o
& — O+VF,

for an arbitrary real function #. The metric is unchanged if coordinate 7 is
changed according to

T — T4+F.

Comparing with egs. (C.19) and (C.20), one sees that ¥ = ﬁ Im g(®).

The Kéahler formulation with complex coordinates 7 and ® is defined by

relations
m

K7 = W’ Kot =

—%(aﬂ +iwh) (C.27)

(w® = 0) and by the Legendre transformation K; = —mu [see eqgs. (C.15) and
y & q

(C.14)].

Notice that if the theory is also invariant under the shift of Im ®, then is H a
real function of L (or U) and ® + ® and w' = 0. Relation (C.25) implies then that

V does not depend on x*: obviously, V does not depend on Im ®.
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As an example, the Taub-NUT metric is considered in Appendix D.2.

C.3 Two-Tensor Formulation
Similarly, we can turn ® + @ into a second linear superfield L’ to obtain the
two-tensor formulation of the kinetic Lagrangian (C.11). Rewriting it as

Lsr = f d*6d*0 [H(L,V) —mL V], (C.28)

with an unconstrained real superfield V to impose V = ® + ® and an arbitrary

parameter m. If we instead eliminate V by its field equation

Hy =mL’, Hy = %H(L, V), (C.29)
the resulting two-tensor theory is
Loy = f d*0d*0 G(L, L), G, L) =H(L,V)-—mL'V, (C.30)

with V replaced by the solution V(L, L") of eq. (C.29). Again the Legendre trans-

formation generates relations between derivatives of G and H:

va Hv m’
— —_— , ) = . 1y = = . C.Sl
G =HiL Hyy Gy =m Hyy G Hyy ( )
As in the hypermultiplet formulation, we have a determinant relation
H
GLLGrr — giy =-—m> L (C.32)

Hyy
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The bosonic kinetic terms of the two-tensor formulation can then be written
Loriin. = —361](3,C)B,C) + &5 Hyp H |
~1G00[0,C)0,C") + 5 H,, H'*|

GO+ ]
(C.33)
= —1HL[B,0)@,0) + L HypHP* |

+ 72— [0.C" = LH.y 0,0)(C" - LH,y 9°C)

2( mvp IWLV H,yp)(H'HP — %WLV H”Vp)],

with H,,, = 30y,B,, and H;,, = 3y,B, , and, as before, V should be replaced by

llVP

the solution V(L, L).

The condition imposed by the second supersymmetry has not been imposed
yet. In the single-tensor formulation, N' = 2 supersymmetry is obtained if H;,; =

—2Hyy. The two-tensor version (C.30) has then N = 2 supersymmetry if

QLL QLL LL = 2m (C34:)

i.e. if the determinant is a positive constant. Bosonic kinetic terms of the N' = 2

theory are then

-£2T,kin. = [(6 C)(a C) + HVpHﬂvp]

r 4 G r 4 G
—igL,L,[(a,,c + 21 5,0)(0C + Z4 04C)

+ Sw G
55 (Hy + G5 H)(H' + G H) |

(C.35)

—1H1.[(8,C)B,0) + 5 Houp HP |
— [ (0,C" = LH,y 8,0)(9*C" - LH,y 94C)

12( wp %WLV Hyuyp)(H™P — %WLV H”Vp)].
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While the first supersymmetry imposes a relation between scalar and tensor
kinetic terms, the second imposes a specific relation between the kinetic terms

of the two linear superfields.

In comparing with the reduction of a IIB supergravity Lagrangian, one
should then choose a gravity frame in which the relation between scalar and ten-
sor kinetic terms is verified. The first supersymmetry and kinetic terms (C.33)

are then sufficient for this choice.
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APPENDIX D

OBTAINING THE TAUB-NUT
METRIC FROM CONFORMAL
SUPERGRAVITY

D.1 SU(2,1)/SU2) x U(1) and its Global Hyper-Kdhler Limit

The superconformal construction of the N = 2 SU(2,1)/SU(2) x U(1) sigma-
model coupled to N' = 2 supergravity starts with one vector multiplet (for the
graviphoton) and three hypermultiplets. However, with these states only, elim-
inating auxiliary fields and imposing Poincaré gauge conditions would lead to
the S p(4,2) / S p(4) x S p(2) theory. We need an additional non-propagating vec-
tor multiplet with gauge field W, to eliminate four more scalars and to reduce
the theory to SU(2, 1)/S U(2)x U(1). The vector field will be used to gauge a U(1)
or SO(1, 1) subgroup of S p(4,2) with generator T. This is very much similar to
what we do in section 11.2 where we obtain the universal hypermultiplet from

conformal N = 2 supergravity.

The basic difference here is that in order to reduce to a Taub-NUT metric, we

need to start with a different signature for n:

n = diag(-1,1,1) (D.1)
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The first steps of writing down the supergravity scalar Lagrangian and impos-
ing the proper constraints is exactly the same as in subsec. 11.2.5 until eq. (11.62)

where the the different choice of signature appears explicitly:

= - =, - 1 - e = e
AL AL+ A A= ——, A A=ATA = —|A P + 14, + |1A52. (D.2)
K

From that point on, in order to obtain the Taub-NUT metric we proceed as fol-
lows. We first define

da = %QaQIl, (D.3)
and ¢g; = %Iz will not be used herebelow. Defining the new coordinates ¢, left
invariant by the superconformal S U(2) is equivalent to identify the supercon-

formal S U(2) with S U(2); and choose a gauge for Q. Explicitly,

9+a  4-a 1 A+aA*+1 + A—aAil —AvA + A AL
©= |7 kdeto, - o * *
9-u Y9+a —Ar AL +ALAY A A+ AT Ay
Similarly,
Graf1 = q-aA GralA1 + g-aAT,
Qa =K
_q*—aA+1 - q*_'_aAil _qiaA—l + qj-aAil

The second condition (D.2) is now written as

1 1
_det Ql + det Q2 + det Q3 = — K2(1 _ K2 detqz — K2 detq:;).

5
KZ

det Ql =

(D.4)

Both Q, and g, have dimension (mass)' and they verify det Q, < 2, detq, < k2.

We will use the S U(2) symmetry to choose

1
Ay = JdetQ, =A%, A =0, w=———0, (a=23). D.5
+1 Ql +1 1 q KMQ ( ) ( )
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Notice that with this choice A, and g, are respectively of order ™' and °. Actu-
ally, in the global supersymmetry limit k — 0, the constraint reduces to A,; = «'.
The S U(2) gauge fields and their contributions to the Lagrangian are of order

K2

With the above choices, the sigma-model Lagrangian for the scalar fields
becomes
Locar = 2A2,[(0,9:2)0uq’) + (3,9-2)0,q" )

+(0u0:3)Ou) + (04q-3)Bu"3)|

+3K8A% [9,(det g5 + det g3) T
(D.6)

2 . .
_f_z 7 i’ Vi jl
+82 W, W dy T7, TF 5 ALA?
= Lo+ L, +Lsve)+ Loans
with A, as in the first eq. (D.5). Notice that the term in the third line is

2
Ly, = Za,l In(kA,1) 0" In(kA ).

It vanishes in the limit « — 0. The S U(2) gauge fields do not depend on deriva-
tives of A, ;:

2 . . Ed L 2
Lvey = ~5SVulV)' = AL Tr|q] 0, 42 + 0 9, a5
(D.7)

>

= —3CAN (G O Gra = 020 O 4-0* + 42 By -G, O 440));
where a is summed over values a = 2,3 only. This contribution also cancels in

the limit x — 0 where Lcuar—0 = Lo + Lsoq,1, With kA, = 1.

With g’ = 0 and without the constraint (11.55), one obtains the sigma-model

HP? = Sp(4,2)/S p(4) x S p(2). Expressed in terms of the quaternion (2 X 2) ma-
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trices ¢, and g3, it reads:
Lup = A7 Trl(0,92) (0" q2) + (0,43)" (0 93)]
+KOAL} Trl(939,q2 + 430,05)(D 3 42 + 43 43))-
In the limit k — 0, kA;; — 1 and the sigma-model metric is trivial.
If we choose the U(1) generator T as in eq. (11.50):

0

*

(e} ~»

~>

3

A inTA, = A inTA_,

3

A inTA, = 0

(linT1" = inT). With the SO(1, 1) generator

020
T=l200
0 0 i
(A real) the three constraints are:

/l(Aj_zA_,.] - A11A+2) + l.A*+3A+3 = /I(A*_QA—l - A*_IA_Q) + iA*_3A_3,

AA AL = AT Ap) +iA A = 0,

(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

These conditions survive in the global supersymmetry limit k — 0, where also

det 0, — «72, if 1A, has a finite limit. Since kA,; — 1, we then assume that!

1¢£ has dimension (mass)'.
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A = k. In terms of the coordinates ¢, the conditions are:
C{1AAP = 1AL PG, — 4i2) = 2A0A LG, + 2A5,A% 1|
= i[ (AL P = 1A P)(1gaal = 1g-5P) + 2A11AL1q.a" 5 + 247, A" 54 |.
C|AGAT (@ — 42) + AAng’, + AT A% g

= i[A+1Af1(|61—3|2 — g3 — AviAnquagt, + Ai#iﬂiﬂ—s]-

Using S U(2) symmetry to choose as earlier A_; = 0, we obtain

it (Qiz —q+2) |6]+3|2 - ICI—3|2 )

(D.13)
tqo = 19,393
independent of «. In the limiting case £ = 0, g3 = 0 and the resulting constraint

(D.4) leads to the four-dimensional S p(2,2)/S p(2) X S p(2). As a SO(1, 1) gauge

choice, we may take Re ¢, = 0, which leads to
qv2 = ng (Ig.3P = lg-3*).
d2 = 1q039-3, (D.14)

detgy = gl +lg-ol* = gz (detgs)™.
With A_; = 0 and A, real, the unconstrained fields are g.3, with g., given by

egs. (D.14) and with relations

1 Ay Al
B3 = ’
k Vdet O —A*, AT, (D.15)
5 -1)2
A, = AdetQ; = %[I—szetQ3—:7(detQ3)2] :

In terms of quaternion matrices, conditions (D.14) correspond to

i 1 0
g5 J g3, J = . (D.16)

D=5
2¢ 0
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With the gauge choices A_; = Reg,, = 0 and A, real, the S O(1, 1) gauge field

reads . .
I G4 04443+ 950443
=5 — (D.17)
28 € + detqs — £(det g3)>
in terms of g.3. Its contribution to the scalar Lagrangian is
1 (%5 O G+3 + 475 0 4-3)°
Lsoa,n = EKZA_ZH e S (D.18)

 +detgs — £ (detqs)?

To calculate the various contributions to the scalar Lagrangian (D.6), we in-

troduce new (real) coordinates (r, 8, ¢, 7):
g+3 = I COS g e I2, g3 = rsin g e 0012, (D.19)

With these variables,

detgs = r?,

(g3 + Idg sl = dr* + 5(d6® + sin® 0d¢?) + L(dt + cos 0 dg),

G = % cos 6, g = 5 sinfe™,

ldq.al? + |dgo* = 5|dr? + 5(d6? + sin> 0dg?) .

kA, =[1 - k% - %r“]‘l/z.
The basic scalar kinetic terms become

Ly = 2CA2 (10,0 +10,q2F +10uq.3P + 10,31

2K2A31[(1 + 2)[@r + Z10,07 +5in® 08,0 (D.20)
+2(9,T + cos 0 6ﬂ¢)2].

The contribution of the S O(1, 1) gauge field is

., (0,7 +cos00,0)

= ——K
Lsoa.n +1 Y
4

. (D.21)
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The constribution of the S U(2) gauge fields is

2

1 2 .
Loy = 5848 1@, + cos 00,07° + (1 N Zr—fz) (3,0 + sin’ e(aﬂqs)z}]. (D.22)

Finally

2 \2
L, = 25A%, (1 + 2r—€2) (0,10 7). (D.23)
Both L5y and L,,, vanish (like k) in the limit k — 0. Then, summing the four
contributions leads to the scalar Lagrangian
L = At (145 - S0) 420, + rH10,0) + sin® 08,00} |
(D.24)

+-H kA (G (0,7 + cos 0 0,¢)*
202 +1 1+%_ﬁ H wys.
r 4

If we define a new variable R = r*/¢, choosing a positive ¢, the theory becomes

L = AL (1+ £ - 58) 0B + RX(3,0)* + sin” 6.(8,0))]

R
(D.25)
K2R2
+3K4AY % 0% (0,7 + cos 09,¢)?,
where?
22 -2
KA = [1 — K*tR — KT] : (D.26)

The parameter ¢ defines the energy scale of the field R while the length « defines
the curvature of the quaternionic manifold. The metric defined by these kinetic
terms is Einstein with

Rab = _6K2 8ab » (D27)

as expected for a single hypermultiplet quaternionic space [14].

The limit k — 0 leads to

Lo = %[(1 + 1)[@uR? + R(0,07 +sin 0 3,0)°)]
(D.28)
+]i—2£(6ﬂ7' + cos 0(9#(;5)2].

2Positivity implies R < 2(V1 + k€2 — k().
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We will see later [eq. (D.35)] that the metric of this scalar Lagrangian is the Taub-

NUT metric with 2M = ¢.

There are four isometries acting on 6, ¢ and 7. Three are the spherical sym-

metries of (9,0)* + sin® 6 (9,¢)?, the fourth isometry is the shift of 7. Explicitly, the
! 1 y p Y

metric is invariant under

00 = singc, +cos¢cs,
0¢p = cy+cotgbh(cospc, —singcs),
OT = c4— ﬁ(cos ¢ cy —sing c3).

(D.29)

where C;, I = 1,2,3,4 are the real parameters of the isometries. The S U(2) alge-

bra is verified by transformations with parameters c;, ¢, and cs.

We introduce cartesian coordinates x;, i = 1,2, 3 instead of the polar coordi-

nates R, 6, ¢:
X1 = Rsinfcos ¢, X, = Rsin@sin ¢, x3 = Rcosé.
Using
x1dx; — xpdx X
%zdaﬁ, =~ cosé, R= \|x}+x;+x3,
x|+ x5 R
We can rewrite our Lagrangian in the following form:

L =F(R) (0,x)(0"x;) + G(R)(D,T + wid,x;)*.

We find
1 { K*R
F(R) = =«*A% |1+=- ,
( ) 2 +l|: R 4 :|
1 (1+ €Ky
G(R A 4A4 4 52,
( ) 2K +1 1 4 % _ Ksz
X2X3 X1X3
w = ——, W, = —————— w3 = 0.

NN
R(xy + x3)
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In the limit k — 0, F(R)G(R) = {*/4.

Notice that

d ¢ KR ¢ K*R?
1 = - 1+

dR| "R 4 R 4

In a set of Kahler coordinates 7' = (T, @), one can in general write

K.~ _ K.z —\ detK; _
ds® = K= |dT + =2Ld® | dT + L2d®| + L dDAD.
K7 K7 K

T T T

For an Einstein space with R; = 9,0;Indet K; = AK;,

Kym _ K5 —\ AefK
ds* = K= (dT 4 29T dCD) (dT + ﬂdcp) + 28 dodo,

KTT KTT KTT
where A is an arbitrary positive constant.? Defining K = —nInY, the line element
is

dDdo.

Ko7 _ K5 —
ds* = K,7 (dT + ﬂdcp) (dT + 24D
K7 K7

) A Y—nA
+
TT TT

TT

If we further assume that the Kédhler potential X is a function of T + T, ® and O,

since T is dual to a linear superfield,
dKr = K;7d(T + T) + Ky7d® + K,5d,

and the line element becomes

_\2
ds = Kpp(dReT + 2d0 + 320
K (dImT + 5o go - 5545 + A gopd®
thyp (@Ml + o —dP = 5k - t K,

"~ ADdD.

2
— 2 Ko7 Kz o) o AY
A (K + Ky (dIm T + 5240 - 224 + AL

3A could be in principle a harmonic function f(T, ®) + (T, ®) but this case is irrelevant for
us.
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D.2 Taub-NUT

The Taub-NUT (Taub-Newman-Unti-Tamburino) metric [107] describes a four-
dimensional euclidean space with self-dual curvature. It is then Ricci-flat and a
solution of the vacuum Einstein equations. Hence, it is also hyper-Kédhler and
appropriate to describe the scalar sector of a globally N' = 2 hypermultiplet

theory.

The Taub-NUT metric is commonly expressed in coordinates where

r+M r-m ,

dshy = 7 dr* + (r* = M%) (o} + 03) + 4M”? oy el (D.32)
The one-forms
o1 = costdf+sintsinfdy,
o, = —sintdf+ costsinfdy, (D.33)
o3 = cosfBdy+dr
verify
doy = =€y, 0y A0, (x,y,z2=1,2,3). (D.34)

The coordinates 7, § and ¢ are angular variables (0 <0 <7, 0 <7 <41, 0< ¢ <
2m), r > M and M is a (real) parameter. A more convenient form is obtained by
shifting the singularity from r = M to R = 0 with the redefinition R = r — M. The

metric becomes [100]

AM? 2M
ds%y = V[dR* + R* dQ] + 7[dr + cos 0dyp]?, V=1+ — (D.35)
where
dQ = 02 + 0% = d6* + sin® 6 dy’. (D.36)

This form is reminiscent of a (euclidean) Schwarzschild metric. Since

1 p+1 o,
YNy ds%N = T[dp2 +p2dQ] + m[d‘r + cos Ody)?, el

R
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the constant 2M sets the scale of the radial coordinate R. Notice that the deter-

minant of the metric is
det g, = 4M*V*R*sin* = 4M*R* sin® (R + 2M)*. (D.38)
It would be constant in Kdhler coordinates.

In cartesian coordinates ¢* = (1, x'), with dx'dx’ = dR?> + R*dQ, the metric is

\% .. 2M o
ds, = zM(m dx'dx' + = [dT - of dx’]z), (D.39)
with
2.3 1,3
We=——"  SP=—" =0 (D.40)
R(x'* + x*%) R(x'" + x*%)
The relation [100]
- V -
— =VA®D D.41
VZM A @, ( )

which is required for four-dimensional hyperkdhler manifold, is verified.

The Taub-NUT metric (D.35) is invariant under S U(2) x U(1) isometries

060 = singc, +cosdcs,
0¢p = ¢y +cotgb(cospc, —singcs), (D.42)
6T = ¢4 — o(cosd ey —singcs),

where ¢/, I = 1,2,3,4 are constant real parameters. The S U(2) algebra is gener-
ated by transformations with parameters c;, ¢; and c¢3;. On cartesian coordinates

x', the action of the S U(2) isometries is

ox!l = —c1 X% + e5x°, 6x% = c1x! + e, 6x° = —c3x' — eox°. (D.43)

On the Kahler coordinate ® = (x' + ix?)/ V2,

1 1 1 _
0D =ic;®+ —(c3 +ic)U, 0U = ———(c3 —icy)® — —(c3 + icy)D, (D.44)

V2 V2 V2
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where U = x°, leaving U? + 2d® invariant.*

The single-tensor N = 2 theory leading to the Taub-NUT scalar manifold in

the hypermultiplet formulation is defined by the function
H(L, D, D) = —%[L2 - @5] +2M [ VL2 +20® - LIn (L + VL2 + 2@6)] , (D.45)

obtained by integrating egs. (C.24). The real superfield L? + 20® is R. Since the
action of isometries does not respect in general the chiral or linear nature of a
superfield, we do not expect H to be invariant, but the line element (the kinetic

terms) should be invariant.

In the hypermultiplet formulation, the line element reads
, 1 — do|?
dsiy = 5V dPdD+ V™ mdT + MU (D.46)

where

Ye14—2M U=1-—0 (D.47)

VU2 + 200 VU2 + 200

and U is defined (as a function of 7+ T and ®®) by the Legendre transformation

(C.13):
U+2M ln(U + AU+ 2@6) = —m(T + 7). (D.48)

This equation cannot be analytically inverted. The determinant of the Kahler
metric is constant, as in eq. (C.17), and the second eq. (D.44) indicates that the

SU(2) isometries acton T + T according to

2M

or+T)= \/§m(1+U+R

) [(03 —ico)® + (c3 + icz)é] . (D.49)

To compare eqs. (D.46) and (D.39), we need to rewrite ds%, in coordinates
(r, x') with x' = (V2Re @, V2Im @, U) and R? = x'x' = U? + 20®. Hence,

2M U
=1 —_ = R =1-—
% +R V(R), Uu R

“The phase rotation of ® has parameter c;.
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and, according to eq. (D.48),

dU + dR oM _
2mdReT = —dU —2M =" _ _yau - =2 4@d).
mane v U+R RU 1+ R) 1O

We first obtain

dsty = V' [mdReT + ¥4 q@®)| + ¥ dddd

2
4y [mdlmT+ MURedd Im® - Im D d Recp)] .

Mu _ _ M
Since o = U We have
dshy = 1V|[@U) +2d0do)|
VI [mdImT + 24 (Re®d Im® — Im®d Re ®)| (D.50)

= 3(varar +anev-dimT + (r'de - 2dxh[ ).

R(U+R)

Finally, we set m = M and use

rom (A = Pdx) = s (XA - Pdx') + 4 d In(®/ D)
= —w;dx' +idIn(®/D),
with w; as in eq. (D.40). Finally,
2 1 i 291 i 3 i?
dshy = 5 (de ax + 4PV [dIm T + 2 d In@/) - v '] ) (D.51)
Comparison with expression (D.39) indicates that the fourth coordinate is

r=ImT + % In(®/D). (D.52)

The action of S U(2) x U(1) isometries on 7 is

R ¢, —ics R ¢ +ics

0T =cCy — - —. (D53)
oz @ 2v2 o
Hence,
oImT = c4—c— 7 ﬁ[(CZ +ic3)D + (¢ — lC3)(D]
oT = i(cs—cy)+ L\f [— + —] (c3 —icr)D — %Fz [% - —] (c3 + lCz)q)

(D.54)
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To summarize, Kihler coordinates 7 and ® of the Taub-NUT metric are re-
lated to standard variables by (7, ) = (1, V2Re ®, V2Im @, U). Eq. (D.52) defines

Im 7 while the Legendre transformation (D.48) gives implicitly Re T'.
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