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This work consists of two parts. In the first part we construct the complete ex-

tension of the Minimal Supersymmetric Standard Model by higher dimensional

effective operators and then study its phenomenology. These operators encap-

sulate the effects on LHC physics of any kind of new degrees of freedom at

the multiTeV scale. The effective analysis includes the case where the multiTeV

physics is the supersymmetry breaking sector itself. In that case the appropri-

ate framework is nonlinear supersymmetry. We choose to realize the nonlinear

symmetry by the method of constrained superfields. Beyond the new effective

couplings, the analysis suggests an interpretation of the ‘little hierarchy prob-

lem’ as an indication of new physics at multiTeV scale.

In the second part we explore the power of constrained superfields in ex-

tended supersymmetry. It is known that in N = 2 supersymmetry the gauge

kinetic function cannot depend on hypermultiplet scalars. However, it is also

known that the low energy effective action of a D-brane in an N = 2 super-

symmetric bulk includes the DBI action, where the gauge kinetic function does

depend on the dilaton. We show how the nonlinearization of the second SUSY

(imposed by the presence of the D-brane) opens this possibility, by constructing

the globalN = 1 linear + 1 nonlinear invariant coupling of a hypermultiplet with

a gauge multiplet. The constructed theory enjoys interesting features, including

a novel super-Higgs mechanism without gravity.
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CHAPTER 1

INTRODUCTION

1.1 The Importance of Supersymmetry

Probably the most significant manifestation of the beauty of Supersymmetry is

that this simple idea of a symmetry that relates fermions and bosons has proven

to be one of the most fruitful proposals in theoretical high energy physics of the

last forty years.

At the level of phenomenology, supersymmetry offers a complete or partial

solution to almost all shortcomings of the Standard Model (SM). For example,

the beautiful properties of SM under renormalization are based on the fact that

it is a model of fermions and gauge bosons. However, its cornerstone, the Higgs

mechanism, is bound to the existence of a scalar mode. The Higgs scalar seems

very unnatural within the framework of the SM. It is the only scalar field and it

doesn’t share the same renormalization properties with the others. More specifi-

cally, the natural value for its mass is at the Planck scale, which would obviously

destroy the validity of the model. This puzzle comes with the name “hierarchy

problem” and it’s believed to be one of the main reasons for leaving SM behind.

The solution by supersymmetry is based on treating scalars on equal footing

with all other fields. Not only it contains a variety of scalars, degrading them
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from the special role they enjoyed in SM, their normalization properties are also

no different than all other fields. Their masses scale logarithmically with the

cutoff scale which then offers a resolution to the hierarchy problem.

Another source of skepticism towards the SM comes from cosmology. There

is a set of cosmological and astrophysical observations that lead to the same

conclusion. The stable matter described by the SM, which is the matter that

surrounds us, is nothing but a tiny fraction of the full matter content of the uni-

verse. ‘Out there’, stable particles exist that we have never observed and that

are not described by the SM. The observations can also inform us about the ba-

sic properties of these particles. It comes out that they have to be massive and

weakly interacting. Once again, supersymmetry has the answer. Supersym-

metric models generically come with one stable particle that enjoys the desired

properties.

We should also mention that supersymmetry seems to complete the pro-

gram for unification of gauge interactions. The SM had the striking success of

unifying the numerous processes between particles observed in colliders (and

seeming extremely complicated in the early years of particle physics) into three

fundamental gauge interactions parametrized by three independent coupling

constants. The unification would be complete by further unifying into a single

gauge group, which would then lead us to a “Grand Unified Theory”. Unfor-

tunately it was calculated that the renormalization group (RG) equations of the

SM don’t meet at a single point for unification to occur. New degrees of free-

dom are needed to shift the RG in a way they meet. It has been shown that

the degrees of freedom brought by supersymmetry do the job and the predicted

unification occurs at around 1016 GeV.
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The above arguments favor supersymmetric models as a candidate for de-

parture from the SM. It seems however that it doesn’t merely offer a model for

a successful replacement of the SM but it’s basic concepts play a fundamental

role in quantum field theory. This can be seen as follows. In a paper of 1967 by

S. Coleman and J. Mandula [6] it was shown that the most general Lie algebra

of symmetries of the S-matrix is the Poincaré algebra plus a number of Lorentz

scalar generators that form the algebra of a compact Lie group. This was a

conclusive no-go theorem about the allowed symmetries of the S-matrix and

in particular about the impossibility of a nontrivial combination of a spacetime

symmetry with an internal one. The Coleman-Mandula theorem was extremely

powerful as it was based on generic assumptions that would apply to any quan-

tum field theory. However, it was later discovered that the assumption that the

algebras need to be Lie algebras was too restrictive as one could add fermionic

generators forming what is called “graded Lie algebras”. In a paper by Haag,

Sohnius and Lopuszanski seven years later, it was shown that the only graded

Lie algebras that generate symmetries allowed by the generic assumptions of

quantum field theory are the supersymmetric algebras [7]. In a few words, the

exploration of the largest symmetry allowed by the S-matrix has inevitably led

us to supersymmetry.

Last but definitely not least, supersymmetry opens a window for the holy

grail of theoretical physics, the unification of gravity with the other three forces.

The combination of the principle that gravity is the manifestation of the curva-

ture of spacetime, coming from general relativity, and the fact that supersym-

metry is a spacetime symmetry, coming from the Haag-Sohnius-Lopuszanski

theorem above, implies that a theory with local supersymmetry is a theory of

gravity. Such a theory is called “supergravity”. Supergravities themselves ap-
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pear as the low energy effective theories of various settings of string theory, the

only framework where gravity and the other forces are unified into a single and

finite theory. In summary, following the path: Global Supersymmetry→ Local

Supersymmetry → String Theory we obtain, for the first time, a complete pic-

ture of how the unification of particles and interactions works. Furthermore, the

principle of supersymmetry is built in string theory. The very first appearance

of a symmetry that exchanges bosons and fermions first appeared in the con-

text of dual models [8, 9], which is what was later reinterpreted as string theory.

Without supersymmetry, string theory would not be a consistent theory. In a

few words, the most basic ingredient of the only known path to a theory where

matter and forces are unified, is supersymmetry.

This thesis touches upon both model building in supersymmetric theories

and more formal aspects, especially related to string theory. It is then naturally

devided in two parts which are weakly related to each other and can be read

independently. It is based on publications [1, 2, 3, 4, 5].

1.2 Effective and Nonlinear Field Theory in the Minimal Su-

persymmetric Standard Model

In the first part we apply the techniques of Effective Field Theory (EFT) on

the Minimal Supersymmetric Standard Model (MSSM) and study their phe-

nomenological consequences. The MSSM is the minimal extension of the SM

and is used as a prototype model for phenomenological studies of supersym-

metry. Our method involves the addition of higher mass dimension terms in the

MSSM Lagrangian. From an EFT point of view, the appearance of such terms is
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not a sign that the model is sick but rather an indication that it is valid only up

to the mass scale that suppresses those terms. Their purpose is to parametrize

the effects of any kind of new physics that might exist at a scale that is not ap-

proachable by LHC and in the same time not too high, so in the range of a few

TeV.

In a few lines, the method of our analysis is as follows. We construct the

effective Lagrangian by adding to that of MSSM nonrenormalizable terms of

higher mass dimension. These are terms that would appear in a low energy ef-

fective model of some UV renormalizable theory by integrating out degrees of

freedom above a certain mass scale M. However, in a bottom-up point of view

we don’t focus on the origin of these terms but rather on a generic analysis of

their effects. To this purpose, we choose at a first level to add to MSSM all possi-

ble mass dimension five operators that are all allowed by the gauge symmetries

and by R-parity. In this way, EFT allows us to draw conclusions that are com-

pletely model independent. For a more detailed discussion of supersymmetric

EFT, see sec. 2.

Generally this constitutes a huge set of extra free parameters, limiting the

predictability of the model. Nevertheless, many of these operators are actually

redundant as they can be eliminated by proper field redefinitions. In our analy-

sis, we perform such redefinitions reducing to a model with less parameters and

thus more distinct phenomenology. We firstly focus on the Higgs sector because

of its special importance in view of the little hierarchy problem and because its

extension by effective terms is quite restricted, facilitating drawing clear con-

clusions. After that we pass on to other couplings and processes that may be

interesting for LHC physics. Below we summarize the content of the chapters
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of part I.

In chapter 3, we focus on the most general set of R-parity conserving, mass

dimension five operators that can exist in the MSSM [1]. We also employ spu-

rion superfields to include any soft supersymmetry breaking effects that these

operators parametrize. It turns out that not all of these operators are actually

independent. We perform spurion dependent field redefinitions to remove the

redundancy thus obtaining the minimal, irreducible set of dimension five op-

erators within MSSM. By incorporating further constraints coming from flavor

changing neutral currents (FCNC), we end up with the final model which we

call “MSSM5”.

In chapter 4, we go on to study the phenomenological consequences of

MSSM5 [1]. One consequence is the generation of new effective interac-

tions of the type quark-quark-squark-squark with potentially large effects in

squark production compared to those generated in the MSSM, especially for the

top/stop quarks. This can be important for LHC supersymmetry searches by

direct squark production. Additional “wrong” Higgs couplings, familiar in the

MSSM at the loop level [10, 11, 12], are also generated with a coefficient that can

be larger than the loop-generated MSSM one. Again, these are largest for the

top and also bottom sector at large tan β. Furthermore, we study the effect of the

new terms in the Higgs potential. It turns out that the mass of the Higgs can

be shifted in a way that it alleviates the little hierarchy problem. This implies

that we can obtain a novel point of view towards this apparent shortcoming of

MSSM. Instead of considering it as a weakness of the theory, we can think of it

as an indication for new massive particles at the energy range of few TeV.

Consideration about the stability of the effective potential as well as an ob-
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served tan β suppression of the correction to the Higgs mass by five dimensional

operators leads to the inevitable inclusion of mass dimension six operators in

the Higgs sector [2]. In chapter 5, we perform this analysis insisting on a generic

approach, including all possible dimension six operators allowed by the sym-

metries of the model. In the large tan β region, these two classes of operators

can have comparable contributions to the Higgs mass which implies a further

alleviation of the little hierarchy.

In chapter 6, we move on to study a different type of EFT, this time real-

ized by nonlinear supersymmetry [3]. In models of low energy SUSY breaking,

the gravitino acquires a sub-eV mass and thus it cannot be excluded from the

spectrum of the low energy model. If this model is MSSM, we have to study

couplings of the gravitino to MSSM. The “equivalence theorem”, which states

that in scenaria with very low gravitinos the latter can be effectively replaced

by their goldstino component which dominates over the dynamics, greatly sim-

plifies such studies [13]. Nonlinear supersymmetry offers then the most con-

venient formalism for studying goldstino self interactions and goldstino-matter

couplings. We use the method of constrained superfields to realize the nonlin-

ear SUSY algebra and study the most general couplings of the goldstino with

MSSM fields.

An important effect of these couplings is the increase in the mass of the

Higgs, which can be significant for a SUSY breaking scale at the range of few

TeV. This offers one more way for alleviating the little hierarchy. The difference

is that in this case we don’t even have to assume some kind of new physics at

the high scale. The SUSY breaking mechanism itself brings the correction. In

addition, we calculated the invisible decay of Higgs to neutralinos and goldsti-
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nos and found that it can be comparable with the standard MSSM decay rate of

Higgs to photons. Finally, we found that, in the case that the mass of Z is larger

than that of the lighest neutralino, there is a bound on the SUSY breaking scale

at around 400 - 700 GeV coming from the invisible Z boson decay.

1.3 Dilaton - DBI couplings in N = 2 supersymmetry

In the second part of the thesis we turn towards aspects of supersymmetry

closely related to supergravity and string theory. Our target now is to under-

stand how the coupling of a D-brane to the bulk arises in field theory.

The stage that we choose to focus on is type II strings on R3,1 × CY3. The

geometry of the Calabi Yau manifold breaks SUSY, giving rise to a 4D N = 2 ef-

fective supergravity theory. Generically, the presence of a D-brane in such back-

ground spontaneously breaks half supersymmetry on its worldvolume giving

rise to an N = 1 + 1 supersymmetric theory where the second supersymmetry

is realized nonlinearly. The effective D-brane action is described by a Dirac-

Born-Infeld (DBI) theory. It is an effective action for the gauge multiplets of

the D-brane as well as for their coupling to the bulk fields. The latter can be

described by hypermultiplets, single-tensor multiplets or double-tensor multi-

plets. All descriptions are Poicaré dual to each other.

Reproducing this action from field theory is the main aim of this second part.

This task is nontrivial for two reasons. First, it is known that N = 2 linear su-

persymmetry, global or local, forbids a dependence of gauge kinetic terms on

hypermultiplet scalars. For instance, in N = 2 supergravity, the scalar mani-

fold is the product of a quaternion-Kähler manifold for hypermultiplet scalars
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[14] and a Kähler manifold of a special type for vector multiplet scalars [15]. In

global N = 2 supersymmetry, the quaternion-Kähler manifold of hypermulti-

plet scalars is replaced by a Ricci-flat hyper-Kähler space [16]. Second, consis-

tency of compactification of type II strings with D-branes requires the presence

of orientifolds necessary for tadpole cancellation. These objects break super-

symmetry explicitly globally, although is still preserved locally around the D-

branes and away from the orientifold plane. It is then not clear if it is possible

to construct from field theory the action that couples the bulk and brane multi-

plets, even those that would be truncated by the orientifold projection.

The DBI action appearing in D-brane dynamics suggests that the restrictions

on the coupling between bulk and brane fields in N = 2 supersymmetry are ex-

pected to change if (at least) one of the supersymmetries is nonlinearly realized.

This is the path that we follow. In chapter 10, we construct an N = 2 action for

the coupling of a single tensor multiplet with a gauge multiplet. This coupling

is essentially the supersymmetrization of the Chern-Simons B ∧ F coupling of

the antisymmetric NSNS 2-form and the gauge field strength. We then impose

nonlinear realization of the second SUSY by applying a supersymmetric con-

straint on the gauge multiplet. This is the generalization for N = 2 superspace

of the constrained superfield method used in the first part of the thesis. The re-

sulting action is invariant under N = 1 linear + 1 nonlinear SUSY and involves

the Maxwell goldstino multiplet coupled to a single tensor multiplet [4]. If we

remove this multiplet, the action reduces to the standard super-Maxwell DBI

theory derived in the past [20, 21, 22].

We have chosen to group the bulk fields in a single tensor multiplet because

it is the only one that admits a simple off shell superspace formulation. Hy-
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permultiplets also can be formulated off-shell in the context of harmonic su-

perspace but only in the expense of introducing infinite number of auxiliary

fields [23]. In any case we can always switch between hyper-, single-tensor and

double-tensor multiplets by performing Poicaré dualities.

By appropriate field redefinitions we obtain another equivalent description

of the system, in terms of the Higgs phase ofN = 1+1 QED [24, 25]. This basis re-

veals some very interesting features of the system. The goldstino multiplet com-

bines with a chiral superfield to form a N = 1 massive vector multiplet while

the other chiral superfield remains massless. This is a novel type of super-Higgs

mechanism that does not require a gravitino (which would normally ‘eat’ the

goldstino as in the standard super-Higgs mechanism). Also, at one point along

the flat direction of the potential, the vector multiplet becomes massless and the

U(1) gauge symmetry is restored. This is a known phenomenon from D-brane

dynamics, where the U(1) world-volume field becomes generically massive due

to the CS coupling.

Having constructed theN = 1+1 DBI action, the next step would be to iden-

tify its field content in terms of string fields. As already mentioned, the analog of

this construction in string theory is that of type IIB strings compactified on a Cal-

abi Yau and interacting with a D-brane. The bulk fields under consideration are

the dilaton scalar (associated to the string coupling), the (Neveu-Schwarz) NS–

NS antisymmetric tensor and the (Ramond) R–R scalar and two-form. Its nat-

ural basis is a double-tensor supermultiplet,1 having three perturbative isome-

tries associated to the two axionic shifts of the antisymmetric tensors and an

extra shift of the R–R scalar. These isometries form a Heisenberg algebra, which
1This representation of N = 2 global supersymmetry has been only recently explicitly con-

structed [26]. See also ref. [27].
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at the string tree-level is enhanced to the quaternion-Kähler and Kähler space

S U(2, 1)/S U(2) × U(1). We can also use an equivalent formulation where the

NS–NS and R–R 2-forms are replaced by their Poincaré dual scalars. In this for-

mulation, the aforementioned isometries are realized on the scalar manifold of

the four scalars which form a hypermutiplet called the “universal hypermulti-

plet”.

Therefore, we need to determine the proper ‘global supersymmetry’ limit of

the universal hypermultiplet and match it with the hyperKähler scalar manifold

of the global action. At the level of global N = 2, imposing the Heisenberg

algebra of isometries determines a unique hyperkähler manifold of dimension

four, depending on a single parameter. This is in close analogy with the local

case of a quaternionic space where the corresponding parameter is associated

to the one-loop correction [28]. These similar results suggest a correspondence

between the local and global cases which could be studied using a Ricci-flat

limit of the quaternion-Kähler manifold preserving the Heisenberg algebra.

Obtaining the global SUSY limit of the universal hypermultiplet is not a triv-

ial task. InN = 2, the scalar curvature comes out to be proportional to the gravi-

tational coupling k so in the global SUSY limit we unavoidably obtain a Ricci-flat

manifold. However, if we naively send k to zero we reduce to the trivial case of

a flat scalar manifold with canonical kinetic terms. To obtain a non-trivial space,

an appropriate limit must be defined, involving a new mass scale that should

remain finite as Planck mass goes to infinity. This mechanism has only been

explicitly displayed for some particular cases, mostly using the quaternionic

quotient method [29, 30]. In chapter 11, we use this procedure to obtain the

one-loop effective supergravity of the dilaton hypermultiplet and to then de-

11



scribe the appropriate zero-curvature limit, using the perturbative Heisenberg

symmetry as a guideline [5].
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Part I

BEYOND THE MINIMAL

SUPERSYMMETRIC STANDARD

MODEL
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CHAPTER 2

EFFECTIVE FIELD THEORY

2.1 Physics is Effective

The ultimate goal of physics is believed to be the formulation of the theory that

will disclose all mysteries of nature. There is a lot of discussion about the kind of

truths that will be unveiled to us, however physicists generally agree that this

final “Theory of Everything” will provide an exact description of all physical

phenomena that occur at any place and any time of the universe. Of course, we

don’t have this theory yet. We rather have various theories each one being a

good description for some class of physical phenomena while failing for others.

“Good” here is used in the sense of being precise enough for our needs. If we

want to think in terms of the “parameter space” of nature, where the parameters

can be distance, energy, velocity et c., then we can say that our theories are valid

in a certain parameter subspace but not outside. For example, in the study of a

system that interacts gravitationally, Newtonian gravity is a good description if

interactions are non-relativistic but needs replacement by General Relativity if

they are relativistic.

Theories that are valid only in a certain region of the full parameter space

are called “effective”. This definition might sound redundant since all physi-
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cal theories would be effective. Nevertheless, this simple idea has an surpris-

ingly rich structure in quantum field theory (QFT). The most relevant parameter

here is distance. After almost a century of experiments in particle physics we

have learned that, as we probe smaller distances, nature appears to reveal richer

structure. In the context of QFT, this is expressed by the appearance of new

degrees of freedom, describing new particles. These are invisible at longer dis-

tances either because they are unstable, decaying to known long lived particles,

or because they are components of particles that at longer distances seem funda-

mental. This suggests that a QFT model with a given set of degrees of freedom

is valid only at distance scales larger than the threshold for production of new

particles, not included in the set. If we agree that the principles of QFT are valid

beyond the threshold distance, we will need to exchange the old model with a

new one, where the new particles (and the new interactions that they reveal)

are included. This process essentially builds a ladder of effective field theory

(EFT) models separated by the threshold distances where new particles appear.

Various interesting questions arise: How to smoothly switch from one EFT to

another, what is their behavior very close to the threshold et c. Another thing

that makes EFT nontrivial is the need for regularization. Since regularization

involves the behavior of a QFT model at high energies (short distances), it has

to be treated with special care 1.

Let’s attempt a discussion motivated by the questions mentioned above. We

focus on two neighbor theories, call them the ‘UV’ and the ‘IR’ theory, seper-

ated by threshold energy M (we prefer to talk in terms of energy than distance).

The UV theory contains all the modes of the IR plus those modes with mass of

order M that do not appear in the IR. We expect that as we approach M from
1For a review, see [31].
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below, the new physics that the heavy particles bring will become more and

more apparent. The way to incorporate these effects in the IR is by integrating

out the massive modes. This inevitably introduces a series of higher dimen-

sional, nonrenormalizable operators in the Lagrangian of the IR, suppressed by

the threshold scale. From the EFT point of view, the fact that they are non-

renormalizable is not an indication that the model is sick but simply that it is

valid up to the threshold scale, as expected [32]. This point, even if it sounds

obvious nowadays, was entirely disregarded in the early days of QFT when

nonrenormalizable models were considered pathological. In the expansion of

the operator series, we choose to cut off at some order in 1/M depending on the

accuracy we want to achieve. The coefficients of the new terms are determined

by matching the S-matrix elements of the UV and the IR models. One might ask

why should we bother reducing to an effective IR theory when the full UV the-

ory is known. The reason is that in many cases, calculations in the low energy

regime are much simpler in the IR theory where the very massive modes do not

appear explicitly.

There are many examples of EFT models. For some of them the UV com-

pletion is known while for others it isn’t. To mention a few, Fermi theory is an

effective theory of weak interactions while chiral perturbation theory and nu-

cleon effective theory are low energy effective descriptions of QCD. On the other

hand, the Standard Model (SM) itself is an effective theory (it is renormalizable

only when gravity is ignored) but its UV completion is still unknown. The same

is true for General Relativity.

In order to elucidate the derivation of an effective theory from a known UV

completion, we focus on the popular case of the Fermi theory as an effective
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theory for electroweak interactions. In the SM, consider the tree level exchange

of a massive Z gauge boson between charged fermions

L ⊃ iψγµ (∂µ + igZµ)ψ −
M2

2
Zµ Zµ (2.1)

By integrating out Zµ we generate the higher dimensional operator

∆L = g2

2 M2 (ψγµψ)2 (2.2)

which is a nonrenormalizable four-fermion contact term. Similarly, for scalars

H:

L ⊃ |(∂µ + ig Zµ) H|2 − M2

2
Zµ Zµ (2.3)

and

∆L = g2

M2 (H†∂µ H)2 (2.4)

It is also possible that the effective operator is a higher derivative one. Here,

we retrieve such operators by the kinetic mixing of light with heavy states, upon

integrating out the latter. For example, from

L = 1
2

(∂µφ)2 +
1
2

(∂µχ)2 + c ∂µφ ∂µχ −
1
2

M2χ2 − 1
2
λ′φ2χ2 (2.5)

one finds after integrating out the massive field χ:

L =
1
2

(∂µφ)2 +
c2

2
!φ

1
M2 + ! + λ′φ2 !φ

=
1
2

(∂µφ)2 +
c2

2 M2 (!φ)2 + · · · (2.6)

which contains higher derivative terms. In both examples above, the UV com-

pletion of the effective theory is known. EFT is then a practical reformulation of

the relevant degrees of freedom in the low energy regime. However, does EFT

have anything to offer when the UV side is unknown?
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This answer is definitely positive. EFT has proved to be a very useful tool for

exploring new physics in a bottom-up approach [33, 34, 35, 36]. Since the effects

of inaccessible massive states can be incorporated into nonrenormalizable oper-

ators, we can simply add such terms in the IR Lagrangian without referring to

a particular UV scheme. In a systematic analysis, we include all possible terms

up to a given order in 1/M that are allowed by the symmetries of the theory,

keeping the coefficients arbitrary. This constitutes a model independent way of

exploring new physics beyond the validity of the pure IR model. Any possible

UV candidate will essentially reduce to a subset of the nonrenormalizable terms

with fixed values for the coefficients.

Even at first order in 1/M, there is usually a long list of terms allowed by the

symmetries of the theory, introducing many new arbitrary parameters. Never-

theless, such set is in general highly reducible. This means that we can write

the Lagrangian in a way that a smaller number of new operators appears but

physics be the same. There are three different methods to perform such reduc-

tion. By setting the higher dimensional operators “on shell” [37, 38, 39], by

performing field redefinitions [40, 41] and, if the operator is higher derivative,

by applying the “unfolding” technique [42, 43]. Since we will be using the first

two in the phenomenological analysis of the following chapters, we will briefly

present them below in the relevant case of supersymmetric field theories. After

restricting to an irreducible set of higher dimensional operators, one can fur-

ther cut down the parameter space by comparing the model with low energy

phenomenology. In the end, the hope is that the effective model will provide

concrete testable predictions for the effects that very massive modes can have

on low energy observables.
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2.2 Effective Description of Supersymmetric Theories

EFT has a lot to offer in the yet unexplored territory of TeV physics. By pop-

ular belief, the most promising candidate theory for physics around that scale

is supersymmetry. It is then reasonable to construct phenomenological super-

symmetric models by means of EFT techniques and this is what we do in the

following chapters. In order to familiarize with the concept and tools of EFT in

the framework of supersymmetric theories, we present here some representa-

tive study cases.

2.2.1 Integrating out Massive Superfields

Consider the following Lagrangian of dimensionful scales M and m with M >>

m:

L =
∫

d4θ
[
Φ†Φ + χ†χ

]
+
{ ∫

d2θ
[M

2
χ2 + mΦ χ +

λ

3
Φ3
]
+ h.c.

}
(2.7)

We want to acquire an effective description by integrating out the heavier mode.

We will follow two different paths; either diagonalize the mass matrix and then

integrate or directly integrate. Then we will show that the resulting effective

theories are all equivalent by using the “field redefinitions” method and the

“on shell” method mentioned earlier.

In the first path, we perform the transformation Φ = (cos θΦ1 − sin θΦ2) and

χ = (sin θΦ1 + cos θΦ2). In the diagonal basis of Φ1 and Φ2, one finds

L =

∫
d4θ
[
Φ†1Φ1 + Φ

†
2Φ2

]

+
{ ∫

d2θ
[m1

2
Φ2

1 +
m2

2
Φ2

2 +
λ

3
(cos θΦ1 − sin θΦ2)3

]
+h.c.
}

(2.8)
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where

m1 =
M
2

(
1 − (1 + 4m2/M2)1/2

)
= −m2

M

(
1 − m2

M2

)
+ · · · ,

m2 =
M
2

(
1 + (1 + 4m2/M2)1/2

)
= M

(
1 +

m2

M2 + · · ·
)
, (2.9)

so Φ2 is the massive field. Then, we integrate out Φ2 via its equation of motion

−1
4

D
2
Φ†2 + m2Φ2 − λ sin θ (Φ1 cos θ − Φ2 sin θ)2 = 0 , (2.10)

with solution

Φ2 =
λ

m2
cos2 θ sin θ Φ2

1 −
λ2

4m2
2

sin3 2θΦ3
1 +

λ

4 m2
2

cos2 θ sin θD
2
Φ† 2

1 + O(M−3).(2.11)

The effective Lagrangian that we obtain is:

Le f f =

∫
d4θΦ†1Φ1

+
{ ∫

d2θ
[−m2

2M
ZΦ2

1 +
λ

3
Z3/2Φ3

1 −
m2λ2

2M3 Φ
4
1

]
+ h.c.

}
+ O(M−4) (2.12)

where

Z = 1 − m2

M2 + O(1/M4) . (2.13)

This is an effective description of (2.7) where only the light mode propagates.

Alternatively, one can choose to directly integrate out χ from eq. (2.7) with-

out firstly diagonalizing. Its e.o.m. is

D
2
χ† − 4 (M χ + mΦ) = 0 (2.14)

with an iterative solution

χ =
1
M

[
− mΦ − m

4M
D

2
Φ† +

1
16
−m
M2 D

2
D2Φ − m

64 M3 D
2

D2 D
2
Φ† + · · ·

]
. (2.15)

Plugging this back in (2.7), we find
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Le f f =

∫
d4θ
{[

1 +
m2

M2

]
Φ†Φ +

m2

8 M3

[
ΦD2Φ + h.c.

]
+

m2

16 M4 (D
2
Φ†) (D2Φ)

}

+
{ ∫

d2θ
[−m2

2M
Φ2 +

λ

3
Φ3
]
+ h.c.

}
+ O(1/M5) (2.16)

which, after an appropriate rescaling, is written as

Le f f =

∫
d4θ
{
Φ†Φ +

m2

8 M3

[
ΦD2Φ + h.c.

]
+

m2

16 M4 (D
2
Φ†) (D2Φ)

}

+
{ ∫

d2θ
[−m2

2M
ZΦ2 +

λ

3
Z3/2Φ3

]
+ h.c.

}
+ O(1/M5) , (2.17)

where Z = 1/(1+m2/M2). In this path, we obtained an effective Lagrangian with

higher derivative terms. Equations (2.12) and (2.17) look different, however, the

physics they describe is the same. We will demonstrate this in two ways.

In the first way, we set “on shell” the higher dimensional operator. By use of

the e.o.m.

D
2
Φ† = −4m2

M
Φ + 4 λΦ2 + O(1/M2) (2.18)

we can rewrite (2.17). The new Lagrangian will contain the term ΦΦ†2 which

can be removed by a suitable shift

Φ = Φ̃ − λm2

2 M3 Φ̃
2 (2.19)

to find

Le f f =

∫
d4θ Φ̃†Φ̃ (2.20)

+
{ ∫

d2θ
[
− m2

2M
Z Φ̃2 +

λ

3
Φ̃3
(

1 − 3
2

m2

M2

)
− λ

2 m2

2 M3 Φ̃
4
]
+h.c.
}
+ O
( 1

M4

)

where Z = 1/(1 + m2/M2). It is obvious now that this Lagrangian coincides with

that of (2.12) in the approximationO(1/M4). This confirms that setting the higher
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derivative operators “on shell” via equations of motion is a correct procedure,

within the approximation considered. We obtained again a higher dimensional

operator and a scale dependence acquired classically by the couplings of the

low energy effective theory.

In the second way, we perform field redefinitions in eq. (2.17) so as to elimi-

nate the ΦD2Φ term. We use

Φ =Φ ′ + c D
2
Φ
′† (2.21)

where the dimensionful coefficient c is such that the coefficient of ΦD2Φ vanish

in the new Lagrangian. This gives c = −m2/(8M3) and, after some calculations,

the Lagrangian in (2.17) becomes

Le f f =

∫
d4θ
[
Φ
′†Φ′ +

m2 λ

2 M3 (Φ
′2Φ

′† + h.c.)
]

+
{∫

d2θ
[
− m2

2 M
ZΦ

′2 +
λ

3
Z3/2Φ

′3
]
+ h.c.

}
+ O(1/M4) (2.22)

By a final shift Φ′ = Φ̃−m2 λ/(2 M3) Φ̃2 we obtain an effective Lagrangian identi-

cal to that in (2.12) and (2.20).

We have shown that the three apparently different paths to the reduced La-

grangian, leading to either eq. (2.12), (2.17) or (2.22), are actually different for-

mulations of same physics at the expansion order studied. The correction at

1/M is solely a wavefunction renormalization while higher dimensional opera-

tors appeared only at higher order.
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2.2.2 Gauge Interactions and Component Analysis

We proceed to study further examples of effective theories, now with gauge in-

teractions present. We will also verify the superfield analysis at the component

level. The effective operators that will be generated are the same with those

used in the phenomenological model of the subsequent chapters. Therefore,

the analysis here provides us intuition about the kind of UV physics that these

effective operators encapsulate.

Consider the Lagrangian of an N = 1 supersymmetric non-Abelian gauge

theory2

L =

∫
d4θ
[
Φ†1 eV Φ1 + Φ

†
3 eV Φ3 + Φ2 e−V Φ†2 + Φ4 e−V Φ†4 + S †S

]

+

∫
d4θ
[
ν1Φ

†
1 eV Φ3 + ν2Φ4 e−V Φ†2 + h.c.

]

+

∫
d2θ
[
µΦ1Φ2 + MΦ3Φ4 +

M
2

S 2 + λ S Φ1Φ2

]
+ h.c. (2.23)

where M ) µ and V is the standard vector superfield in the Wess-Zumino

gauge. The equations of motion for the massive fields Φ3,4 and S give

−ν1

4
D

2 (
Φ†1 eV

)
− 1

4
D

2(
Φ†3 eV

)
+ MΦ4 = 0

−ν2

4
D

2 (
e−V Φ†2

)
− 1

4
D

2(
e−V Φ†4

)
+ MΦ3 = 0

−1
4

D
2
S † + M S + λΦ1Φ2 = 0 (2.24)

As in the previous section, we use these equations to integrate out the massive
2For the link to the MSSM, replace V → V1 ≡ g2Vi

wσ
i − g1VY with Vw, (VY ) the S U(2),

(U(1)Y ) gauge fields respectively; also Φ2 → HT
2 (iσ2), Φ1 → H1 with Φ3 (Φ4) with same quan-

tum numbers to Φ1 (Φ2) and (iσ2) exp(−Λ) = exp(ΛT ) (iσ2), then Φ2 e−V Φ†2 → H†2 eV2 H2, with
V2 ≡ g2Vi

wσ
i + g1VY .
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fields Φ3,4 to find

Le f f =

∫
d4θ
[
Φ†1 eV Φ1 + Φ2 e−V Φ†2 +

(
ξΦ†1 eV D

2
e−V Φ†2 + h.c.

) ]

+

∫
d2θ
[
µΦ1Φ2 + ξ

′(Φ1Φ2)2
]
+ h.c. + O(M−2) (2.25)

where ξ = ν1 ν2
4M , ξ′ = − λ2

2M and we ignored higher orders in M−1. If the superpo-

tential in (2.23) also contains trilinear couplings of heavy doubletsΦ3,4 to quarks

and leptons

∆L =
∫

d2θ
[
QσuUcΦ4 + QσdDcΦ3 + LσeEcΦ3

]
+ h.c. , (2.26)

then, following the same procedure, we would get the extra effective terms

∆Le f f = − 1
M

∫
d4θ
[
ν1Φ

†
1 eV QσuUc + ν2 (QσdDc) e−V Φ†2 + ν2 (LσeEc) e−V Φ†2 + h.c.

]

+
1
M

∫
d2θ
[
(QσuUc)(QσdDc) + (QσuUc)(LσeEc)

]
+ h.c. , (2.27)

where σu,d,e are 3x3 matrices in the families space.

Focusing on (2.25), let us set on shell the higher derivative operator by using

the equations of motion for Φ1,2:

D2 [ eV Φ1 ] = 4 µΦ†2 , D
2

[ e−V Φ†2 ] = 4 µΦ1 . (2.28)

We insert these in (2.25) and rescale Φi → Φ′i (1 − 2 µ ξ), i = 1, 2, to find:

Le f f =

∫
d4θ
[
Φ†1 eV Φ1 + Φ2 e−V Φ†2

]

+

∫
d2θ
[
µ (1 − 4µ ξ) Φ1Φ2 + ξ

′ (Φ1Φ2)2
]
+ h.c. + O(M−2) (2.29)

It is obvious that the specific operator, when put on shell, brings solely a wave-

function renormalization. We now go on to verify at the component level that
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both Lagrangians are equivalent. First, we expand (2.25)3:

Le f f = − φ∗1DµDµφ1 + iψ1 σ
µDµ ψ1 −

1√
2

[
ψ1 λ φ1 + h.c.

]
+ φ∗1

D
2
φ1 + |F1|2

− φ2DµDµφ∗2 + iψ2 σ
µDµ ψ2 +

1√
2

[
φ2 λψ2 + h.c.

]
− φ2

D
2
φ∗2 + |F2|2

+ ξ∗
{
4
[

F2DµDµ φ1 + φ2DµDµ F1

]
+ 2
√

2 i
[
ψ2 σ

µ←−Dµ λ φ1 + φ2 λ σ
µDµ ψ1

]

+ 2 (φ2 D F1 − F2 D φ1) − 2
√

2
[
ψ2 λ F1 − F2 (λψ1)

]
− 2 φ2 (λ λ) φ1

− 4ψ2σ
ν σµDνDµψ1

}
+ µ
[
φ1 F2 + F1 φ2 − ψ1 ψ2

]

+ ξ′
[
− (φ1ψ2 + ψ1φ2)2 + 2 (φ1φ2) (φ1 F2 + F1φ2 − ψ1ψ2)

]

+ h.c. + O(1/M2) (2.30)

with

Dµ = ∂µ + i
Vµ
2
,

←−Dµ =←−∂ µ − i
Vµ
2
, (2.31)

and the “h.c.” refers to all terms in the last four lines. Notice that in the off

shell component form of the Lagrangian we have an interesting tensor coupling

ψ2 σν σ
µDνDµ ψ1 in spite of the minimal gauge coupling in (2.23). This coupling

could be relevant for tree level calculations of the Feynman diagrams. Next, we

eliminate the auxiliary fields F1,2 using their e.o.m.

F∗1 = −φ2

(
µ + 2 ξ′ (φ1 φ2)

)
+ ξ∗
(
− 4 φ2

←−Dµ←−D
µ
− 4 φ2

D
2
+ 2
√

2ψ2 λ
)

F∗2 = −φ1

(
µ + 2 ξ′ (φ1 φ2)

)
+ ξ∗

(
− 4DµDµ φ1 + 4

D
2
φ1 − 2

√
2 λψ1

)
(2.32)

In the terms proportional to ξ in Le f f we can replace the derivatives of the

fermions by their equations of motion, since the error would be of higher or-
3We use −4ψ2DµDµ ψ1 = −4ψ2 [σν σµ − 2 iσµν]DνDµ ψ1 = −4ψ2 σν σ

µDνDµ ψ1 +

4 ψ2 σµν Fµν ψ1 and the first term in the rhs is that entering the final expression of L. Here
Fµν = ∂µVν/2 − ∂νVµ/2 + i [Vµ/2,Vν/2].

25



der. We use

iσµDµψ1 = µψ2 +
1√
2
λ φ1 + O(ξ) ,

−iψ2 σ
µ←−Dµ = µψ1 −

1√
2
φ2λ + O(ξ) . (2.33)

We then rescale the scalars and Weyl fermions and after neglecting terms O(ξ ξ′)

we obtain the on shell Lagrangian

L = − φ†1D2 φ1 + iψ1 σ
µDµ ψ1 −

1√
2

[
ψ1 λ φ1 + h.c.

]
+ φ†1

D
2
φ1

− φ2D2 φ†2 + iψ2 σ
µDµψ2 +

1√
2

[
φ2 λψ2 + h.c.

]
− φ2

D
2
φ†2

− µ2 |1 − 4 µ ξ |2
[
φ†1φ1 + φ2 φ

†
2

]
− µ
[

(1 − 4 µ ξ ) ψ1 ψ2 + h.c.
]

− 2 ξ′ µ
[
(φ1φ2) + h.c.

] [
φ†1φ1 + φ2 φ

†
2

]
, D2 = DµDµ (2.34)

This Lagrangian is in agreement with that of (2.29), which shows that on shell

and in the absence of other interactions, only a wavefunction renormalisation

effect is present, giving a new µ′ = µ (1 − 4 µ ξ). To conclude, integrating out

the massive superfields Φ3,4 generated a dimension-five operator Φ2 e−V D2 eV Φ1

which however, brings only a (classical) wavefunction renormalisation, in the

absence of additional trilinear interactions. Thus this five dimensional opera-

tor doesn’t bring new physics in the absence of additional interactions. One

could ask if this conclusion remains valid when we include soft supersymme-

try breaking terms. Also, if additional trilinear interactions were present, other

five dimensional operators of type shown in (2.27) could also be generated. All

these issues are studied in the subsequent chapters.
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2.3 Nonlinear Realizations and Constrained Goldstino Super-

field

Consider a field theory invariant under the symmetry group G. The field con-

tent of the theory is divided between fields that are invariant and fields that

transform under G. The latter can transform either linearly under all generators

of G or linearly under a subgroup H and nonlinearly under the coset G/H . In

the first case the theory is in its unbroken phase and the classification of all pos-

sible transformation laws for the fields is described by representation theory. In

the second case the symmetry parametrized by the generators of G/H is broken

with the breaking scale Mb sent to infinity. In other words, a theory with a non-

linear realization of a symmetry group can be seen as an effective description of

the far IR limit of a theory where this group is broken spontaneously [44, 45].

The Goldstone fields that appear are in 1-1 correspondance with the generators

of G/H .

If G is the super-Poincaré and H the Poincaré algebra, we have a nonlin-

ear realization of the supersymmetry algebra and this would describe the far

IR regime of a spontaneously broken supersymmetric theory. Since the bro-

ken generators are fermionic, the corresponding Goldstone mode has to be a

fermion, too. To distinguish it from the standard Goldstone fields, we call it

“goldstino”. It is quite surprising that Supersymmetry in four dimensions first

appeared in its nonlinear version [46]. The nonlinear transformation of the gold-

stino λα(x) can be written as:

δλα = f ηα +
i
f

(λσµη̄ − ησµλ̄)∂µλα , (2.35)

where η is the supersymmetry transformation parameter and f is a parameter
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of mass dimension 2 characterizing the susy breaking scale (
√

f = Mb). The

commutator of this transformation

[δη , δξ]λα = 2i(ησµξ̄ − ξσµη̄)∂µλα (2.36)

is a spacetime translation and proves that the above transformation closes off

shell the super-Poincaré algebra.

In order to take advantage of nonlinear realizations we need to know how

to construct Lagrangians describing interactions of the goldstino with itself and

with other fields. Several strategies have been developed in the past. In the

“geometric” method [46, 47, 48] the transformation (2.35) is interpreted as an

extension of the standard superspace transformation

θ → θ + η ,

xµ → xµ + iθσµη̄ − iησµθ̄ , (2.37)

to the chiral goldstino field λ(x) by identifying θwith λ/ f . The same analogy be-

tween θ and λ can be extended to the superspace differentials dθ and dθ̄ leading

to the construction of a volume element invariant (up to total derivative) under

the nonlinear transformations. From this we can extract the Lagrangian density

L = − f 2 detA , with Aµν = δ
µ
ν +

i
f 2 (λσµ∂νλ − ∂νλσµλ) . (2.38)

It is the Volkov-Akulov Lagrangian describing the dynamics of a single gold-

stino up to higher derivative terms. By nonlinearly realizing the algebra on

matter fields φ as well,

δφ = − i
f

(λσµη − ησµλ)∂µφ , (2.39)

we can construct goldstino-matter couplings (φ denotes any kind of field). For

any operator O(φ, ∂µφ) we simply have to replace partial derivatives by appro-
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priate covariant derivatives so that O transforms in the standard way:

δO = − i
f

(λσµη − ησµλ)∂µO . (2.40)

Then any action of the type

S = − f 2
∫

d4x det(A)O (2.41)

is invariant under nonlinear transformations. It can be easily shown that, in the

geometric method, the lowest order couplings between goldstinos and matter

are of the type:
1
f 2 T µνtµν , (2.42)

where Tµν and tµν are the stress energy tensors of the goldstino and matter field.

Another method for constructing goldstino-matter Lagrangians involves

promoting the goldstino to a superfield Λ [49, 50]. This is done in a way compli-

ant with the nonlinear supersymmetry transformations of the goldstino so that

in the end, the only physical degree of freedom in Λ is simply λ. Since the basic

concepts of goldstino Lagrangians have been presented along with the geomet-

ric method, we will skip this method and go directly to the next, which is the

one used extensively in chapters 6 and 10 (in its N = 2 generalization).

This is the method of constrained superfields [51, 52, 53, 54]. It draws in-

spiration from a similar technique applied in bosonic symmetries for example

in the context of σ models. One starts from the full manifold made up from

the linear symmetry transformations and then restrict to a certain submanifold

by imposing constraints on the coordinates. This breaks the original symmetry

down to the subgroup that is left invariant under the constraints. E.g. in an O(4)

σ model of fields (σ,−→π ) (−→π is a vector of pions), we can break the symmetry

down to O(3) by imposing the constraint σ2 +−→π · −→π = f 2. It is the same manifold
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that we would obtain by starting from a vacuum state ( f , 0) and applying the

elements of the coset space O(4)/O(3).

In the context of N = 1 supersymmetry, this technique is realized in the

following way. We start from a standard chiral superfield that describes a full

supersymmetric multiplet and impose a specific constraint on it. Using the con-

straint, we eliminate the scalar d.o.f. in favor of the fermion. In particular, the

constraint

X2
nl = 0 , (2.43)

delivers

Xnl = φX +
√

2 θψX + θθ FX, with φX =
ψXψX

2 FX
. (2.44)

The simplest possible Lagrangian of Xnl:

∫
d4θ X†nlXnl +

[∫
d2θ f Xnl + h.c.

]
= |∂µφX |2+F†XFX+

[ i
2
ψXσ

µ∂µψX + f FX +h.c.
]
(2.45)

reproduces the Volkov-Akulov Lagrangian upon integrating out the auxiliary

FX and identifying ψX with the goldstino.

The advantage of this method is the use of superfield formalism. For ex-

ample, the couplings of goldstinos to matter are easily constructed by treat-

ing Xnl as any other superfield and following the standard rules of superspace.

As a demonstration, consider a supersymmetric theory with chiral multiplets

Φi ≡ (φi, ψi, Fi) and vector multiplets V ≡ (Aa
µ, λ

a,Da) coupled in a general way to

Xnl:

L =

∫
d4θ
[
X†nlXnl + Φ

†
i (eVΦ)i − (m2

i / f 2) X†nlXnlΦ
†
i (eVΦ)i

]
+
{ ∫

d2θ
[
f Xnl +W(Φi)

+
Bi j

2 f
XnlΦiΦ j +

Ai jk

6 f
XnlΦiΦ jΦk +

1
4

(
1 +

2 mλ
f

Xnl

)
Tr WαWα

]
+ h.c.

}
, (2.46)
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where m2
i , Bi j, Ai jk are soft terms for the scalars and mλ is the gaugino mass. From

this, one can find the Goldstino (ψX) couplings to ordinary matter and gauge

superfields.

Furthermore, this formalism seems to be more general than the geometric

method since it can reproduce couplings that were missed by the latter [55, 56].

In particular, from the equivalence theorem of spontaneously broken theories

[13], we know that for low energy SUSY breaking, the coupling of the gravitino

to matter is dominated by the coupling of its goldstino component and has the

form

(1/ f ) ∂µψX Jµ = −(1/ f )ψX ∂
µJµ + (total space-time derivative), (2.47)

Here Jµ is the supercurrent of the theory corresponding to that in (2.46) in which

the goldstino is essentially replaced by the spurion, with the corresponding ex-

plicit soft breaking terms:

L′ =
∫

d4θ
[
1 − m2

i θ
2θ

2]
Φ†i (eVΦ)i +

∫
d2θ
[
W(Φi)−

Bi j

2
θ2ΦiΦ j

− Ai jk

6
θ2ΦiΦ jΦk +

1
4

(1 − 2mλθ2) Tr WαWα
]
+ h.c. . (2.48)

With this, eq. (2.47) shows that, on shell, all goldstino couplings are proportional

to soft terms. Indeed, the supercurrent of (2.48) is given by (with Dµ,i j = δi j ∂µ +

i g Aa
µ T a

i j)

Jµα = −[σνσµψi]α [Dν, i jφ j]† + i [σµψi]αFi −
1

2
√

2
[σνσρ σµλ

a
]α Fa

νρ +
i√
2

Da [σµλ
a
]α

so

∂µJµα = ψi,α (m2
i φ
†

j + Bi jφ j + (1/2)Ai jkφ jφk ) +
mλ√

2

[
(σµν) βα λ

a
βF

a
µν + Da λa

α

]
. (2.49)

From (2.47), (2.49) one then recovers the couplings with one goldstino that are

missed in the geometric method.
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Finally, in addition to usual SUSY and goldstino couplings, eq. (2.46) brings

new goldstino-independent couplings induced by eliminating FX. Indeed, we

get

(
1 − m2

i

f 2 |φi|2
)

F†X = −
(

f +
Bi j

2 f
φiφ j +

Ai jk

6 f
φiφ jφk +

mλ
2 f
λλ + · · ·

)
. (2.50)

So |FX |2 generates new couplings in L, such as quartic scalar terms. As we will

see in chapter 6, when applied to MSSM, they bring new corrections to the Higgs

scalar potential.
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CHAPTER 3

MSSM5

We apply the methods of EFT on the Minimal Supersymmetric Standard

Model (MSSM). Our aim is to study the phenomenological consequences of the

complete set of mass dimension five operators that obey the gauge symmetries

of MSSM and R-parity. Since not all of them are physically relevant, we will use

spurion dependent superfield redefinitions to find the irreducible set of opera-

tors. But before getting there, we need to provide the Lagrangian of the model.

3.1 The Lagrangian

We denote the Lagrangian as:

L = LMS S M +L(5) (3.1)

LMS S M is the standard Lagrangian of the MSSM. In particular:

LMS S M =

∫
d4θ
[
Z1 H†1 eV1 H1 +Z2 H†2 eV2 H2

]
+LK

+
{ ∫

d2θ
[
− H2 Q λU Uc − Q λD Dc H1 − L λE Ec H1 + µH1 H2

]
+ h.c.

}
(3.2)

Here LK accounts for the gauge kinetic part and the kinetic terms of the quark

and lepton superfields Q,Uc,Dc, L, Ec as well as their associated soft break-
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ing terms obtained using the spurion field formalism. Uc, Dc and Ec denote

anti-quark/lepton singlet chiral superfields of components f c
R ≡ ( f c)L and f̃ ∗R ,

f = u, d, e, while Q and L denote the left-handed quark and lepton superfields

doublets. Furthermore, since the hypercharge of H1 is −1 and that of H2 is +1,

the vector superfields are V1 ≡ g2 Vi
W σ

i − g1 VY and V2 ≡ g2 Vi
W σi + g1 VY . VY and

VW are the vector superfields of U(1)Y and S U(2)L respectively with g1 and g2

being the corresponding couplings. All SUSY breaking terms are included by

allowing spurion dependence in the quantitiesZi, µ and the 3×3 flavor matrices

λU,D,E:

Zi ≡ Zi(S , S †), µ ≡ µ(S ), λF ≡ λF(S ), F : U,D, E (3.3)

where S ≡ m0 θ2 is the spurion parametrising the soft supersymmetry breaking

and m0 is the supersymmetry breaking scale in the visible sector (e.g. if ‘ f ’ is the

v.e.v. of the auxiliary field that breaks SUSY, m0 in gravity mediation is f /MPlanck

and in gauge mediation f /Mmessenger). Since we assume a spontaneously bro-

ken effective Lagrangian, consistency of the integration procedure implies the

restriction

m0 . M . (3.4)

L5 denotes the complete set of mass dimension five operators that preserve R-

parity1:

L(5) =
1
M

{ ∫
d2θ
[
Q Uc TQ Q Dc + Q Uc TL L Ec + λH(H1H2)2

]
+ h.c.

}

+
1
M

∫
d4θ
[
H†1 eV1 Q YU Uc + H†2 eV2 Q YD Dc + H†2 eV2 L YE Ec + h.c.

]

+
1
M

∫
d4θ
[
A(S , S †) Dα

(
B(S , S †) H2 e−V1

)
Dα
(
Γ(S , S †) eV1 H1

)
+ h.c.

]
(3.5)

1For a general discussion of D=5 operators with discrete symmetries see [57].
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The notation is such that

Q Uc TQ Q Dc ≡ (Q Uc)T (iσ2) TQ Q Dc

Similarly,

Dα[B(S , S †)H2e−V1]Dα[Γ(S , S †)eV1 H1] ≡ Dα[B(S , S †)HT
2 (iσ2)e−V1]Dα[Γ(S , S †)eV1 H1].

TQ,L are matrices of parameters both in the up and the down sector, thus they

carry four indices. In addition, all SUSY breaking terms are parametrized in the

usual way, with spurions:

TQ ≡ TQ(S ), TL ≡ TL(S ), λH ≡ λH(S ), YF ≡ YF(S , S †), F : U,D, E (3.6)

M is the mass scale up to which the effective approach remains valid. It is asso-

ciated with the mass of the heavy states that have been integrated out in order

to obtain the effective operators.

The spurion dependence associated to these operators is the most general

one can have. For the kinetic terms it is:

Z1 = 1 + a1S + a∗1 S † + a2S S † ,

Z2 = 1 + b1S + b∗1 S † + b2S S † . (3.7)

and for the higher derivative effective operator:

A(S , S †) = α0 + α1 S + α2 S † + α3 S S †

B(S , S †) = β0 + β1 S + β2 S † + β3 S S †

Γ(S , S †) = γ0 + γ1 S + γ2 S † + γ3 S S † (3.8)
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3.2 Keeping the essential: The irreducible Lagrangian

The parameter space of Lagrangian (3.1) is huge. However, big parts of it are

redundant since they describe the same physics. We would like to simplify the

Lagrangian by removing this redundancy. One way to do this is by performing

appropriate field redefinitions. A familiar set of holomorphic superfield redefi-

nitions is

Φi → (1 − ki S ) Φi , (3.9)

which are commonly used in MSSM in order to restrict the so called “soft”

breaking terms. We shall use this freedom later on. Less familiar are the fol-

lowing (super)field transformations2

H1 → H′1 = H1 −
1
M

D
2 [
∆1 H†2 eV2 (iσ2)

]T
+

1
M

Q ρU Uc

H2 → H′2 = H2 +
1
M

D
2 [
∆2 H†1 eV1 (iσ2)

]T
+

1
M

Q ρD Dc +
1
M

L ρE Ec (3.10)

where

ρF = ρF(S ); F : U,D, E, ∆i = ∆i(S , S †) i = 1, 2 (3.11)

are arbitrary functions of the spurion. Also, ρF , F = U,D, E are 3 × 3 matrices.

The coefficients of their Taylor expansion in S are free parameters. We are free

to fix them in a way to eliminate redundant dimension-five operators. These

coefficients should have values smaller than M. The expansion of ∆i is:

∆1(S , S †) = s0 + s1 S + s2 S † + s3 S S †

∆2(S , S †) = s′0 + s′1 S + s′2 S † + s′3 S S † (3.12)
2To avoid a complicated index notation, the transformations in (3.10) are written in matrix

notation for the Higgs S U(2) doublets. For clarity, (iσ2) appears explicitly even if it is implicit in
the superpotential.
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Notice that R-parity conservation does not allow for a similar set of transforma-

tions (3.10) on quark and lepton superfields. In addition, these field redefini-

tions, along with mixing operators from LMS S M and L(5), generate operators of

the type

1
M2

∫
d4θ D2[H2 e−V1∆†1] eV1 D̄2[∆1 e−V1 H†2] (3.13)

plus a similar one for H1. Since these operators are of higher-order in 1/M, their

effects are further suppressed with respect to the dimension-five operators con-

sidered and we shall neglect them for the time being.

One then finds that the original Lagrangian transforms into:

L = LK +

∫
d4θ
[
Z′1 H†1 eV1 H1 +Z′2 H†2 eV2 H2

]

+

∫
d2θ
[
− H2 Q λ′U Uc − Q λ′D Dc H1 − L λ′E Ec H1 + µH1 H2

]
+ h.c.

+
1
M

∫
d2θ
[

Q Uc T ′Q Q Dc + Q Uc T ′L L Ec + λH (H1 H2)2
]
+ h.c.

+
1
M

∫
d4θ
[
H†1 eV1 Q Y ′U Uc + H†2 eV2 Q Y ′D Dc + H†2 eV2 L Y ′E Ec + h.c.

]
+ ∆L(3.14)

where

∆L =
1
M

∫
d4θ
[
− ∆†1 H2 e−V1 D2(Z1 eV1 H1) −Z2 H2 e−V1 D2(∆†2 eV1 H1) + h.c.

]

+
1
M

∫
d4θ
[
A(S , S †) Dα ( B(S , S †) H2 e−V1) Dα (Γ(S , S †) eV1 H1 ) + h.c.

]
(3.15)

The relation between primed and unprimed fields is

λ′F(S ) = λF(S ) +
µ(S )

M
ρF(S ), F : U,D, E (3.16)
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also

Y ′U(S , S †) = YU(S , S †) − 4∆2(S , S †) λU(S ) +Z1(S , S †) ρU(S )

Y ′D(S , S †) = YD(S , S †) − 4∆1(S , S †) λD(S ) +Z2(S , S †) ρD(S )

Y ′E(S , S †) = YE(S , S †) − 4∆1(S , S †) λE(S ) +Z2(S , S †) ρE(S ) (3.17)

and

T ′Q(S ) = TQ(S ) + λU(S ) ⊗ ρD(S ) + ρU(S ) ⊗ λD(S )

T ′L(S ) = TL(S ) + λU(S ) ⊗ ρE(S ) + ρU(S ) ⊗ λE(S ) . (3.18)

Finally,

Z′1(S , S †) = Z1(S , S †) − 1
M

(
4 µ(S )∆2(S , S †) + h.c.

)
,

Z′2(S , S †) = Z2(S , S †) − 1
M

(
4 µ(S )∆1(S , S †) + h.c.

)
. (3.19)

We perform a second set of field redefinitions to canonically normalize the ki-

netic terms:

H1 →
1
√

a′0
[1 − k1 S ] H1, H2 →

1
√

b′0
[1 − k2 S ] H2, k1 ≡

a′1
a′0
, k2 ≡

b′1
b′0

(3.20)

with

a′0 ≡ Z′1
∣∣∣∣
S ,S †=0

, a′1 ≡ Z′1
∣∣∣∣
S
, b′0 ≡ Z′2

∣∣∣∣
S ,S †=0

, b′1 ≡ Z′2
∣∣∣∣
S

(3.21)

which can be directly computed using the definition ofZ′1,2,Z1,2 and ∆1,2 given

above. The Lagrangian then becomes

L = LK + ∆L +
∫

d4θ
[(

1 − m2
1

m2
0

S S †
)

H†1 eV1 H1 +
(
1 − m2

2

m2
0

S S †
)

H†2 eV2 H2

]

+

∫
d2θ
[
− H2 Q λ′′U Uc − Q λ′′D Dc H1 − L λ′′E Ec H1 + µ

′ H1 H2

]
+ h.c.
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+
1
M

∫
d2θ
[

Q Uc T ′Q Q Dc + Q Uc T ′L L Ec + λ′H (H1 H2)2
]
+ h.c.

+
1
M

∫
d4θ
[
H†1 eV1 Q Y ′′U Uc + H†2 eV2 Q Y ′′D Dc + H†2 eV2 L Y ′′E Ec + h.c.

]
(3.22)

Double primed quantities are given by

λ′′U(S ) =
1
√

b′0
(1 − k2 S ) λ′U(S ) = (1 − b1 S ) λU(S ) + O(1/M),

λ′′F(S ) =
1
√

a′0
(1 − k1 S ) λ′F(S ) = (1 − a1 S ) λF(S ) + O(1/M), F ≡ D, E.

µ′(S ) =
1
√

a′0 b′0
[1 − (k1 + k2)S ] µ(S ) = (1 − (a1 + b1) S ) µ(S ) + O(1/M). (3.23)

Since a′0, b
′
0 are M-dependent, the couplings λ′′U,D,E(S ) and also µ′(S ) have ac-

quired, already at the classical level, a dependence on the scale M of the higher

dimensional operators. This is denoted above by O(1/M) and can be easily com-

puted using (3.19) and (3.21). Note that this O(1/M) correction is relevant for

the Lagrangian (3.22). Similar considerations apply to m1,2 that appear in the

same Lagrangian. Their exact expressions in terms of initial parameters can be

computed in a similar way. Further

λ′H(S ) =
(
1 − 2(a1 + b1) S

)
λH(S ), Y ′′U (S , S †) = (1 − a∗1 S † ) Y ′U(S , S †)

Y ′′D(S , S †) = (1 − b∗1 S † ) Y ′D(S , S †), Y ′′E (S , S †) = (1 − b∗1 S † ) Y ′E(S , S †) (3.24)

where we ignored terms which bring O(1/M2) corrections to (3.22). Finally, ∆L

in (3.22) is that of (3.15) after applying transformations (3.20). Its component

expansion up to 1/M order is:

∆L = − 1
M

∫
d4θ t0 H2 e−V1 D2

[
eV1 H1

]
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+
m0

M

[
4 [t1 + t2 + t0(a1 + b1)] h2DµDµ h1 − 2 [t1 − t2 + t0(b1 − a1)] h2 D1 h1

+ 2
√

2 (t1 + b1 t0) h2 λ1 ψh1 − 2
√

2 (t2 + a1 t0)ψh2 λ1 h1 − 4 t3 Fh2 Fh1

]

+
m2

0

M

[
− 4 (t4 − b1 t3) h2 Fh1 − 4 (t5 − a1 t3) Fh2 h1 + 2 t6 ψh2ψh1

]

+
m3

0

M

[
− 4 (t7 − a1 t4 − b1 t5 + a1 b1 t3) h2h1

]
+ h.c. (3.25)

where D1 and λ1 are components of the vector superfield V1 and we also used

the component notation Hi = (hi, ψhi , Fhi). We also replaced k1, (k2) by a1, (b1)

respectively, which is correct in the approximation of ignoring 1/M2 terms in

the Lagrangian. The coefficients ti are given by

t0 = α0β0γ0 + s∗0 + s
′∗
0 , t4 = d4 − s∗3 − a∗1 s∗2 − b2 s

′∗
0 − b1 s

′∗
1 ,

t1 = d1 − s∗2 − b1 s
′∗
0 , t5 = d5 − a2 s∗0 − a1 s∗1 − s

′∗
3 − b∗1 s

′∗
2 ,

t2 = d2 − a1 s∗0 − s
′∗
2 , t6 = d6,

t3 = d3 − s∗1 − a∗1 s∗0 − s
′∗
1 − b∗1 s

′∗
0 , t7 = d7 − a2 s∗2 − a1s∗3 − b1s

′∗
3 − b2s

′∗
2 (3.26)

with di being combinations of input parameters αi, βi, γi of eq. (3.8)

d1 ≡ −β1 α0 γ0 − α1 β0 γ0/2, d4 ≡ −β3 α0 γ0 − β1 α2 γ0 − α0β1γ2

d2 ≡ −γ1 β0 α0 − α1 β0 γ0/2, d5 ≡ −γ3 β0 α0 − γ1 α2 β0 − α0β2γ1,

d3 ≡ −α2 β0 γ0 − α0β2γ0 − α0β0γ2, d6 ≡ α3 γ0 β0 + α1β2γ0 + α1β0γ2

d7 ≡ −γ3 β1 α0 − γ1 β3 α0 − γ1 β1 α2. (3.27)

A suitable choice of coefficients s0, s′0, s
′
2, s2 entering in transformation (3.10) al-

lows us to set

ti = 0, i = 0, 1, 2, 3. (3.28)
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This ensures that the nonstandard terms in the first, second and third lines of

∆L above are not present. The remaining terms proportional to m2
0 and m3

0 bring

solely a renormalisation of soft terms, which are present anyway in Lagrangian

(3.22) and can be ignored. Finally, the term t6 ψh2ψh1 brings a renormalisation of

the supersymmetric µ′ term (µ′H1H2) of (3.22) and is invariant under the general

field transformations (3.10). In principle one could set additional coefficients of

the last two lines in ∆L to vanish by a suitable choice of remaining s1,3, s′1,3; we

choose not to do so and instead save these remaining coefficients for additional

conditions that can be used to simplify the Lagrangian even further.

We have finally obtained the minimal set of dimension-five operators be-

yond the MSSM Lagrangian:

L = LK +

∫
d4θ
[(

1 − m2
1

m2
0
S †S
)

H†1 eV1 H1 +
(
1 − m2

2

m2
0
S †S
)

H†2 eV2 H2

]

+

∫
d2θ
[
− H2 Q λ′′U(S )Uc − Q λ′′D(S )DcH1 − L λ′′E(S )EcH1 + µ

′′(S ) H1H2

]
+ h.c.

+
1
M

∫
d2θ
[

Q Uc T ′Q(S ) Q Dc + Q Uc T ′L(S ) L Ec + λ′H(S ) (H1 H2)2
]
+ h.c.

+
1
M

∫
d4θ
[
H†1eV1 QY ′′U (S , S †)Uc+ H†2eV2 QY ′′D(S , S †) Dc+ H†2eV2 LY ′′E (S , S †)Ec+ h.c.

]

(3.29)

LK stands for gauge kinetic terms and kinetic terms of MSSM fields other than

H1,2, together with their spurion dependence. Also, µ′′ here includes the renor-

malisation due to t6 (not shown). As explained above, there is still some re-

maining freedom to further reduce the parameter space and we will use it in

the next section. The couplings that appear are given in equations (3.16), (3.17),

(3.18), (3.23) and (3.24) in terms of those in the original Lagrangian. The cou-

plings λ′′U,D,E(S ) acquired a threshold correction O(1/M), which can be obtained
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from (3.23). The dimension-five operator that was present in the last line of

(3.5) is completely “gauged away” in the new fields basis, up to effects which

renormalised the soft terms or the supersymmetric µ term. Since physics is in-

dependent of the fields basis we choose, in this new basis it is manifest that the

last operator in (3.5) cannot affect the relations among physical masses of the

Higgs sector. We discuss this in detail in section 4.4.
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CHAPTER 4

PHENOMENOLOGY OF MSSM5

4.1 Further Restrictions from Flavor Changing Neutral Cur-

rents

The couplings in Lagrangian (3.29) can have dramatic implications if the scale

M is not too high, in particular due to FCNC effects. Indeed, if T ′Q,L and Y ′′U,D,E

have arbitrary family dependent couplings, one expects stringent limits from

FCNC bounds [58]. It is possible however, under some mild assumptions for

the original L of (3.1), to remove the dangerous couplings in (3.29). For exam-

ple, assume that the flavor matrices in (3.5) and the ρU,D,E in (3.10), (3.11) are

proportional to the ordinary Yukawa couplings1:

TQ(S ) = cQ(S ) λU(0) ⊗ λD(0)

TL(S ) = cL(S ) λU(0) ⊗ λE(0)

ρF(S ) = cF(S ) λF(0), F : U,D, E (4.1)

and, as usual

λF(S ) = λF(0) (1 + AF S ), F : U,D, E. (4.2)
1The ansatz is motivated by the discussion in subsection 2.2.2, eq. (2.27) where a similar

structure of TQ,L and ρF is generated by integrating out massive S U(2) superfields doublets.
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Here cQ,L(S ) are some arbitrary input functions of S ; λF(S ) are 3 × 3 matrices,

while AF are trilinear couplings. In the following cF(S ) ≡ cF
0 + S cF

1 , F = U,D, E

are considered free parameters which can be adjusted, together with the remain-

ing s1,3, s′1,3, to remove some of the couplings in (3.29). Indeed, if

cU(S ) = −cL(S ) − cE(S ), cD(S ) = −cQ(S ) + cL(S ) + cE(S ) (4.3)

while cE(S ) remains arbitrary, one obtains

T ′Q(S ) = 0, T ′L(S ) = 0 (4.4)

We can therefore remove the associated couplings in (3.29), that is the first two

terms in the third line. Finally, let us assume that in (3.5) we also have

YF(S , S †) = fF(S , S †) λF(0), F : U,D, E (4.5)

where fF are spurion dependent but family independent functions of arbitrary

coefficients:

fF(S , S †) = f F
0 + S f F

1 + S † f F
2 + S S † f F

3 (4.6)

Using (3.24), we find that the couplings in (3.29) are

Y
′′
F(S , S †) = λF(0)

[
xF

0 + xF
1 S + xF

2 S † + xF
3 S S †

]
, F = U,D, E (4.7)

One finds

xU
0 = f U

0 − 4s′0 + cU
0

xU
1 = f U

1 − 4 s′1 + cU
1 + a1 cU

0

xU
2 = f U

2 − 4 s′2 + a∗1 cU
0 − a∗1 xU

0

xU
3 = f U

3 − 4 s′3 + a∗1 cU
1 + a2 cU

0 − a∗1 xU
1 (4.8)
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Similar equations exist for the fields in the D and E multiplets. We just need to

replace U → D (or E), s′i → si and ai → bi.

Let us examine if the form of Y ′′F (S , S †) can be simplified using the free pa-

rameters that we are left with: these are s1,3, s′1,3 from general transformations

∆1,2 and cE(S ) = cE
0 + S cE

1 , a total of 6 free parameters. We can use s′1,3 (s1,3) to

eliminate S and S S † parts of Y ′′U (Y ′′D), respectively. Using cE
0 and cE

1 we can

also eliminate the S and S S † of Y ′′E . In conclusion, we used the remaining 6 free

parameters to bring Y ′′F to the form

Y ′′F (S †) ≡ Y ′′F (0, S †) = λF(0) (xF
0 + xF

2 S †), F : U,D, E (4.9)

The coefficients xF
0,2 depend on the arbitrary coefficients f F

i , i = 0, 1, 2, 3, ai, bi, ci

of the original Lagrangian (3.1). Other simplifications can occur if we ignore the

couplings Y of the first two families. With these considerations, the Lagrangian

in (3.29) takes the form

L = LK +

∫
d4θ
[(

1 − m2
1

m2
0
S †S
)

H†1 eV1 H1 +
(
1 − m2

2

m2
0
S †S
)

H†2 eV2 H2

]

+

∫
d2θ
[
− H2 Q λ′′U(S ) Uc − Qλ′′D(S )Dc H1 − L λ′′E(S )EcH1 + µ

′′(S )H1 H2

]
+ h.c.

+
1
M

∫
d4θ
[
H†1 eV1 Q Y ′′U (S †) Uc + H†2 eV2 Q Y ′′D(S †) Dc + H†2 eV2 L Y ′′E (S †) Ec + h.c.

]

+
1
M

∫
d2θ λ′H(S ) (H1 H2)2 + h.c. (4.10)

with couplings (4.9) and (3.23)2. This Lagrangian defines MSSM5; the extension

2λ′′F(S ) acquired a threshold correction in M: λ′′U(0) = λU(0)
[
1 + 1/M

(
µ(0) cU(0) + 2 (µ(0) s0 +

µ∗(0) s∗0)
)]

with similar relations for D, E obtained by s0 → s′0 and U → D, (U → E). In terms
of original parameters, s0 = −[−4α∗0β

∗
0γ
∗
0 b1 − 4 d∗3 + ( f U

1 + f D
1 + cU

1 + cD
1 + a1 cU

0 + b1 cD
0 )]/4 (a1 − b1)

with d3 as in (3.27); for the D, E sectors we use s′0 = −α∗0β∗0γ∗0 − s0. Similar relations exist for
non-supersymmetric counterparts, see (3.23), (3.24).
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of MSSM by mass dimension five operators.

4.2 Phenomenological Implications

In the following we explore the new couplings that MSSM5 brings with respect

to standard MSSM. We begin with couplings proportional to m0. Part of these

are coming from the terms in the second-last line of (4.10). These include non-

analytic Yukawa couplings [11]

m0

M
xU

2 (λU
0 )i j (h†1 qL i) uc

R j + h.c.

m0

M
xD

2 (λD
0 )i j (h†2 qL i) dc

R j + h.c.

m0

M
xE

2 (λE
0 )i j (h†2 lL i) ec

R j + h.c., λF
0 ≡ λF(0), F : U,D, E. (4.11)

These couplings are not soft in the sense of [59], but “hard” supersymmetry

breaking terms in the sense of [11, 12]. They are less suppressed than those

listed in [11] where they were generated at order m2
0/M

2. Such couplings can

bring about a tan β enhancement of a prediction for a physical observable, such

as the bottom quark mass relative to bottom quark Yukawa coupling [10, 60].

This effect is also present in the electroweak scale effective Lagrangian of the

MSSM alone, after integrating out massive squarks at one loop level, with a

result for bottom quark mass [10, 60, 61, 62, 63]

mb =
v cos β√

2

(
λb + δλb + ∆λb tan β

)
(4.12)

where λb is the ordinary bottom quark Yukawa coupling, δλb its one loop cor-

rection and ∆λb is a “wrong” Higgs bottom quark Yukawa coupling, generated
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by integrating out massive squarks. In our case, ∆λb receives an additional con-

tribution from the second line in (4.11). The size of this extra contribution due to

higher dimensional operators, can be comparable and even substantially larger

than the one generated in the MSSM at one loop level (for a suitable value for

xD
2 m0/M - recall that xD

2 is not fixed). Such contributions can bring a tan β en-

hanced correction of the Higgs decay rate to bottom quark pairs. Similar con-

siderations apply to the U and E sectors.

Other similar couplings derived from (4.10) and proportional to m0 are

m0

M
xU

2 (λU†
0 λ

U
0 )i j (h†1 h†2) ũR i ũ∗R j + h.c.

m0

M
xU

2 (λU
0 λ

U†
0 )i j (h†1 q̃L i) (h†2 q̃†L j) + h.c. (4.13)

where we used that λF′′
0 and λF

0 are equal up to O(1/M) corrections, see (3.16)

and (3.23). The above terms are strongly suppressed due to the square of the

Yukawa coupling, in addition to m0/M . 1, so their effects are expected to be

small, except for the third generation. Their counterparts in the down (D) sector

are

m0

M
xD

2 (λD†
0 λ

D
0 )i j (h†2 h†1) d̃R i d̃∗R j + h.c.

m0

M
xD

2 (λD
0 λ

D†
0 )i j (h†2 q̃L i) (h†1 q̃†L j) + h.c. (4.14)

In the lepton sector similar couplings are present, obtained from eq. (4.14) with

Q → L, D → E. All the quartic couplings listed above are renormalisable, but

naively they would seem to break supersymmetry in a hard way if inserted into

loops with a cutoff larger than M. This, of course, is just an artifact of using a

cutoff larger than the energy scale of the heavy states that we integrated out.
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It is interesting to note that there is no “wrong” Higgs-gaugino-higgsino cou-

pling generated [11], even though the original Lagrangian in eq. (3.5) included

it, see eq. (3.25) where

m0

M
(ψh2 λ1 h1 + h2 λ1 ψh1) + h.c. (4.15)

was present. Such a coupling can be generated at one loop level [10] but in our

case it was removed by the Higgs fields transformation (3.10). This shows that

not all “wrong” Higgs couplings are actually independent (this may also apply

when such couplings are generated at the loop level).

Note that in the MSSM5 defined by eq. (4.10), couplings proportional to m0

involving “wrong” Higgs A-terms are not present, given our ansatz (4.1) and

(4.5) leading to (4.9). If this ansatz is not imposed on the third generation, then

one could have such terms from (3.29)

m2
0

M

[
yu,3 h†1 q̃L,3 ũ∗R,3 + yd,3 h†2 q̃L,3 d̃∗R,3 + ye,3 h†2 l̃L,3 ẽ∗R,3

]
(4.16)

where y f ,3, f = u, d, e are the coefficients of component S S † of Y ′′(S , S †) of third

generation.

There are also new, and perhaps most important, supersymmetric couplings

that affect the amplitude of processes like quark + quark→ squark + squark or

similar with (s)leptons. These are

1
M

xU
0 (λD

0 )i j (λU
0 )kl q̃L i d̃∗R j qL k uc

R l + h.c.

1
M

xD
0 (λU

0 )i j (λD
0 )kl q̃L i ũ∗R j qL k dc

R l + h.c.

1
M

xU
0 (λE

0 )i j (λU
0 )kl l̃L i ẽ∗R j qL k uc

R l + (L↔ Q, E ↔ U) + h.c. (4.17)
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They can be important particularly for the third generation. The largest effect

would be for squarks pair production from a pair of quarks; the process could

be comparable to the MSSM tree level contribution to the amplitude of the same

process [64]. Indeed, let us focus on the qq̄ → q̃q̃∗ in MSSM generated by a

tree-level gluon exchange. The MSSM amplitude behaves as

Aqq̄→g→q̃q̃∗ ∼
g2

3√
s
, (4.18)

where s is the Mandelstam variable. On the other hand, the operators (4.17)

generate a contact term contributing

AMS S M5
qq̄→q̃q̃∗ ∼

λU
0 λ

D
0

M
. (4.19)

The dimension-five operator for the third generation has therefore a comparable

contribution to the MSSM diagrams for energies E ≥ g2
3M, which can be in the

TeV range. In MSSM there are other diagrams contributing to this process, in

particular Higgs exchange. It can be checked however that at energies above the

CP-even Higgs masses, the MSSM amplitude decreases in energy whereas the

contact term coming from the dimension-five operators gives a constant con-

tribution which is sizeable for high energy. Of course, at energies above M we

should replace the contact term by the corresponding tree-level diagram with

exchange of massive S U(2) doublets (or whatever other physics generates this

effective operator).

Note that couplings similar to (4.17) could also be generated by the term
∫

d2θ (QU) TQ(QD) of (3.29). This term is not present in MSSM5 of (4.10) due to

our FCNC ansatz (4.1), (4.4); however, the ansatz could be relaxed for the third
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generation. Therefore the above process of squark production can have an even

larger amplitude from contributions in the third line of (3.29).

The Lagrangian (4.10) also contains other supersymmetric couplings involv-

ing gauge interactions which can be important for phenomenology. They arise

from any dimension-five D-term in (4.10) giving

L ⊃
(λU

0 )i jxU
0

M

[
− h†1DµDµ (q̃L i ũ∗R j) −

1√
2

h†1λ1 ( q̃L i uc
R j + qL i ũ∗R j) −

1√
2
ψh1
λ1 q̃L i ũ∗R j

+
1
2

h†1 D1 q̃L i ũ∗R j + iψh1
σµDµ (q̃L i uc

R j + qL i ũ∗R j)
]

+(U → D, H1 → H2, V1 → V2) + (Q→ L, H1 → H2, V1 → V2,U → E) + h.c.(4.20)

where D1, λ1 are the auxiliary and gaugino components of V1 vector superfield,

and

D1 ≡ −
g2

2

2

[
h†1 1σ h1 + h†2 1σ h2 + q̃†L i1σq̃L i + l̃†L i1σl̃L i

]

+
g2

1

2

[
− h†1h1 + h†2h2 +

1
3

q̃†L iq̃L i −
4
3

ũR iũ∗R i +
2
3

d̃R id̃∗R i − l̃†L i l̃L i + 2 ẽR i ẽ∗R i

]
(4.21)

Here Dµ is the covariant derivative, Dµ = ∂µ + i/2 V1,µ, where V1,µ is the gauge

field of the vector superfield V1 ≡ g2 Vi
W σ

i − g1 VY , introduced in eq. (3.2). Cou-

plings similar to those above are generated by the substitutions shown in (4.20).

Some of them can be phenomenologically important, e.g. those involving 2

particles and 2 sparticles such as Higgs-quark-squark-gaugino or gauge-quark-

higgsino-squark, arising from (4.20). Also, we notice a term with a “wrong”

Higgs-squark-squark derivative coupling.

Yukawa interactions also generate supersymmetric couplings of structure

similar to some of those in (4.20), involving 4 squarks and a higgs or 2 squarks
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and 3 higgses or 2 squarks, 2 sleptons and a higgs. However, these arise at or-

der λ3
F , where λF , F : U,D, E are Yukawa couplings entering (4.10). Therefore

they are suppressed both by the scale M and, relative to the above gauge coun-

terparts, by an extra Yukawa coupling. This is due to the presence of an extra

Yukawa coupling in the third line of (4.10) relative to ordinary D-terms. The

strength of these interactions is also sub-leading to other Yukawa interactions

listed so far which also involved fewer (s)particles.

Finally, supersymmetric couplings with 3 higgses and 2 squarks or 2 slep-

tons arise from (H1H2)2 of (4.10), suppressed by two Yukawa couplings and by

the scale M. Also, there exist potentially larger couplings of 2 higgses and 2 hig-

gsinos, being suppressed only by λH(0) and the scale M. In addition, there are

non-supersymmetric couplings with 4 higgs fields whose effects are discussed

in section 4.4. This concludes our discussion of all the new couplings generated

by dimension-five operators in the MSSM5.

4.3 The MSSM Higgs Sector with Mass Dimension Five Oper-

ators

In the following we restrict the analysis to the MSSM Higgs sector extended

by mass dimension five operators and analyse their implications. In this sector

there are in general two dimension-five operators that affect the Higgs fields

masses, shown in eq. (4.22) below. According to our previous discussion the

last operator in (4.22) is redundant and can be “gauged away”. However, in

this section we choose to keep it, in order to show explicitly that it does not

bring new physics of its own. The relevant part of MSSM Higgs Lagrangian
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with dimension-five operators is

L1 =

∫
d4θ
[
Z1(S , S †) H†1 eV1 H1 + Z2(S , S †) H†2 eV2 H2

]
(4.22)

+

∫
d2θ
[
µ̃ (1 + c1 S ) H1 H2 +

c3

M
(1 + c2 S ) (H1 H2)2

]
+ h.c.

+
1
M

∫
d4θ
{
A(S , S †) Dα

[
B(S , S †) H2 e−V1

]
Dα
[
Γ(S , S †) eV1 H1

]
+ h.c.

}

Additional spurion dependence arises from the dimension-five operators con-

sidered. For the definitions of A(S , S †), B(S , S †), Γ(S , S †) see eq. (3.8). After elim-

ination of the auxiliary fields and a rescaling of scalar fields, the scalar part of

L1 in (4.22) becomes:

L1,scalar = −
1
8

(g2
1 + g2

2) (|h1|2 − |h2|2)2 +
m0

M
(g2

1 + g2
2) (|h1|2 − |h2|2) (δ1 h1 h2 + h.c.)

+
2 c3

M
(|h1|2 + |h2|2)(µ̃∗ h1 h2 + h.c.) − m0

M
c3 (δ2 (h1 h2)2 + h.c.) (4.23)

− (|µ̃|2 + m2
1)|h1|2 − (|µ̃|2 + m2

2)|h2|2 − (h1 h2Bm0µ + h.c.) − h∗1D2 h1 − h∗2D2 h2

where

m2
1 = m2

0

(
| a1 |2 − a2

)
+ O(m0/M)

m2
2 = m2

0

(
| b1 |2 − b2

)
+ O(m0/M)

Bm0µ = µ̃m0

(
c1 − a1 − b1

)
+ O(m0/M) (4.24)

The O(m0/M) corrections in (4.24) are not shown explicitly since they only renor-

malise m1,2 and Bm0µwhich are anyway unknown parameters of the MSSM. We

denoted

δ1 = −β1 α0 γ0 + γ1 β0 α0 − α0β0γ0 (a1 − b1), δ2 = c2 + 2(a1 + b1), (4.25)
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We notice the presence of three contributions in the scalar potential, introduced

by our dimension-five operators. The contributions proportional to c3 are due

to (H1H2)2 in (4.22) and were discussed in [65] (also [67, 68]; for a review see

[69]). The one proportional to δ1

(|h1|2 − |h2|2) (h1 h2 + h.c.), (4.26)

was introduced by the dimension-five operator in the last line of (4.22). This is

a new contribution to the scalar potential, and is vanishing if α0 = β0 = γ0. An

interesting feature is that its one loop contribution to h1,2 self energy remains

soft (no quadratic divergences) despite its higher dimensional origin.

4.4 Higgs Mass Corrections Beyond MSSM

Let us consider the implications of (4.23) for the Higgs masses. The scalar po-

tential is

V = m̃2
1 |h1 |2 + m̃2

2 |h2 |2 +
(

Bm0µ h1 h2 + h.c.
)
+

g2

8

(
| h1 |2 − | h2 |2

)2

+
(
| h1 |2 − | h2 |2

) (
η1 h1 h2 + h.c.

)
+
(
| h1 |2 + | h2 |2

) (
η2 h1 h2 + h.c.

)

+
1
2

(
η3 (h1 h2)2 + h.c.

)
(4.27)

where the definition of η1,2,3 ∼ 1/M can be read from eq. (4.23). We take for

simplicity ηi real, and therefore η3 ≥ 0, |η2| ≤ η3/4. Also

m̃2
1 ≡ m2

1 + |µ̃|2, m̃2
2 ≡ m2

2 + | µ̃ |2, g2 ≡ g2
1 + g2

2 (4.28)

Consider quantum fluctuations of hi around a vacuum expectation value

hi =
1√
2

(vi + h̃i + iσ̃i), i = 1, 2 (4.29)
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From the two minimum conditions for the scalar potential V of eq. (4.27) one

can express m̃1,2 in terms of Bm0µ, v1, v2 to find:

m̃2
1 = −Bm0µ

v2

v1
− 1

8
g2 (v2

1 − v2
2) − η1

2
v2

v1
(3 v2

1 − v2
2) − η2

2
v2

v1
(3 v2

1 + v2
2) − η3

2
v2

2

m̃2
2 = −Bm0µ

v1

v2
+

1
8

g2(v1
2 − v2

2) − η1

2
v1

v2
(v2

1 − 3 v2
2) − η2

2
v1

v2
(3 v2

2 + v2
1) − η3

2
v2

1(4.30)

which shall be used in the following. The mass matrix is

Mi j =
1
2
∂2V
∂hi∂hj

∣∣∣∣∣
hi=vi/

√
2, σ̃i=0

= Xi j + Zi j (4.31)

where

Xi j =
1
2




2m̃2
1 +

1
4 g2 (3v2

1 − v2
2) 2Bm0µ − 1

2 g2v1 v2

2 Bm0µ − 1
2 g2 v1 v2 2m̃2

2 − 1
4 g2 (v2

1 − 3 v2
2)




(4.32)

and

Zi j =
1
2




6 (η1 + η2) v1 v2 + η3 v2
2 3 (η1 + η2) v2

1 + 3(η2 − η1) v2
2 + 2η3 v1 v2

3 (η1 + η2) v2
1 + 3(η2 − η1) v2

2 + 2η3 v1 v2 6 (η2 − η1) v1 v2 + η3 v2
1



(4.33)

The mass eigenvalues m2
h,H ofMi j are

m2
h,H = M2

h,H ∓
6η1√

w

[
Bm0µ (v2

1 − v2
2) + v1v2

(
m̃2

1 − m̃2
2 +

g2

4
(v2

1 − v2
2)
)]

+ 3η2

[
v1v2 ±

1
2
√

w
(v2

1 + v2
2)(−4Bm0µ + g2 v1v2)

]

+
η3

4

[
v2

1 + v2
2 ±

1√
w

(
2(m̃2

1 − m̃2
2)(v2

1 − v2
2) + g2(v2

1 + v2
2)2

− 16Bm0µv1v2

)]
(4.34)

where upper (lower) signs correspond to the lighter m2
h (heavier m2

H) Higgs field

and M2
h,H expresses the pure MSSM part:

M2
h,H ≡

1
2

[
m̃2

1 + m̃2
2 +

g2

4
(v2

1 + v2
2) ∓ 1

2
√

w
]

(4.35)
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Also,

w ≡ (4Bm0µ − g2v1v2)2 + 4
(
m̃2

1 − m̃2
2 +

g2

2
(v2

1 − v2
2)
)2

(4.36)

With the values of m̃1,2 expressed in terms of v1,2 and Bm0µ from minimum con-

ditions (4.30), one can express m2
h,H of (4.34) as follows

m2
h,H =

m2
Z

2
− Bm0µ(u2 + 1)

2 u
∓
√

w′

2
+ v2
[
η1 q±1 + η2 q±2 + η3 q±3

]
(4.37)

with

q±1 =
u2 − 1

4 u
± (u2 − 1)

4u2(1 + u2)2
√

w′
[
m2

Z u(1 − 6u2 + u4) + Bm0µ (1 + u2)(1 + 18u2 + u4)
]

q±2 = −1 − 6u2 + u4

4 u (1 + u2)
∓ m2

Zu(1 − 14u2 + u4) + Bm0µ(1 + u2)(1 + 10u2 + u4)
4 u2 (1 + u2)

√
w′

q±3 = ∓ 2u
(1 + u2)2

√
w′
[
Bm0µ(1 + u2) − m2

Z u
]

(4.38)

where

w′ ≡ m4
Z + [Bm0µ(1 + u2)3 + 2m2

Zu(1 − 6u2 + u4)]
Bm0µ

u2(1 + u2)
(4.39)

and where we also used v1 = v cos β, v2 = v sin β, u = tan β, m2
Z = g2 v2/4 and

Bm0µ < 0.

Similar considerations apply for the pseudoscalar Higgs/Goldstone boson

sector. The mass matrix in this case is

Ni j =
∂2V
∂σ̃i∂σ̃ j

∣∣∣∣∣
hi=vi/

√
2, σ̃i=0

(4.40)

with entries

N11 = m̃2
1 +

g2

8
(v2

1 − v2
2) + (η1 + η2)v1v2 −

η3

2
v2

2

N12 = −
η1

2
(v2

1 − v2
2) − η2

2
(v2

1 + v2
2) − η3v1v2 − Re(Bm0µ)

N22 = m̃2
2 −

g2

8
(v2

1 − v2
2) + (η2 − η1)v1v2 −

η3

2
v2

1 (4.41)
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The eigenvalues of N are

m2
G,A =

1
2

(m̃2
1 + m̃2

2) ∓ 1
8
√
κ

∓ 4η1√
κ

[
Bm0µ(v2

1 − v2
2) + v1 v2

(
m̃2

1 − m̃2
2 +

g2

4
(v2

1 − v2
2)
)]

+ η2

[
v1v2 ∓

4Bm0µ√
κ

(v2
1 + v2

2)
]

+ η3

[
− 1

4
(v2

1 + v2
2) ∓ 1√

κ

(
8Bm0µv1v2 + (v2

1 − v2
2)(m̃2

1 − m̃2
2) +

g2

4
(v2

1 − v2
2)2
)]

(4.42)

with

κ = 16
[
4(Bm0µ)2 +

(
m̃2

1 − m̃2
2 +

g2

4
(v2

1 − v2
2)
)2]

(4.43)

where the upper sign corresponds to the Goldstone mG and the lower sign to

m2
A. One can use (4.30) to replace m̃1,2 in terms of v1,2 and mA . Using (4.30) one

shows that mG = 0 and

m2
A = −

v2
1 + v2

2

2v1v2

[
2 Bm0µ + η1 (v2

1 − v2
2) + η2 (v2

1 + v2
2) + 2η3 v1 v2

]

= −1 + u2

u
Bm0µ +

u2 − 1
2 u

η1 v2 − 1 + u2

2 u
η2 v2 − η3 v2 (4.44)

By eliminating Bm0µ between (4.37) and (4.44), one obtains the masses mh,H:

m2
h,H =

1
2

[
m2

A + m2
Z ∓
√

w′′
]
∓ 4 m2

A η1 u (u2 − 1) v2

(1 + u2)2
√

w′′

+
2η2 u v2

1 + u2

[
1 ± m2

A + m2
Z√

w′′

]
+
η3 v2

2

[
1 ∓ (m2

A − m2
Z) (u2 − 1)2

√
w′′ (1 + u2)2

]
(4.45)

where the upper (lower) signs correspond to h (H) respectively and

w′′ ≡ m4
A + m4

Z − 2 m2
A m2

Z
1 − 6u2 + u4

(1 + u2)2 = (m2
A + m2

Z)2 − 4 m2
A m2

Z cos2 2β (4.46)
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Replacing u = tan β in mh,H one obtains an equivalent form of mh,H

m2
h,H =

1
2

[
m2

A + m2
Z ∓
√

w′′
]
± η1 v2 sin 4β

m2
A√

w′′

+ η2 v2 sin 2β
[
1 ± m2

A + m2
Z√

w′′

]
+
η3 v2

2

[
1 ∓ (m2

A − m2
Z) cos2 2β
√

w′′

]
(4.47)

For η2 = η3 = 0 one finds from (4.47):

m2
h + m2

H = m2
A + m2

Z (4.48)

which is independent of η1. Then η1 does not affect the relation among physical

masses which is consistent with the result of section 4.3, where the last term

in (4.22), responsible for the η1 term in V , could be removed by a suitable field

redefinition.

In the limit of large tan βwith mA fixed at a value mA > mZ one finds:

m2
h = m2

Z +
4m2

A v2

m2
A − m2

Z
(η2 − η1) cot β

− 4 m2
A m2

Z

m2
A − m2

Z

[
1 − η3 v2 m4

A + m4
Z

2 m2
A m2

Z (m2
A − m2

Z)

]
cot2 β + O(cot3 β) (4.49)

and

m2
H = m2

A + η3 v2 +
4 (m2

A η1 − m2
Z η2) v2

m2
A − m2

Z
cot β

+
4 m2

A m2
Z

m2
A − m2

Z

[
1 − η3 v2 m4

A + m4
Z

2 m2
A m2

Z (m2
A − m2

Z)

]
cot2 β + O(cot3 β) (4.50)

Therefore

δm2
h =

4 m2
A v2

m2
A − m2

Z
(η2 − η1) cot β + O(cot2 β)

δm2
H = η3 v2 +

4 (m2
A η1 − m2

Z η2) v2

m2
A − m2

Z
cot β + O(cot2 β) (4.51)
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in agreement with [65] for η1 = 0. The above expansions for large tan β should

be regarded with due care since they are the result of a double series expansion

in ηi and 1/ tan β. Assuming η3 = 0 (then η2 = 0, too), the term proportional to

cot β in (4.49) is larger than the sub-leading one (cot2 β), giving m2
h − m2

Z > 0 if

|η1/g2| ≥ 1/(4 tan β). This bound is however outside the validity of the perturba-

tive expansion in η1 as we shall see shortly and then the large tan β expansion

is not useful. If η1,2 = 0 and η3 > 0 one could obtain mh > mZ if also the square

bracket in (4.49) is negative, which is more easily satisfied (for a small η3) if mA

is very close to mZ, but then the above large tan β expansion is not reliable.

Let us therefore analyse the validity of the corrections to m2
h,H from eq. (4.47)

in the approximation used. For our perturbative expansion in ηi to be accurate

we require that the ηi-dependent entries in the mass matrixMi j (4.31) be much

smaller than the corresponding values of these matrix elements in the MSSM

case. From this condition one finds

∣∣∣∣ 3 (η1 + η2) v2
1 + 3 (η2 − η1) v2

2 + 2η3 v1 v2

∣∣∣∣ .
1
2

g2 v1 v2

∣∣∣∣ 6 (η2 − η1) v1 v2 + η3 v2
1

∣∣∣∣ .
1
4

g2
∣∣∣∣ v2

1 − 3 v2
2

∣∣∣∣
∣∣∣∣ 6 (η2 + η1) v1 v2 + η3 v2

2

∣∣∣∣ .
1
4

g2
∣∣∣∣ 3 v2

1 − v2
2

∣∣∣∣ (4.52)

Similar conditions are derived from the pseudoscalar Higgs mass matrix ele-

ments Ni j (4.40). One may find this condition too restrictive; in principle it may

not be necessary to impose the leading ηi ∼ O(1/M) contribution to the mass

matrix entries be suppressed relative to the MSSM zeroth order and that one

should instead ask that the O(1/M) correction dominate over the higher order

terms O(1/M2) [70]. However, at the quantitative level this leads, for the present

case, to results which are similar or even stronger (for example for η3) than those
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derived here from comparing the MSSM zeroth order against the O(1/M) terms.

From these one can obtain upper bounds for each ηi. Having imposed these

bounds, we can examine if the dimension-five operators bring a significant con-

tribution to the higgs mass and in particular if we can surpass the tree level

bound mh ≤ mZ.

That would mean to also impose some lower bounds in order to achieve the

desired increase. In the approximation considered, these bounds are derived

from (4.45) with (4.52) and give

(
√
ω + 1 − ρ) (1 + u2)2 √ω

32 u (u2 − 1)
≤ −η1

g2 . min
{ u

6(u2 − 1)
,

3 u2 − 1
24u

,
|u2 − 3|

24 u

}

(
√
ω + 1 − ρ) (1 + u2)2 √ω

4 [(1 + u2)2
√
ω − (ρ − 1)(1 − u2)2]

≤ η3

g2 . min
{1

4
,
|u2 − 3|

4 u2 ,
u2 − 1
4 u2 ,

u2 − 1
4

}
(4.53)

with ω ≡ (ρ − 1)2 + 16u2ρ/(1 + u2)2 and ρ ≡ m2
A/m

2
Z.

Assuming η2 = 0, then mh > mZ is possible if one or both eqs in (4.53) are

respected. On the other hand, it has no solution for η1 within 1 ≤ tan β ≤ 50

and mA/mZ ≥ 1; η1 alone cannot change the MSSM bound mh ≤ mZ within our

approximation. If 1 ≤ m2
A/m

2
Z ≤ 2.43 there is a somewhat “marginal” solution

for η3, with mA/mZ close to unity and large tan β preferred, to enforce the “.”

inequalities in (4.52) and (4.53). For example, if mA = mZ and tan β = 50, the

lower bound on η3/g2 is η3/g2 ≥ 0.02 while η3/g2 . 0.25 is also required. In this

case, for tan β = 50 the increase of m2
h relative to m2

Z, δr = (m2
h − m2

Z)/m2
Z equals

δr = −100/2501 + 2 η3/g2. Therefore δr = 12% or mh ≈ 102 GeV if η3/g2 = 0.08,

corresponding to η3 = 4.4 × 10−2. Larger values for mh should be regarded with

care, since they would correspond to cases when “.” of (4.53) is not comfort-

ably respected; if η3/g2 ≈ 0.04 then δr ≈ 4% or mh ≈ 95 GeV. Further, if we now

increase mA even by a small amount relative to mZ, m2
A = 1.5 m2

Z and tan β = 50,
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the lower bound on η3/g2 is 0.118 which is difficult to comply by a good margin

with an upper bound unchanged at η3/g2 . 0.25. Even so, the relative differ-

ence would be only δr = 2 × 10−3%, (η3/g2 = 0.118), therefore the increase of

mh is negligible. So far we took η2 = 0. If we allow a non-zero value for η2,

which also requires non-zero η3, their combined effect on increasing mh is not

larger and the above results remain valid. Note also that for large tan β regions

1/M2-suppressed operators can be important and can affect the results [65].

From this analysis we see that η1 alone cannot change the MSSM tree level

bound mh≤mZ within the approximation we discuss. This is consistent with sec-

tion 4.3, where it was shown that the operator which induced the η1 term could

be removed by a general field redefinition of suitable coefficients3. However,

η3 can increase mh to values ≈ 95 − 100 GeV if mA ≈ mZ, with the higher values

close to the limit of our approximation. Therefore it is the susy breaking term

associated to (H1 H2)2 that could relax the MSSM tree level bound. This increase

brings a small improvement. To conclude, adding the quantum corrections is

still needed [65] to bring mh above the LEP II bound of 114 GeV [66].

These findings show that the MSSM Higgs sector is rather stable under the

addition of dimension-five operators, in the approximation we considered (ex-

pansion in 1/M) of integrating out a massive singlet or a pair of massive S U(2)

doublets which generated the η1,2,3 contributions. If M is low enough, the ap-

proximation used by integrating out these massive fields becomes unreliable,

and one should recompute the full spectrum keeping all fields dynamical. Then

the quartic interactions that the initial massive fields brought can be larger or of

similar order to their MSSM counterparts and in principle they can change the
3To see this one can also start from (4.22) and perform a “smaller” version of redefinition

(3.10), with ρF =0.
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above conclusions.

4.5 Including Loop Corrections

It is worth mentioning the value of mh in the presence of one loop corrections

from top - stop and dimension five operators [71], mentioned in the text:

m2
h =

1
2

[
m
′ 2
A + m2

Z −
√

w̃′ + ξ
]

+ (2ζ10µ0) v2 sin 2β
[
1 +

m′ 2
A + m2

Z√
w̃′

]
+

(−2 ζ11 m0) v2

2

[
1 − (m′ 2

A − m2
Z) cos2 2β
√

w̃′

]
(4.54)

where

w̃
′ ≡ [(m

′ 2
A − m2

Z) cos 2β + ξ]2 + sin2 2β (m
′ 2
A + m2

Z)2

m
′ 2
A = m̃2

1 + m̃2
2 + ξ/2 + (2 ζ10µ0) v2 sin 2β + ζ11 m0 v2; ξ ≡ δm2

Z sin2 β (4.55)

where δ is the one-loop correction from top-stop Yukawa sector to λ0
2 of (5.38)

which changes according to λ0
2 → λ0

2 (1 + δ) where [72, 73]

δ =
3 h4

t

g2 π2

[
ln

Mt̃

mt
+

Xt

4
+

1
32π2

(
3 h2

t − 16 g2
3

)(
Xt + 2 ln

Mt̃

mt

)
ln

Mt̃

mt

]
,

Xt ≡
2 (At m0 − µ cot β)2

M2
t̃

[
1 − (At m0 − µ cot β)2

12 M2
t̃

]
. (4.56)

with M2
t̃ ≡ mt̃1 mt̃2 , and g3 the QCD coupling. The combined effect of d = 5

operators and top Yukawa coupling ht is that mh can reach values of 130 GeV

for tan β ≤ 7 with a small fine-tuning ∆ ≤ 10 [71] and with the supersymmetric

coefficient ζ10 giving a larger effect than the non supersymmetric one, ζ11. Even

for a modest increase of mh from d = 5 operators alone of order O(10GeV), their

impact on the effective quartic coupling of the Higgs field is significant (due to
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the small value of the MSSM gauge couplings), and this explains the reduction

of fine-tuning by the effective operators.
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CHAPTER 5

MSSM HIGGS WITH OPERATORS
OF MASS DIMENSION 5 AND 6

We generally expect that corrections to observables from higher order oper-

ators will be subdominant to those from the leading, dimension five ones. Nev-

ertheless, we saw in section 4.4 that in the limit of large tan β, the correction to

the mass of the Higgs due to mass dimension five operators is tan β suppressed.

In that limit, corrections from dimension six operators can become comparable

to dimension five since 1/M2 ∼ 1/(M tan β). Therefore, in order to complete the

study of the leading Higgs mass corrections from effective operators, we need

to include the contribution from dimension six operators. Since the latter is not

tan β suppressed, the sequence ends here, as dimension seven or further will

always be subdominant.

5.1 The Relevant Operators

We focus on the Higgs sector of the complete Lagrangian. This is comprised of

the MSSM higgs sector L0 and the complete set of mass dimension-five and six

operators. For L0 we have

L0 =

∫
d4θ
∑

i=1,2

Zi(S , S †) H†i eVi Hi +
{ ∫

d2θ µ (1 + B m0 θθ) H1 · H2 + h.c.
}

(5.1)

63



in standard notation. Here Zi(S , S †) = 1 − ci m2
0 θθθθ with i = 1, 2, ci = O(1) and

m0 is the supersymmetry breaking scale as presented in the previous chapter.

We extend this Lagrangian by higher dimensional operators. In dimension-

five we have the usual contributions studied in the previous chapter:

L1 =
1
M

∫
d2θ ζ(S ) (H2 · H1)2+h.c.

= 2 ζ10 (h2 · h1)(h2 · F1 + F2 · h1) + ζ11 m0 (h2 · h1)2 + h.c,

L2 =
1
M

∫
d4θ
{

A(S , S †)Dα
[
B(S , S †) H2 e−V1

]
Dα
[
Γ(S , S †) eV1 H1

]
+ h.c.

}
(5.2)

where1

1
M
ζ(S ) = ζ10 + ζ11 m0 θθ, ζ10, ζ11 ∼ 1/M, (5.3)

with S = θθm0 the spurion superfield. We assume that

m0 . M (5.4)

so that the effective theory approach is reliable.

L2 is eliminated by generalised, spurion-dependent field redefinitions as it

was shown in detail in the previous chapter. For this reason we keep only L1

for the discussion below. These redefinitions bring however a renormalisation

of the usual MSSM soft terms and of the µ term as well as additional corrections

of order 1/M2. Since in the following we will write down and study the full set

of d = 6 operators, the latter will be automatically included.

The list of d = 6 operators is [74]

O j =
1

M2

∫
d4θ Zj(S , S †) (H†j eV j Hj)2, j ≡ 1, 2.

1We switch to a notation best suited for the analysis here. The dictionary is: η2 = 2ζ10µ∗,
η3=−2 m0ζ11. With respect to the literature: In [71] η2→ζ1, η3→ζ2 and in [65] η2→2ε1r, η3→2ε2r .
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O3 =
1

M2

∫
d4θ Z3(S , S †) (H†1 eV1 H1) (H†2 eV2 H2),

O4 =
1

M2

∫
d4θ Z4(S , S †) (H2.H1) (H2.H1)†,

O5 =
1

M2

∫
d4θ Z5(S , S †) (H†1 eV1 H1) H2.H1 + h.c.

O6 =
1

M2

∫
d4θ Z6(S , S †) (H†2 eV2 H2) H2.H1 + h.c.

O7 =
1

M2

∫
d2θ Z7(S , 0)

1
16 g2 κ

Tr WαWα (H2 H1) + h.c.

O8 =
1

M2

∫
d4θ
[
Z8(S , S †) (H2 H1)2 + h.c.

]
(5.5)

where Wα = (−1/4) D
2
e−V Dα eV is the chiral field strength of S U(2)L or U(1)Y

vector superfields Vw and VY respectively. Also V1,2 = Va
w(σa/2) ∓ 1/2 VY with the

upper sign for V1. The remaining d = 6 operators are:

O9 =
1

M2

∫
d4θ Z9(S , S †) H†1 ∇

2
eV1 ∇2 H1

O10 =
1

M2

∫
d4θ Z10(S , S †) H†2 ∇

2
eV2 ∇2 H2

O11 =
1

M2

∫
d4θ Z11(S , S †) H†1 eV1 ∇αW (1)

α H1

O12 =
1

M2

∫
d4θ Z12(S , S †) H†2 eV2 ∇αW (2)

α H2

O13 =
1

M2

∫
d4θ Z13(S , S †) H†1 eV1 W (1)

α ∇α H1

O14 =
1

M2

∫
d4θ Z14(S , S †) H†2 eV2 W (2)

α ∇α H2 (5.6)

Also ∇α Hi = e−Vi Dα eVi Hi and W (i)
α is the field strength of Vi. In the most generic

case, the above operators should actually include spurion dependence of ar-

bitrary coefficients under any ∇α, in order to include supersymmetry breaking

effects associated to them. The wavefunction coefficients introduced above have

the structure

1
M2 Zi(S , S †) = αi0 + αi1 m0 θθ + α

∗
i1 m0 θθ + αi2 m2

0 θθθθ, αi j ∼ 1/M2. (5.7)
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Regarding the origin of these operators: O1,2,3 can be generated in MSSM with

an additional, massive U(1)′ gauge boson or S U(2) triplets integrated out [65].

O4 can be generated by a massive gauge singlet or S U(2) triplet while O5,6 can

be generated by a combination of S U(2) doublets and massive gauge singlet. O7

is essentially a threshold correction to the gauge coupling with a moduli field

replaced by the Higgs. O8 exists only in broken supersymmetry but is generated

when redefining away the d = 5 derivative operator, thus we keep it.

Let us consider for a moment the operators O9,...14 in the exact supersymme-

try case. We can use the equations of motion to set some of them on shell2:

−1
4

D
2

(H†2 eV2) + µHT
1 (iσ2) = 0,

1
4

D
2

(H†1 eV1) + µHT
2 (iσ2) = 0 (5.8)

We find that in the supersymmetric case3:

O9 ∼
∫

d4θ H†1 ∇
2

eV1 ∇2 H1 = 16 |µ|2
∫

d4θH†1 eV1 H1 (5.9)

and similar for O10. Regarding O11,12, they vanish in the supersymmetric case,

following the definition of ∇α and an integration by parts. Furthermore, O13,14

are similar to O9,10 which can be seen by using the definition of W (i)
α and the

relation between ∇2, (∇2
) and D2, (D

2
).

Summarizing, in the exact supersymmetry case the operators O9...14 give at

most wavefunction renormalisations of operators already included. The super-

symmetry breaking terms also bring simply soft terms and µ term renormal-

ization. Since these terms are anyway renormalised by O1,...8, where spurion

2Superpotential convention:
∫

d2θµH1.H2 =
∫

d2θ µHT
1 (iσ2) H2 ≡

∫
d2θ µ ε i j Hi

1 H j
2; ε12 = 1 =

−ε21.
3Also using (iσ2) e−Λ = eΛT (iσ2); Λ ≡ Λa T a; (iσ2)T = −(iσ2); (iσ2)2 = −12
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dependence is included with arbitrary coefficients, then for what follows there

is no loss of generality in ignoring the supersymmetry breaking effects associ-

ated to O9,...14. In other words, this discussion shows that O9,...,14 are not relevant

for the analysis of the Higgs potential performed below. Finally, there can be an

additional operator of d = 6 from the gauge sector, O15 = (1/M2)
∫

d2θ Wα!Wα

which could affect the Higgs potential4. Using the equations of motion for the

gauge field it can be shown thatO15 gives a renormalisation ofO1,2,3, so its effects

are ultimately included, since the coefficients Z1,2,3 are arbitrary.

In conclusion, the list of d = 6 operators that remain for our study of the

Higgs sector beyond MSSM is that of (5.5). Let us stress that not all these oper-

ators are necessarily present or generated in a detailed model. Symmetries and

details of the “new physics” beyond the MSSM that generated them, may forbid

or favour the presence of some of them. Therefore, we regard these remaining

operators as independent of each other, although in specific models correlations

may exist among their coefficients Zi. It is important to keep all these operators

in the analysis, for the purpose of identifying which of them has the largest

individual contribution to the Higgs mass, one of the main interests of this anal-

ysis. Finally, some of the d = 6 operators can in principle be present even in

the absence of the d = 5 operators, if these classes of operators are generated

by integrating different “new physics”. In specific UV completions, one simply

keeps the terms generated by the model and sets all the rest to zero.

4Its complete gauge invariant form is
∫

d4θ Tr eVWαe−V D2(eVWαe−V ).
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5.2 The Scalar Potential

Following the previous discussion, the overall Lagrangian of the model is

LH = L0 +L1 +

8∑

i=1

Oi (5.10)

with the MSSM Higgs Lagrangian L0 of eq. (5.1), L1 of eq. (5.2) and O1,2,....,8 of

eq. (5.5).

In order to calculate the scalar potential we need the bosonic expansion of

the Lagrangian. For the dimension-six operators we have:

O1 =
1

M2

∫
d4θ Z1(S , S †) (H†1 eV1 H1)2

= 2α10

[
(h†1h1) [ (Dµh1)† (Dµh1) + h†1

D1

2
h1 + F†1F1 ] + | h†1F1|2 + (h†1Dµh1)(h†1

←−−Dµh1)
]

+
[
2α11 m0 (h†1h1)(F†1h1) + h.c.

]
+ α12 m2

0 (h†1h1)2 + fermionic part (5.11)

O2 =
1

M2

∫
d4θ Z2(S , S †) (H†2 eV2 H2)2

= 2α20

[
(h†2h2) [ (Dµh2)† (Dµh2) + h†2

D2

2
h2 + F†2F2 ] + |h†2F2|2 + (h†2Dµh2)(h†2

←−−Dµh2)
]

+
[
2α21 m0 (h†2h2)(F†2h2) + h.c.

]
+ α22 m2

0 (h†2h2)2 + fermionic part (5.12)

O3 =
1

M2

∫
d4θ Z3(S , S †) (H†1 eV1 H1) (H†2 eV2 H2),

= α30

{
(h†1h1)

[
(Dµh2)† (Dµh2) + h†2

D2

2
h2 + F†2F2

]
+ (h†1F1)(F†2h2) + (1↔ 2)

}

+ α30

[
(h†1Dµh1)(h†2

←−D
µ
h2) + h.c.

]
+
{
α31 m0

[
(h†1h1)(F†2h2) + (h†2h2)(F†1h1)

]
+ h.c.

}

+ α32 m2
0 (h†1h1)(h†2h2) + fermionic part (5.13)

O4 =
1

M2

∫
d4θ Z4(S , S †) (H2 .H1) (H2 .H1)†,

= α40 ∂µ(h2.h1) ∂µ(h2.h1)† +
[
α41 m0 (h2.h1) (h2.F1 + F2.h1)† + h.c.

]

+ α42 m2
0 (h2.h1) (h2.h1)† + α40 |h2 · F1 + F2 · h1|2 + fermionic part (5.14)
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O5 =
1

M2

∫
d4θ Z5(S , S †) (H†1 eV1 H1) H2.H1 + h.c.

= α50

{[
(Dµh1)† (Dµh1) + h†1

D1

2
h1 + F†1F1

]
(h2.h1) + (h†1

←−Dµh1) ∂µ(h2.h1)
}

+
[
α50 (F†1h1) + α∗51 m0 (h†1 h1)

]
(h2.F1 + F2.h1) + m0

[
α51 (F†1h1) + α∗51 (h†1F1)

]
(h2.h1)

+ α52 m2
0 (h†1h1) (h2.h1) + h.c. of all + fermionic part (5.15)

O6 =
1

M2

∫
d4θ Z6(S , S †) (H†2 eV2 H2) H2.H1 + h.c.

= α60

{[
(Dµh2)† (Dµh2) + h†2

D2

2
h2 + F†2F2

]
(h2.h1) + (h†2

←−Dµh2) ∂µ(h2.h1)
}

+
[
α60 (F†2h2) + α∗61 m0 (h†2 h2)

]
(h2.F1 + F2.h1) + m0

[
α61 (F†2h2) + α∗61 (h†2F2)

]
(h2.h1)

+ α62 m2
0 (h†2h2) (h2.h1) + h.c. of all + fermionic part (5.16)

O7 =
1

M2

1
16g2κ

∫
d2θ Z7(S , 0) Tr WαWα (H2 H1) + h.c.

=
1
2

(D2
w + D2

Y)
[
α70 (h2.h1) + α∗70 (h2.h1)†

]
+ fermionic part (5.17)

O8 =
1

M2

∫
d4θ
[
Z8(S , S †) [(H2 H1)2 + h.c.]

]

= 2α∗81 m0 (h2.h1) (h2.F1 + F2.h1) + m2
0 α82 (h2 · h1)2 + h.c. + fermionic part(5.18)

The notation is as follows: Dµhi = (∂µ + i/2 Vµi ) hi, h†i
←−D
µ
= (Dµhi)†. Further,

D1 ≡ 1Dw 1T + (−1/2) DY and D2 ≡ 1Dw 1T + (1/2) DY , T a = σa/2. Finally, one rescales

in all Oi (i ! 7): Vw → 2 g2 Vw, Vy → 2 g1 Vy. Then V1,2 = 2 g2 1Vw 1T + 2 g1 (∓1/2) Vy

with the upper sign (minus) for V1, where V1,2 enter the definition of O1,2. Other

notations used above: H1 · H2 = ε i j Hi
1 H j

2. Also |h1 · h2|2 = |hi
1 ε

i j h j
2|2 = |h1|2 |h2|2 −

|h†1 h2|2; ε i j εk j = δik; ε i j εkl = δik δ jl − δil δ jk, ε12 = 1, with

h1 =




h0
1

h−1



≡




h1
1

h2
1



, Yh1 = −1; h2 =




h+2

h0
2



≡




h1
2

h2
2



, Yh2 = +1 (5.19)

With these results we find the following contributions to the scalar potential:

VF =
∂2 K
∂ hi ∂ h∗j

Fi F∗j = |F1|2 + |F2|2 +
∂2 K6

∂ hi ∂ h∗j
Fi F∗j (5.20)
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where K6 is the contribution of O(1/M2) to the Kähler potential due to O1,...8.

Also,

F∗q1 = −{εqp hp
2 [µ + 2 ζ10 (h1.h2) + ρ11] + h∗q1 ρ12}

F∗q2 = −{ε pq hp
1 [µ + 2 ζ10 (h1.h2) + ρ21] + h∗q2 ρ22} (5.21)

where ρi j are functions of h1,2:

ρ11 = −(2α10 µ + α40µ + α
∗
51 m0)|h1|2 − (α30 µ + α40µ + α

∗
61 m0) |h2|2

−(α∗41 m0 + α
∗
50 µ) (h2.h1)∗ + [ (α60 + 2α50) µ + 2α∗81 m0] (h1.h2)

ρ12 = (2α∗11 m0 + α
∗
50 µ)|h1|2 + (α∗31 m0 + α

∗
50 µ) |h2|2

−[(2α10 + α30) µ + α∗51 m0] (h1.h2) + α∗51 m0 (h2.h1)∗ (5.22)

ρ21 = −(2α20 µ + α40µ + α
∗
61 m0)|h2|2 − (α30 µ + α40µ + α

∗
51 m0) |h1|2

−(α∗41 m0 + α
∗
60 µ) (h2.h1)∗ + [ (α50 + 2α60) µ + 2α∗81 m0] (h1.h2)

ρ22 = (2α∗21 m0 + α
∗
60 µ)|h2|2 + (α∗31 m0 + α

∗
60 µ) |h1|2

−[(2α20 + α30) µ + α∗61 m0] (h1.h2) + α∗61 m0 (h2.h1)∗ (5.23)

The first two terms in the rhs of (5.20) give (hi denote S U(2)L doublets, |hi|2 ≡

h†i hi):

VF,1 ≡ |F1|2 + |F2|2

= |µ + 2 ζ10 h1.h2|2 (|h1|2 + |h2|2)

+
[
µ∗
(
|h1|2 ρ21 + |h2|2 ρ11 + (h1.h2)† (ρ22 + ρ12)

)
+ h.c.

]
(5.24)

The nontrivial field dependent Kähler metric gives for the last term in VF of

eq. (5.20):
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VF,2 = |µ|2
[
2 (α10 + α20 + α40)|h1|2 |h2|2 + (α30 + α40) (|h1|4 + |h2|4)

+ 2 (α10 + α20 + α30) |h1.h2|2 + (|h1|2 + 2 |h2|2)(α50 h2.h1 + h.c.)

+ (2|h1|2 + |h2|2)(α60 h2.h1 + h.c.)
]

(5.25)

so that VF = VF,1 + VF,2. Furthermore, from the gauge part we have:

Da
w = −g2

[
h†1T a h1 (1 + ρ̃1) + h†2 T a h2 (1 + ρ̃2)

]
, T a = σa/2

DY = −g1

[
h†1
−1
2

h1 (1 + ρ̃1) + h†2
1
2

h2 (1 + ρ̃2)
]

(5.26)

with notation:

ρ̃1(h1,2) ≡ 2α10 |h1|2 + α30 |h2|2 + [(α50 − α70) h2.h1 + h.c.]

ρ̃2(h1,2) ≡ 2α20 |h2|2 + α30 |h1|2 + [(α60 − α70) h2.h1 + h.c.] (5.27)

This gives

Da
w Da

w =
g2

2

4
[ ((1 + ρ̃1) |h1|2 − (1 + ρ̃2) |h2|2)2 + 4 (1 + ρ̃1)(1 + ρ̃2) |h†1 h2|2]

D2
Y =

g2
1

4
((1 + ρ̃1) |h1|2 − (1 + ρ̃2) |h2|2)2 (5.28)

So the gauge part of the scalar potential is written as:

Vgauge =
1
2

(D2
w + D2

Y) [1 + (α70 h2.h1 + h.c.)]

=
g2

1 + g2
2

8
(|h1|2 − |h2|2) [(1 + f1(h1,2)) |h1|2 − (1 + f2(h1,2)) |h2|2]

+
g2

2

2
(1 + f3(h1,2))|h†1 h2|2 (5.29)

obtained with (5.26) and where f1,2,3 are functions of h1,2:
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f1(h1,2) ≡ 4α10 |h1|2 + [ (2α50 − α70) h2.h1 + h.c.)]

f2(h1,2) ≡ 4α20 |h2|2 + [ (2α60 − α70) h2.h1 + h.c.)]

f3(h1,2) ≡ ρ̃1 + ρ̃2 + (α70 h2.h1 + h.c.) (5.30)

The scalar potential also has corrections VS S B from supersymmetry breaking,

due to spurion dependence in higher dimensional operators. In addition we

also have the usual soft breaking term from the MSSM. As a result

VS S B = −m2
0

[
α12 |h1|4 + α22 |h2|4 + α32 |h1|2 |h2|2 + α42 |h2.h1|2 (5.31)

+ (α52 |h1|2 (h2.h1) + h.c.) + (α62 |h2|2 (h2.h1) + h.c.)
]

−
[

m2
0 α82 (h1.h2)2 + ζ11 m0 (h2.h1)2 + µ B m0 (h1.h2)+h.c.

]
+m2

0 (c1|h1|2 +c2|h2|2)

Finally, in O1,...8 there are non standard kinetic terms that can contribute to V

when the scalar singlet components (denoted h0
i ) of hi acquire a vev. The relevant

terms are:

LH ⊃ (δi j∗ + gi j∗) ∂µ h0
i ∂
µh0∗

j , i, j = 1, 2. (5.32)

where the field dependent metric is:

g11∗ = 4α10 |h0
1|2 + (α30 + α40) |h0

2|2 − 2 (α50 h0
1 h0

2 + h.c.)

g12∗ = (α30 + α40) h0∗
1 h0

2 − α∗50 h0∗2
1 − α60 h0 2

2 , g21∗ = g∗12∗

g22∗ = 4α20 |h0
2|2 + (α30 + α40) |h0

1|2 − 2 (α60 h0
1 h0

2 + h.c.) (5.33)

For simplicity we only included the S U(2) higgs singlets contribution, that we

actually need in the following, but the discussion can be extended to the general

case. The metric gi j∗ is expanded about a background value 〈h0
i 〉 = vi/

√
2, then

field redefinitions are performed to obtain canonical kinetic terms. They are:
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h0
1 → h0

1

(
1 − g̃11∗

2

)
− g̃21∗

2
h0

2

h0
2 → h0

2

(
1 − g̃22∗

2

)
− g̃12∗

2
h0

1, g̃i j∗ ≡ gi j∗

∣∣∣∣
h0

i→vi/
√

2
(5.34)

These bring further corrections to the scalar potential.

Since the metric has corrections which are O(1/M2), after (5.34) only the

MSSM soft breaking terms and the MSSM quartic terms are affected. The other

terms in the scalar potential, already suppressed by one or more powers of the

scale M are affected only beyond the approximation O(1/M2) considered here.

Following (5.34) the correction terms O(1/M2) induced by the MSSM quartic

terms and by soft breaking terms in VS S B are:

Vk.t. = m̃2
1 (−g̃∗11) | h0

1 |2 + m̃2
2 (−g̃∗22) | h0

2 |2 −
1
2

(m̃2
1 + m̃2

2) (g̃21∗ h0∗
1 h0

2 + h.c.)

+
1
2

[
B m0 µ

(
(g̃11∗ + g̃22∗) h0

1 h0
2 + g̃12∗ h0 2

1 + g̃21∗ h0 2
2

)
+ h.c.

]

− g2

8
( | h0

1 |2 − | h0
2 |2) (g̃11∗ | h0

1 |2 − g̃22∗ | h0
2 |2 + h.c.) (5.35)

Using equations (5.20), (5.29), (5.31) and (5.35), we find the full scalar potential.

With notation m̃2
i ≡ cim2

0 + |µ|2, i = 1, 2 one finally has:

V = VF,1 + VF,2 + VG + VS S B + Vk.t. (5.36)

= Vk.t. + m̃2
1|h1|2 + m̃2

2|h2|2 − [µ B m0 h1 · h2 + h.c.]

+
λ1

2
|h1 |4 +

λ2

2
|h2 |4 + λ3 |h1 |2 |h2 |2 + λ4 | h1 · h2 |2

+
( λ5

2
(h1 · h2)2 + λ6 | h1 |2 (h1 · h2) + λ7 | h2 |2 (h1 · h2) + h.c.

)

+
g2

8
(|h1|2 − |h2|2)( f1(h1,2) |h1|2 − f2(h1,2) |h2|2) + 4 |ζ10|2|h1.h2|2 (|h1|2 + |h2|2)

+
g2

2

2
f3(h1,2) |h†1h2|2

where g2 = g2
1+g2

2, and f1,2,3(h1,2) are all quadratic in hi, see eq. (5.30). Except Vk.t.,

all other fields are in the SU(2) doublets notation. λi are given by
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λ1/2 = λ0
1/2 − |µ|2 (α30 + α40) − m2

0 α12 − 2m0 Re[α51 µ] (5.37)

λ2/2 = λ0
2/2 − |µ|2 (α30 + α40) − m2

0 α22 − 2m0 Re[α61 µ]

λ3 = λ
0
3 − 2 |µ|2 (α10 + α20 + α40) − m2

0 α32 − 2m0 Re[(α51 + α61) µ]

λ4 = λ
0
4 − 2 |µ|2 (α10 + α20 + α30) − m2

0 α42 − 2 m0 Re[(α51 + α61) µ]

λ5/2 = −m0 µ (α51 + α61) − m0 ζ11 − m2
0 α82

λ6 = |µ|2 (α50 + 2α60) + m2
0 α52 + m0 µ (2α11 + α31 + α41) + 2 m0 µ

∗ α∗81 + 2 ζ10 µ
∗

λ7 = |µ|2 (α60 + 2α50) + m2
0 α62 + m0 µ (2α21 + α31 + α41) + 2 m0 µ

∗ α∗81 + 2 ζ10 µ
∗

where

λ0
1/2 =

1
8

(g2
2 + g2

1), λ0
2/2 =

1
8

(g2
2 + g2

1), λ0
3 =

1
4

(g2
2 − g2

1), λ0
4 = −

1
2

g2
2, (5.38)

denote the pure MSSM contribution. One can include MSSM loop corrections

by replacing λ0
i with radiatively corrected values [73].

Equations (5.36) and (5.37) show the effects of various higher dimensional

operators on the scalar potential. As a reminder, note that all αik ∼ O(1/M2)

while ζ11, ζ10 ∼ O(1/M). In principle, the dimension-five pieces are the domi-

nant. However, as we will see later, when tan β is large the effect on a physical

observable of dimension-five and six terms can be of similar size. In specific

models correlations exist among these coefficients. The above remarks apply to

the case when the d = 5 and d = 6 operators considered are generated by the

same “new physics” beyond the MSSM (i.e. are suppressed by the same scale).

However, as mentioned earlier, this may not always be the case; in various mod-

els contributions from some d = 6 operators can be independent of those from

d = 5 operators (and present even in the absence of the latter), if generated by

different “new physics”. A case by case study is then needed for a thorough

analysis of all possible scenarios beyond the MSSM higgs sector.
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The overall sign of the h6 terms depends on the relative size of α j0, j =

1, 2, 5, 6, 7, and cannot be fixed even locally, in the absence of the exact values

of these coefficients. ζ10 also contributes to the overall sign, however this alone

cannot fix it. At large fields’ values higher and higher dimensional operators

become relevant and contribute to it. We therefore do not impose that V be

bounded from below at large fields. For a discussion of stability with d = 5

operators only see [75].

Eq. (5.36) is the main result of this section. For simplicity, one can take g̃12∗

and g̃21∗ to be real, possible if for example α50 and α60 are real and there is no vev

for Imhi. Bm0µ can also be taken to be real. In the next section we shall adopt

these simplifications.

5.3 Corrections to the MSSM Higgs Masses

Having obtained the general expression for the scalar potential, we proceed

with the computation of the mass spectrum. The general expression for the

mass of the CP-even Higgs fields h,H is:

m2
h,H ≡

1
2
∂2V
∂h0

i ∂h
0
j

∣∣∣∣∣〈hi〉=vi/
√

2,〈 Im hi〉=0
(5.39)

In the leading order O(1/M) one has (upper signs for mh):

m2
h,H =

m2
Z

2
+

B m0µ(u2 + 1)
2 u

∓
√

w
2
+ v2
[

(2 ζ10 µ) q±1 + (−2 m0 ζ11) q±2
]
+ δm2

h,H (5.40)

with
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q±1 =
1

4 u2 (1 + u2)
√

w

×
[
− (1 − 6u2 + u4) u

√
w ∓
(
m2

Zu(1 − 14u2 + u4) − B m0µ(1 + u2)(1 + 10u2 + u4)
)]

q±2 = ∓
2u

(1 + u2)2
√

w

[
− B m0µ(1 + u2) − m2

Z u
]

(5.41)

where

w ≡ m4
Z + [ − B m0 µ(1 + u2)3 + 2m2

Zu(1 − 6u2 + u4)]
(−B m0µ)
u2(1 + u2)

, u ≡ tan β (5.42)

In eq. (5.40)

δm2
h,H = O(1/M2) (5.43)

and we also used that mZ = g v/2. One also shows that the Goldstone mode has

mG = 0 and the pseudoscalar A has a mass:

m2
A =

1 + u2

u
B m0 µ −

1 + u2

u
ζ10 µ v2 + 2 m0 ζ11 v2 + δm2

A, δm
2
A = O(1/M2) (5.44)

These results agree with the independent calculation up to order O(1/M) of the

previous chapters.

Ignoring for the moment the corrections O(1/M2), one eliminates Bm0µ be-

tween (5.40) and (5.44) to obtain:

m2
h,H =

1
2

[
m2

A + m2
Z ∓
√

w̃
]

+ (2 ζ10 µ) v2 sin 2β
[
1 ± m2

A + m2
Z√

w̃

]
+

(−2 ζ11 m0) v2

2

[
1 ∓ (m2

A − m2
Z) cos2 2β
√

w̃

]

+ δ′m2
h,H, δ′m2

h,H = O(1/M2) (5.45)

where the upper (lower) signs correspond to h (H) respectively and

w̃ ≡ (m2
A + m2

Z)2 − 4 m2
A m2

Z cos2 2β (5.46)
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This is important if one considers mA as an input; it is also needed if one consid-

ers the limit of large tan β at fixed mA (see later).

The O(1/M2) corrections δm2
h,H, δm2

A and δ′m2
h,H of equations (5.40), (5.44) and

(5.45) in the general case of including all operators and their associated super-

symmetry breaking, have a rather complicated form. For most purposes, an

expansion in 1/ tan β is accurate enough. The reason for this is that it is only at

large tan β that d = 6 operators bring corrections comparable to those of d = 5.

The relative tan β enhancement of O(1/M2) operators compensates for the extra

suppression factor 1/M that these operators have relative to O(1/M) operators

(which involve both h1 and h2 and thus are not enhanced in this limit).

If we neglect supersymmetry breaking effects of d = 6 operators (i.e. α j1 =

α j2 = 0, α j0 ! 0, j = 1, ..., 8) and with d = 5 operators contribution, one has5 for

the correction δm2
h,H in eq. (5.40) (upper signs correspond to δm2

h)

δm2
h,H =

7∑

j=1

γ±j α j 0 + γ
±
x ζ10 ζ11 + γ

±
z ζ

2
10 + γ

±
y ζ

2
11 (5.47)

The expressions of the coefficients γ± are provided in Appendix A and can be

used for numerical studies. While these expressions are exact, they are compli-

cated and not very transparent. It is then instructive to analyse an approxima-

tion of the O(1/M2) correction as an expansion in 1/ tan β. We present in this limit

the correction δm2
h,H of eq. (5.40), which also includes all supersymmetry break-

ing effects associated with all d = 5, 6 operators, (i.e. α j1 ! 0, α j2 ! 0, ζ11 ! 0,

j = 1, ..8) in addition to the MSSM soft terms. This has a simple expression:

δm2
h = −2 v2

[
α22m2

0 + 2α61 m0µ + (α30 + α40) µ2 − α20 m2
Z

]

5In the case of including the supersymmetry breaking effects from effective operators, asso-
ciated with coefficients α j1, α j2 j = 1, 2, ..8, the exact formula is very long and is not included
here.
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+
v2

tan β

[
4α62 m2

0 + 4µm0 (2α21 + α31 + α41 + 2α81) + 4µ2 (2α50 + α60)

− m2
Z (2α60 − 3α70) − v2

(Bm0µ)
(2ζ10 µ)2

]
+ O(1/ tan2 β) (5.48)

which is obtained with Bm0µ kept fixed. The result is dominated by the first

line, including both SUSY and non-SUSY terms from the effective operators.

This correction can be comparable to linear terms in ζ10, ζ11 from d = 5 operators

for (2 ζ10µ) ≈ 1/ tan β (see later). Not all O1,2...8 are necessarily present, so in some

models some αi j, ζ10, ζ11 could vanish. Also:

δm2
H = −1

4
(Bm0µ) v2 α60 tan2 β +

v2 tan β
8

[
− 8Bm0µα20 − 4α62m2

0

− 4µm0(2α21 + α31 + α41 + 2α81) − 4µ2 (2α50 + α60) + (2α60 − α70) m2
Z

]

+
3
4

Bm0µ v2(α50 + α60) +
v2

8 tan β

[
− 8Bm0µα10 + (12α52 − 16α62)m2

0

− 4µm0(−6α11 + 8α21 + α31 + α41 + 2α81) − 4µ2(5α50 − 2α60)

+ (6α50 + 20α60 − 13α70) m2
Z +

8 v2

Bm0µ
(2 ζ10 µ)2

]
+ O(1/ tan2 β) (5.49)

which is obtained for (Bm0µ) fixed. Note theO(1/M2) effects from d = 5 operators

(ζ2
10).

Similar expressions exist for the neutral pseudoscalar A. The results are sim-

pler in this case and we present the exact expression of δm2
A of (5.44) in the most

general case, that includes all supersymmetry breaking effects from the opera-

tors of d = 5, 6 and from the MSSM. One finds

δm2
A =

v2

8 tan2 β (1 + tan2 β)

[
− 2 B m0µα50 + [ − (4α31 + 4α41 + 8α81 + 8α11) m0µ

− 4α52m2
0 − 8Bm0µα10 − 4 (α50 + 2α60)µ2 + (2α50 − α70) m2

Z ] tan β

+ [2B m0 µ (10α50 + 3α60) + 16α82m2
0 + 16(α51 + α61)m0 µ] tan2 β

+ 2 [− 4B m0µ(α10 + α20 + 2α30 + 2α40)− 6(α50 + α60) µ2 − (α50 + α60 − α70) m2
Z
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− 2(α62 + α52) m2
0 − 4(α11 + α21 + α31 + α41 + 2α81) m0µ] tan3 β

+ [2 B m0 µ (3α50 + 10α60) + 16α82m2
0 + 16(α51 + α61) m0µ] tan4 β

− [8B m0µα20 + 4 (2α50 + α60) µ2 − (2α60 − α70) m2
Z + 4α62 m2

0

+ 4 (2α21 + α31 + α41 + 2α81) m0 µ] tan5 β − 2 B m0 µα60 tan6 β
]

(5.50)

We also showed that δmG = 0 so the Goldstone mode remains massless in

O(1/M2), which is a good consistency check. A result similar to that in eq. (5.48)

is found from an expansion of (5.50) in the large tan β limit:

δm2
A = −

1
4

(Bm0µ)α60 v2 tan2 β +
tan β

8
v2
[
− 8Bm0µα20 − 4α62m2

0

− (8α21 + 4α31 + 4α41 + 8α81) m0µ − (8α50 + 4α60)µ2 + 2α60 m2
Z − α70 m2

Z

]

+
v2

4

[
Bm0µ(3α50 + 11α60) + 8m2

0α82 + 8m0µ(α51 + α61)
]

+
v2

8 tan β

[
− 8Bm0µ (α10 + 2α30 + 2α40) − 4 (2α11 + α31 + α41 + 2α81) m0µ

− 4α52 m2
0 − (4α50 + 8α60)µ2 − (2α50 + 4α60 − 3α70)m2

Z

]
+ O(1/ tan2 β) (5.51)

We emphasise that the large tan β limits presented so far were done with (B m0µ)

fixed. While this is certainly an interesting case, a more natural expression to

consider at large tan β is that in which one keeps mA fixed and Bm0µ arbitrary.

We present below the correction O(1/M2) to m2
h,H for the case mA is kept fixed to

an appropriate value. The result is (assuming mA>mZ, otherwise δ′m2
h and δ′m2

H

are exchanged):

δ′m2
h = −2 v2

[
α22 m2

0 + (α30 + α40)µ2 + 2α61 m0 µ − α20 m2
Z

]
− (2 ζ10 µ)2 v4

m2
A − m2

Z

+
v2

tan β

[ 1
(m2

A − m2
Z)

(
4 m2

A ( (2α21+α31+α41+2α81) m0 µ+(2α50+α60) µ2 + α62 m2
0)

− (2α60 − 3α70) m2
A m2

Z − (2α60 + α70) m4
Z

)
+

8 (m2
A + m2

Z) (µm0 ζ10 ζ11) v2

(m2
A − m2

Z)2

]

+ O(1/ tan2 β) (5.52)
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A similar formula exists for the correction to mH:

δ′m2
H =

[
− 2 (m0µ (α51 + α61) + α82 m2

0) v2 +
(2 ζ10 µ)2 v4

m2
A − m2

Z

]

+
v2

tan β

[ 1
m2

A−m2
Z

(
2m2

A (2 (α11−α21) m0µ +(α60−α50) µ2 +(α52−α62) m2
0 − α60 m2

A)

− [ 4 (α11 + α21 + α31 + α41 + 2α81) m0µ + 6(α50 + α60) µ2 + 2(α52 + α62) m2
0

− (α50+5α60−2α70) m2
A] m2

Z − (α50− α60) m4
Z

)
− 8 (m2

A + m2
Z) (µm0 ζ10 ζ11) v2

(m2
A − m2

Z)2

]

+ O(1/ tan2 β) (5.53)

Corrections (5.52) and (5.53) must be added to the rhs of eq. (5.45) to obtain

the value of m2
h,H expressed in function of mA. The corrections in equations (5.47)

to (5.53) extend those of the previous chapter to include all O(1/M2) terms.

From equations (5.48) and (5.52) we are able to identify the effective oper-

ators of d = 6 that give the leading contributions to m2
h, which is important

for model building. These are O2,3,4 in the absence of supersymmetry breaking

and O2,6 when this is broken. It is however preferable to increase m2
h by super-

symmetric rather than supersymmetry-breaking effects of the effective opera-

tors, because the latter are less under control in the effective approach and one

would favour a supersymmetric solution to the fine-tuning problem associated

with increasing the MSSM Higgs mass above the LEPII bound. Therefore O2,3,4

are the leading operators, with the remark that O2 has a smaller effect, of order

(mZ/µ)2 relative to O3,4 (for similar α j0, j = 2, 3, 4). At smaller tan β, O5,6 can also

give significant contributions while O7 has a relative suppression factor (mZ/µ)2.
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5.4 Analysis of the Leading Corrections and Effective Opera-

tors

One expects that when in the Lagrangian appear effective operators of mass

dimension five and six, coming from the same UV physics, those of dimension

six will be subleading. However, this is not the case when an extra suppression

makes the two classes comparable. In our case, some dimension five operators

are suppressed by 1/(M tan β) but dimension six only have 1/M2. Thus, in the

limit of large tan β these two classes can be comparable.

In the particular case of the Higgs mass, by comparing O(1/M) terms in

eq. (5.45) against O(1/M2) terms in equations (5.52) and (5.53), one identifies

the situation when these two classes of operators give comparable corrections:

4m2
A

m2
A − m2

Z

| ζ10 µ |
tan β

≈
∣∣∣∣∣α22m2

0 + (α30 + α40)µ2 + 2α61m0µ − α20m2
Z +

2 (ζ10 µ)2 v2

m2
A − m2

Z

∣∣∣∣∣

∣∣∣∣∣ ζ11 m0 +
4m2

Z

m2
A − m2

Z

ζ10 µ

tan β

∣∣∣∣∣ ≈
∣∣∣∣∣ (m0µ (α51 + α61) + α82 m2

0) − 2 (ζ10 µ)2 v2

m2
A − m2

Z

∣∣∣∣∣ (5.54)

In this case O(1/(M tan β)) and O(1/M2) corrections are approximately equal (for

M ≈ m0 tan β). Similar relations can be obtained by comparing (5.40) and (5.44)

against δm2
h,H of (5.48), (5.49) and (5.50).

Note that we don’t have to consider operators of dimension > 6 since they

do not receive any tan β enhancement in order to become comparable with d = 6

and will always be subleading.

Let us now examine more closely the corrections to the Higgs masses due to

d = 6 operators. The interest is to maximise the correction to the MSSM classi-

81



cal value of mh. From equations (5.48) and (5.52) and ignoring SUSY breaking

corrections (α jk, k ! 0), we saw that at large tan β O3,4 bring the largest correc-

tion and also O2 to a lower extent. At smaller tan β, O5,6,7 can have significant

corrections. All this can be seen from the relative variation:

εrel ≡
mh − mZ

mZ
=
√
δrel − 1, (5.55)

with

δrel ≡ 1 − 4m2
A

m2
A − m2

Z

1
tan2 β

+
v2

m2
Z

{2 ζ10 µ

tan β
4 m2

A

m2
A − m2

Z
+

(−2 ζ11 m0)
tan2 β

2 (m4
A + m4

Z)
(m2

A − m2
Z)2

−
[
2
(
α22 m2

0 + (α30 + α40) µ2 + 2α61 m0 µ − α20 m2
Z

)
+

(2 ζ10 µ)2 v2

m2
A − m2

Z

]

+
1

tan β
1

m2
A − m2

Z

[
4 m2

A µ
(

(2α21 + α31 + α41 + 2α81) m0 + (2α50 + α60) µ
)

+ 4α62 m2
0 m2

A −(2α60−3α70) m2
A m2

Z − (2α60+α70) m4
Z+8 ζ10 ζ11 µm0 v2 m2

A+m2
Z

m2
A−m2

Z

]}

+ O(1/ tan4 β) +O(m̃/(M tan3 β)) + O(m̃2/(M2 tan2 β)) (5.56)

where m̃ is some generic mass scale of the theory such as µ, mZ, m0 or v. The

arguments of the functions O in the last line show explicitly the origin of these

corrections (MSSM, d = 5 and d = 6 operators, respectively). Eq. (5.55) gives the

overall relative change of the classical value of mh in the presence of all possible

higher dimensional operators of d = 5 and d = 6 beyond the MSSM Higgs

sector, for large tan βwith mA fixed. Depending on the signs of coefficients α jk, ζ10

and ζ11 this relative variation can be positive and increase mh above the MSSM

classical upper bound mZ. The accuracy of the expansion at intermediate tan β

depends on m̃/M; in any case one can use the exact δm2
h,H in (5.47).

The same expansion in large tan β can also be computed keeping Bm0µ fixed,

instead of mA. Then
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δrel ≡ 1 − 4
tan2 β

+
v2

m2
Z

{4 (2 ζ10 µ)
tan β

+
2

tan2 β

(
(−2 ζ11 m0) +

2 m2
Z (2 ζ10 µ)
B m0 µ

)

− 2
[
α22 m2

0 + 2α61 m0 µ + (α30 + α40) µ2 − α20 m2
Z

]
+

1
tan β

[ (2 ζ10 µ)2 v2

−B m0 µ

+ 4 (2α21+α31+α41+2α81) m0 µ + 4 (2α50+α60) µ2+4α62 m2
0 − (2α60−3α70) m2

Z

]}

+ O(1/ tan4 β) + O(m̃/(M tan3 β)) + O(m̃2/(M2 tan2 β)) (5.57)

In (5.55) and (5.57), the d = 6 operators (αi j dependence) give contributions

which are dominated by tan β-independent terms. One particular limit to con-

sider for δm2
h or δ′m2

h is that in which the effective operators of d = 6 have coef-

ficients such that these contributions add up to maximise δrel. Since coefficients

αi j are not known, we can choose them equal in absolute value

−α22 = −α61 = −α30 = −α40 = α20 > 0 (5.58)

In this case, at large tan β:

δm2
h ≈ 2 v2α20[m2

0 + 2 m0µ + 2 µ2 + m2
Z] (5.59)

and similar for δ′m2
h. A simple numerical example is illustrative. For m0 = 1 TeV,

µ = 350 GeV and v ≈ 246 GeV, one has δm2
h ≈ 2.36α20 × 1011 (GeV)2. Assuming

α20 ∼ 1/M2 for M = 10 TeV and the classical MSSM value of mh to be equal to mZ

(reached for large tan β), we obtain an increase of mh from d = 6 operators alone

of about ∆mh = 12.15 GeV to mh ≈ 103 GeV. An increase of α20 by a factor of 2.5

to α20 ∼ 2.5/M2 would give ∆mh ≈ 28 GeV and mh ≈ 119.2 GeV, which is above

the LEPII bound.

The discussion above indicates that if we persist on using the loop correction

to increase the Higgs mass, the effect of these operators will be to relax the strain

of the little hierarchy. Indeed, the relative increase of ∆mh due to d = 6 operators
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alone is mildly reduced, however, the effective quartic coupling of the Higgs is

increased. This amounts to a reduction of the fine tuning for the electroweak

scale [76]. The above choice of M = 10 TeV was partly motivated by the fine-

tuning results of [71] and on convergence grounds: The expansion parameter of

our effective analysis is mq/M where mq is any scale of the theory, in particular

it can be the susy breaking scale m0. For m0 7 3 TeV and c1,2 7 2.5 (of eq. (5.1)),

one finds for M = 10 TeV that c1,2 m0/M 7 0.75 which is already at the limit of

validity of the expansion in the effective approach considered.

These simple estimates demostrate that mass dimension six operators can

indeed bring a significant increase of mh to values compatible with the LEPII

bound. However, the amount of increase depends on implicit assumptions like

the type and number of operators present and whether their overall sign, as gen-

erated by the UV physics, is consistent with an increase of mh. Take for example

the case of the leading contribution to mh in the large tan β case. One would

prefer to generate the leading operators with supersymmetric coefficients satis-

fying

α20 > 0, α30 < 0, α40 < 0 (5.60)

in order to increase mh. We have already mentioned that O1,2,3 can be generated

by integrating out a massive gauge boson U(1)′ or S U(2) triplets while O4 by

a massive gauge singlet or S U(2) triplets. Let us discuss the signs that these

operators are generated with:

(a): Integrating out a massive vector superfield U(1)′ under which Higgs fields

have opposite charges (to avoid a Fayet-Iliopoulos term), one finds α20 < 0 and

α30 > 0 (also α10 < 0), which is opposite to condition (5.60). However, this can

change if for example there are additional pairs of massive Higgs doublets also
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charged under the new U(1)′ since then O3 could be generated with α30 < 0.

(b): Integrating out massive S U(2) triplets that couple to the MSSM Higgs sec-

tor would bring α20 > 0, α40 < 0, α30 > 0; the first two of these satisfy (5.60). (c):

Integrating out a massive gauge singlet would bring α40 > 0 which would actu-

ally decrease mh. Finally, if we take into account further constraints coming form

the ρ parameter [69], it turns out that it is α40 and α30 that can have the largest

correction to m2
h. For generating them, the case of a massive gauge singlet or ad-

ditional U(1)′ vector superfield would have the advantage of preserving gauge

couplings unification at one-loop.

For smaller tan β, operators O5,6,7 could bring significant corrections to mh but

it is more difficult to generate these in a renormalisable setup. For example,

O5,6 can be generated by integrating out a pair of massive Higgs doublets and a

massive gauge singlet but the overall sign of α50,60 would depend on the details

of the model. This discussion shows that while effective operators can in prin-

ciple increase mh, deriving a renormalisable model that would generate them

with appropriate signs for their (supersymmetric) coefficients is not a simple is-

sue. However this does not exclude the possibility, since the examples given are

rather simplistic. Other generating mechanisms for Oi could be in place6 with

appropriate signs to increase mh.

6For some models with extended MSSM Higgs sector see [128, 129, 130, 131].
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CHAPTER 6

NONLINEAR MSSM

In the previous chapters we used EFT to study in a model independent way

the effects of new physics beyond MSSM in the multiTeV scale. Nevertheless,

MSSM itself contains new physics at scale
√

f , the SUSY breaking scale. If we

take this scale to be around multiTeV, new effects appear by the presence of a

goldstino, which is the dominant component of the gravitino. Goldstino cou-

plings are best described in terms of nonlinear supersymmetry, as briefly pre-

sented in section 2.3. One way to realize symmetries in a nonlinear fashion is

by using appropriate constraints. In supersymmetry, these are constraints on

superfields. In the following we apply the method of constrained superfields in

order to construct the most general couplings of a goldstino to full MSSM.

6.1 The Model

We couple the constrained superfield Xnl of eq. (2.44) to the SUSY part of the

MSSM, to find the “nonlinear” supersymmetry version of MSSM. At energy

scales below mso f t, similar constraints can be applied to the MSSM superfields

themselves, corresponding to integrating out the superpartners. Here, the only

difference from ordinary MSSM is in the supersymmetry breaking sector. Su-

persymmetry is broken spontaneously via a vacuum expectation value (v.e.v.)
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of FX, fixed by its equation of motion. The Lagrangian of nonlinear MSSM is:

L = L0 +LX +LH +Lm +LAB +Lg (6.1)

Let us detail these terms. L0 is the usual MSSM SUSY Lagrangian

L0 =
∑

Φ,H1,2

∫
d4θ Φ† eVi Φ +

{ ∫
d2θ
[
µH1 H2 + H2 Q Uc + Q Dc H1 + L Ec H1

]
+ h.c.

}

+
∑

SM groups

1
16 g2 κ

∫
d2θTr [ WαWα] + h.c., Φ : Q,Dc,Uc, Ec, L , (6.2)

where κ is a constant canceling the trace factor and the gauge coupling g is

shown explicitly. The family matrices in the superpotential are implicit to

lighten the notation.

The SUSY breaking couplings originate from the MSSM fields couplings to

the goldstino superfield; this is done by the replacement S → mso f tXnl/ f [54],

where S is the usual spurion also used in the previous chapters, with S = θθmso f t

and mso f t a generic notation for the soft terms (denoted below m1,2,m0). One has

for the Higgs sector

LH =
∑

i=1,2

ci

∫
d4θ X†nlXnl H†i eVi Hi

=
∑

i=1,2

ci

{
|φX |2
[
|Dµ hi|2 + F†hi

Fhi + h†i
Di

2
hi +
( i
2
ψhi
σµDµψhi −

1√
2

h†i λi ψhi + h.c.
)]

+
1
2

h†i (Dµ +←−Dµ) hi ∂
µ|φX |2 + ψXψhi

ψXψhi −
1
2

[φ†X (∂µ −←−∂
µ
) φX] [h†i (Dµ −←−Dµ) hi]

+
[
− i

2
φ†XψX σ

µ ψhi
(Dµ −←−Dµ)hi −

1√
2
φ†XψX h†i λi hi − φ†XψX F†hi

ψhi + φ
†
XFX F†hi

hi

+
i
2

(ψX σ
µ ψX) (h†i Dµ hi) +

i
2

(φ†X∂µ φX) (ψhi
σµ ψhi) +

i
2
ψX σ

µ (∂µ −←−∂ µ) φX (h†i ψhi)

− ψX FX ψhi
hi + h.c.

]
+
[
∂µφ

†
X∂
µφX + F†XFX +

( i
2
ψX σ

µ∂µψX + h.c.
)]
| hi|2
}
, (6.3)

Here D, ∂, (←−D,←−∂ ) act only on the first field to their right (left) respectively and

hi, ψhi , Fhi denote SU(2) doublets. Also

c1 = −m2
1/ f 2, c2 = −m2

2/ f 2 . (6.4)
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Similar terms exist for all matter fields

Lm =
∑

Φ

cΦ
∫

d4θ X†nlXnlΦ
†eV Φ, cΦ = −

m2
Φ

f 2 , Φ : Q,Uc,Dc, L, Ec, (6.5)

One can eventually set mΦ = m0 (all Φ). The bi- and trilinear SUSY breaking

couplings are

LAB =
B′

f

∫
d2θ Xnl H1 H2 (6.6)

+
Au

f

∫
d2θ Xnl H2 Q Uc +

Ad

f

∫
d2θ Xnl Q Dc H1 +

Ae

f

∫
d2θ Xnl L Ec H1 + h.c.

=
B′

f

{
φX

[
h1 · Fh2 + Fh1 · h2 − ψh1 · ψh2

]
− h1 · (ψXψh2) − (ψXψh1) · h2 + FX h1 · h2

}

+
{Au

f

[
φX h2 · (φQ FU−ψQ ψU +FQ φU) − φX (ψh2 · φQψU + ψh2 · ψQφU − Fh2 · φQ φU)

− ψX (h2 · φQ ψU + h2 · ψQ φU + ψh2 · φQ φU) + FX h2 · φQ φU

]
−
[
U → D,H2 → H1

]

−
[
U → E,H2 → H1,Q→ L

]}
+ h.c. (6.7)

where B′ ≡ B m0µ. Finally, the supersymmetry breaking couplings in the gauge

sector are

Lg =

3∑

i=1

1
16 g2

i κ

2 mλi

f

∫
d2θ Xnl Tr [ WαWα]i + h.c.

=

3∑

i=1

mλi

2 f

{
φX

[
2 i λa σµ ∆µ λ

a − 1
2

Fa µνFa
µν + DaDa − i

4
εµνρσ Fa

µν Fa
ρσ

]

−
√

2ψX σ
µνλa Fa

µν −
√

2ψX λ
a Da + FX λ

aλa
}

i
+ h.c. (6.8)

with mλ1,2,3 the masses of the three gauginos and gauge group index i for U(1),

S U(2), S U(3) respectively. Above we introduced the notation ∆µλ
a
= ∂µλ

a −

g tabc Vb
µ λ

c
. Equations (6.1) to (6.8), along with (2.45), define the model, with

spontaneous supersymmetry breaking ensured by non-zero 〈FX〉.

Since φX ∼ 1/ f , the Lagrangian contains terms of order higher than 1/ f 2. In

the calculation of the onshell Lagrangian we shall restrict the calculations to up
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to and including 1/ f 2 terms. This requires solving for Fφ of matter fields up to

and including 1/ f 2 terms and for FX up to and including 1/ f 3 terms (due to its

leading contribution which is - f ). Doing so, in the final Lagrangian no kinetic

mixing is present at this order. Using the expressions of the auxiliary fields, one

then computes the F-part of the scalar potential of the Higgs sector, to find:

VF = |µ|2
[
|h1|2 + |h2|2

]
+
| f + (B′/ f ) h1 · h2|2
1 + c1 |h1|2 + c2 |h2|2

+ O(1/ f 3) (6.9)

with h1 · h2 ≡ h0
1 h0

2 − h−1 h+2 and |hi|2 ≡ h†i hi = h0 ∗
i h0

i + h− ∗i h−i . One can work with this

potential, however, for convenience, if |c1,2||h1,2|2 . 1, we can approximate VF

by expanding the denominator in a series of powers of these coefficients. Our

analysis below is then valid for |c1,2||h1,2|2 . 1. After adding the gauge contri-

bution, we find the following result for the scalar potential of the Higgs sector:

V = f 2 + (|µ|2 + m2
1) |h1|2 + (|µ|2 + m2

2)|h2|2 + (B′ h1 · h2 + h.c.) (6.10)

+
1
f 2

∣∣∣∣m2
1 |h1|2 + m2

2 |h2|2 + B′ h1 · h2

∣∣∣∣
2
+

g2
1 + g2

2

8

[
|h1|2 − |h2|2

]2
+

g2
2

2
|h†1 h2|2 + O(1/ f 3)

This is the full Higgs potential. The first term in the last line is a new term, ab-

sent in MSSM (generated by eliminating FX of Xnl). Its effects for phenomenol-

ogy will be analyzed later. The ignored higher order terms in 1/ f involve non-

renormalizable h6
1,2 interactions in V .

6.2 New Couplings in the Lagrangian

In this section we compute the new interactions induced by Lagrangian (6.1),

which are not present in the MSSM. Many of the new couplings are actually
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dimension-four in fields, with a (dimensionless) f -dependent coupling. The

couplings are important in the case of a low SUSY breaking scale in the hidden

sector and a light gravitino scenario. Some of the new couplings also involve

the goldstino field and are relevant for phenomenology.

As mentioned earlier, from the SUSY breaking part of the Lagrangian only

terms up to 1/ f 2 were kept in the total Lagrangian. After eliminating all terms

proportional to F-auxiliary fields of X,Hi,Q,Dc,Uc, Ec and L, one obtains new

couplings Lnew beyond those of the usual on shell, supersymmetric part of

MSSM, which are unchanged and not shown. One finds the on shell Lagrangian

Lnew ≡ Laux
F +Laux

D +Lextra
m +Lextra

g (6.11)

Let us detail these terms. Firstly,

Laux
F = Laux

F (1) +Laux
F (2) (6.12)

with

Laux
F (1) = −

[
f 2 + (m2

1|h1|2 + m2
2|h2|2 + m2

Φ |φΦ|2)
]

−
[
B′ h1 · h2 + Au h2.φQ φU + Ad φQφD.h1 + Ae φLφE.h1 +

1
2

mλi λiλi + h.c.
]
(6.13)

recovering the usual MSSM soft terms and the additional contributions:

Laux
F (2) =

{ ψXψX

2 f 2

[
µ(m2

1+m2
2) h1 · h2−(m2

1+m2
Q+m2

D)h1 · φQφD−(m2
1+m2

L+m2
E)h1 · φLφE

− (m2
2 + m2

Q + m2
U)φQφU · h2+(B′ h2 − Ad φQφD − Ae φL φE)†(µh2 − φQφD − φL φE)

+ (B′ h1 − Au φQ φU)†(µ h1 − φQ φU) + (Ad φD h1 − Au h2 φU)†(φD h1 − h2 φU)

+ Ad (|φQ · h1|2 + |φE h1|2) + Au |h2 · φQ|2 + Ae |φL · h1|2
]
+ h.c.

}
− 1

f 2

∣∣∣∣B′ h1 · h2

+ Auh2 · φQ φU+AdφQ φD · h1+AeφL φE · h1+
mλi

2
λiλi+(m2

1|h1|2+m2
2|h2|2+m2

Φ|φΦ|2)
∣∣∣∣
2

− 1
f

[
m2

1 ψXψh1
h1 + m2

2 ψXψh2
h2 + m2

Φ ψXψΦ φΦ + h.c.
]
+ O(1/ f 3) (6.14)
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A summation is understood over the SM group indices i = 1, 2, 3 in the gaugino

term and over Φ = Q,Uc,Dc, L, Ec in the mass terms; appropriate contractions

among S U(2)L doublets are understood for holomorphic products, when the or-

der displayed is relevant. The leading interactions O(1/ f ) are those in the last

line and are dimension-four in fields. Similar couplings exist at O(1/ f 2) and

involve scalar and gaugino fields. Yukawa matrices are restored in (6.14) by re-

placing φQφD → φQγdφD, φQφU → φQγuφU , φLφE → φLγeφE, as already explained.

There are also new couplings from terms involving the auxiliary components

of the vector superfields of the SM. Integrating them out one finds:

Laux
D =

−1
2

[
D̃1 +

1
4 f 2 ( mλ1 ψXψX + h.c.) D̃1 +

1√
2 f

( mλ1 ψX λ1 + h.c.)
]2

+
−1
2

[
D̃a

2 +
1

4 f 2 (mλ2 ψXψX + h.c.) D̃a
2 +

1√
2 f

(mλ2 ψX λ
a
2 + h.c.)

]2

+
−1
2

[
D̃a

3 +
1

4 f 2 (mλ3 ψXψX + h.c.) D̃a
3 +

1√
2 f

(mλ3 ψX λ
a
3 + h.c.)

]2
+ O( f −3)(6.15)

with notation:

D̃1 = −
1
2

g1 ( − h†1h1 + h†2h2 + 1/3 φ†QφQ − 4/3 φ†UφU + 2/3 φ†DφD − φ†LφL + 2 φ†EφE)

D̃a
2 = −

1
2

g2 (h†1σ
ah1 + h†2σ

ah2 + φ
†
Qσ

aφQ + φ
†
Lσ

aφL)

D̃a
3 = −

1
2

g3 (φ†Q taφQ − φ†U taφU − φ†D taφD) (6.16)

for the corresponding MSSM expressions; here ta/2 are the SU(3) generators.

From (6.15) one can easily read the new, f−dependent couplings in the gauge

sector, absent in the MSSM.

The total Lagrangian also contains extra terms, not proportional to the aux-

iliary fields, and not present in the MSSM. In the matter sector these are:
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Lextra
m =

1
4 f 2 |∂µ(ψXψX)|2 +

( i
2
ψXσ

µ ∂µψX + h.c.
)

(6.17)

−
2∑

i=1

m2
i

f 2

{
ψXψhi

ψXψhi+
[ i

2
(ψX σ

µ ψX) (h†i Dµ hi) +
i
2
|hi|2 ψX σ

µ∂µψX + h.c.
]}

−
[
m2

i → m2
Φ,Hi → Φ

]
+
{ B′

f

[ 1
2 f
ψXψX ψh1 .ψh2 − h1.(ψXψh2) − (ψXψh1).h2

]

+
Au

f

[ 1
2 f
ψXψX ( h2.ψQ ψU + ψh2 .φQ ψU + ψh2 .ψQ φU) − ψX (h2.φQ ψU + h2.ψQ φU

+ ψh2 .φQ φU)
]
+
[Ad

f

( 1
2 f
ψXψX (ψQ ψD.h1 + φQ ψD.ψh1 + ψQ φD.ψh1)

− ψX (φQ ψD.h1 + ψQ φD.h1+φQ φD.ψh1)
)
+(D→E, L→Q)

]
+h.c.
}
+O(1/ f 3)(6.18)

Note the presence of interactions that are dimension-four in fields (B′/ f h1ψXψh2 ,

etc) that can be relevant for phenomenology at low f . There are also new cou-

plings in the gauge sector

Lextra
g =

3∑

i=1

mλi

2 f

[ψXψX

−2 f

(
2 i λaσµ ∆µ λ

a − 1
2

Fa
µν Fa µν − i

4
εµνρσ Fa

µν Fa
ρσ

)

−
√

2ψXσ
µνλa Fa

µν

]
i
+ h.c. + O(1/ f 3), (6.19)

with i = 1, 2, 3 is the gauge group index and σµν = i/4 (σµσν − σνσµ). The new

couplings of Lnew together with the on shell part of the purely supersymmet-

ric part of the MSSM Lagrangian (on shell L0 of (6.2)) gives the final effective

Lagrangian of the model. From this, the full scalar potential is identified.

6.3 Implications for the Higgs Masses

Let us consider the Higgs scalar potential found in (6.10) and analyze its im-

plications for the Higgs masses. From the neutral Higgs part of the potential

one finds the masses of the CP even and CP odd Higgs fields. Since eq. (6.10) is

valid up to 1/ f 3 terms, it is sufficient to restrict the expressions up to this order.
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Firstly, at the minimum of the scalar potential one has:

m2
1 − m2

2 = cot 2β
[

B′ +
f 2

v2

(−1 +
√

w0)(−B′ + m2
Z sin 2β)

2µ2 + m2
Z cos2 2β + B′ sin 2β

]

m2
1 + m2

2 =
1

sin 2β

[
− B′ +

f 2

v2

(−1 +
√

w0)(B′ + 2 µ2 sin 2β)
2µ2 + m2

Z cos2 2β + B′ sin 2β

]
(6.20)

where

w0 ≡ 1 − v2

f 2 (4 µ2 + 2 m2
Z cos2 2β + 2 B′ sin 2β) (6.21)

One finds the following results (upper sign for m2
h):

m2
h,H =

1
2

[
m2

Z +
−2 B′

sin 2β
∓ √w1

]
+

v2

32 f 2

{
4 B′
[

2B′ + (4µ2 + 2m2
Z cos2 2β)/ sin 2β

]

+ 4
[

2 B′2 + 8 µ4 + 2 m2
Z(4µ2 + m2

Z) cos2 2β + 8 B′ µ2 sin 2β
]

∓ csc2 2β√
w1

[
− 2 (B′2 + 4µ4)m2

Z + 4µ2m4
Z + m6

Z + 8 (2µ4m2
Z − B′2 (4µ2 + m2

Z)) cos 4β

− m2
Z (6 B′2 + 8µ4 + 4µ2m2

Z + m4
Z) cos 8β − 8 B′ (B′2 − 8µ4) sin 2β

+ B′(−8B′2 + 16µ2m2
Z + m4

Z) sin 6β + B′m4
Z sin 10β

]}
+ O(1/ f 3) (6.22)

with

w1 =
(
m2

Z +
−2 B′

sin 2β

)2 − 4 m2
Z

(−2 B′

sin 2β

)
cos2 2β (6.23)

Further, the mass mA of the pseudoscalar Higgs has a simple form (no expan-

sion):

m2
A =

−2 B′

sin 2β

{ 3
4
+

1
4
√

w0 −
v2

4 f 2 B′ sin 2β
}

(6.24)

and, as usual, the Goldstone mode has mass mG = 0.
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Figure 6.1: The tree-level Higgs masses (in GeV) and expansion coefficients as func-
tions of

√
f (in GeV). In (a), (b) µ = 900 GeV, tan β = 50, mA increases upwards from 90 to

150 GeV in steps of 10 GeV. Larger mA has little impact on mh for relevant
√

f . In (c), (d),
mA = 150 GeV, and mh increases as µ varies from 400 to 1200 GeV, in steps of 100 GeV. In
(c) tan β = 50 while in (d) tan β = 5, showing a milder dependence on tan β than in MSSM.
For tan β ≥ 10 there is little difference from (c). In (e), (f) the expansion coefficients are
shown, for mA = [90, 650] GeV with steps of 10 GeV, µ = 900 GeV, tan β = 50; they are
less than unity (even at larger µ), as required for a convergent expansion.
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It is instructive to consider the limit of large u ≡ tan β, with B′ < 0 fixed, when

m2
h =
[
m2

Z + O(1/u)
]
+

v2

2 f 2

[
(2 µ2 + m2

Z)2 +
4
u

B′ (2 µ2 + m2
Z) + O(1/u2)

]
+ O( f −3)(6.25)

m2
H =
[ −2B′

sin 2β
+O(1/u)

]
+

v2 B′

4 f 2

[
(2 µ2 + m2

Z) u+4 B′ +
1
u

(2 µ2−11m2
Z)+O(1/u2)

]
+O( f −3)

which shows that a large µ can increase mh (decrease mH). However, for phe-

nomenology it is customary to use mA as an input instead of B′, in which case

the masses mh,H take the form

m2
h,H =

1
2

[
m2

A + m2
Z ∓
√

w
]
± v2

16 f 2

1√
w

[
16m2

Aµ
4 + 4 m2

A µ
2 m2

Z + (m2
A − 8 µ2) m4

Z

− 2 m6
Z ± 2 (−2 m2

A µ
2 + 8µ4 + 4µ2 m2

Z + m4
Z)
√

w + m2
A m4

Z cos 8β

+ m4
A (m2

A−8µ2−3m2
Z) sin2 2β+cos 4β [ − 2m2

Z (8µ4+4µ2 m2
Z+m4

Z−m2
A(6µ2+m2

Z))

± 2 (2 m2
Aµ

2 + 4µ2m2
Z + m4

Z)
√

w − m2
A(m2

A + 5 m2
Z) sin2 2β ]

]
+ O(1/ f 3) (6.26)

where the first term (bracket) is just the MSSM contribution. The upper (lower)

signs correspond to mh (mH) and w = (m2
A + m2

Z)2 − 4 m2
A m2

Z cos2 2β. At large tan β

with mA fixed one finds1 (with u ≡ tan β)

m2
h =

[
m2

Z + O(1/u2)
]
+

v2

2 f 2

[
(2 µ2 + m2

Z)2 + O(1/u2)
]
+ O(1/ f 3)

m2
H =

[
m2

A + O(1/u2)
]
+

1
f 2 O(1/u2) + O(1/ f 3) (6.27)

In this limit the increase of mh is driven by a large µ and is apparently of SUSY

origin, but the quartic Higgs couplings giving this effect involved combinations

of soft masses (see (6.10)). These soft masses combine to give, at the EW mini-

mum, the µ-dependent increase in (6.27).
1In (6.27) mA > mZ is assumed, otherwise just exchange m2

h with m2
H .
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Some simple numerical examples are relevant for the size of the corrections

to the Higgs masses, relative to their MSSM values. The largest correction to mh

for large tan β is dominated by µ and f . For example, if (µ/
√

f )2 = (1/2.25)2 ≈ 1/5,

v = 246 GeV, with µ = 900 GeV then
√

f = 2 TeV, giving mh = 114.4 GeV.

Another example is with µ = 1.2 TeV,
√

f = 2.7 TeV, ((µ/
√

f )2 ≈ 1/5), giving

again mh = 114.4 GeV. Smaller µ ≈ 600 GeV can still allow mh just above the

LEP bound if
√

f = 1.35 TeV, for similar value for (µ/
√

f )2 = 1/5 and for the

rest of the parameters. This shows that one can have a classical value of mh near

or marginally above the LEP bound and larger than the classical MSSM value

(= mZ). The plots in Figure 6.1 illustrate better this change of mh and mH for

various values of
√

f . For a low value of
√

f near or above 1.35 TeV, the LEP

bound is still satisfied for mh, while at large
√

f the MSSM case is recovered.

By varying
√

f our results can interpolate between low and high scale (in the

hidden sector) SUSY breaking. Quantum corrections increase mh further, just as

in the MSSM.

Regarding the usual MSSM tree-level flat direction |h0
1| = |h0

2| one can show

that the potential in this direction can have a minimum for the case (not consid-

ered in MSSM) of m2
1+m2

2+2|µ|2 < 2|B′|, equal to Vm = f 2− (1/4) f 2(m2
1+m2

2+2|µ|2+

2B′)2/(m2
1 + m2

2 + B′)2. Compared to the usual MSSM minimum, the former can

be situated above it only for values of f which do not comply with the original

assumptions of m2
1,2, |B′| < f . On the other hand, the case with Vm situated below

the MSSM minimum does not allow one to recover the MSSM ground state in

the decoupling limit of large f , and in conclusion the “flat” direction is not of

physical interest here.
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6.4 Other Phenomenological Implications

6.4.1 Fine Tuning of the Electroweak Scale

The increase of mh beyond the MSSM tree level bound and the presence of new

quartic Higgs couplings have implications in the fine tuning. In MSSM the

smallness of the effective quartic coupling λ (fixed by the gauge sector) is at the

origin of an increased amount of fine tuning of the electroweak scale for large

soft masses. For soft masses significantly larger than the electroweak (EW) scale,

(also needed to increase the MSSM value for mh above LEP bound via quantum

corrections), fine tuning increases rapidly and may become a potential problem

(sometimes referred to as the “little hierarchy” problem). Let us see why in the

present model this problem is alleviated. One can write v2 = −m2/λwhere

λ ≡ g2
1 + g2

2

8

[
cos2 2β + δ sin4 β

]
+

1
f 2

∣∣∣∣m2
1 cos2 β + m2

2 sin2 β + (1/2) B′ sin 2β
∣∣∣∣
2

m2 ≡ (|µ|2 + m2
1) cos2 β + (|µ|2 + m2

2) sin2 β + B′ sin 2β (6.28)

The first term in λ is due to MSSM only, while the second one, which is positive,

is due to the new quartic Higgs terms in (6.10). Here δ accounts for the top/stop

quantum effects to |h2|4 term in the potential, which becomes (1+δ) (g2
1+g2

2)/8 |h2|4;

usually δ ∼ O(1) (ignoring couplings other than top Yukawa). This quantum

effect is only included for a comparison to the new quartic Higgs term. The

important point to note is that a larger λ gives a suppression in the fine tuning

measure ∆:

∆ =
∂ ln v2

∂ ln p
=
∂ ln(−m2/λ)
∂ ln p

, p = A, B′,m2
0, µ

2,m2
λi
. (6.29)

Here p is an MSSM parameter with respect to which fine tuning is evaluated.
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In the large tan β limit, the fine tuning of the electroweak scale becomes (see the

Appendix in [71]):

∆ = − (|µ|2 + m2
2)′

v2 m4
2/ f 2 + (1 + δ) m2

Z/2
+ O(1/ tan β), (|µ|2 + m2)′ ≡ ∂(|µ|

2 + m2
2)

∂ ln p
(6.30)

For small tan β a similar result is obtained in which one replaces m2 by m1. The

first term in denominator comes from the new correction to the effective quartic

coupling λ. Larger soft masses m1,2 increase λ and this can actually reduce fine

tuning, see the denominator in ∆. Therefore, in this case heavier superpartners

do not necessarily bring an increased fine tuning amount (as it usually happens

in the MSSM). The only limitation here is the size of the ratio m2
1,2/ f ≤ 1 for

convergence of the nonlinear formalism. In the limit this coefficient approaches

its upper bound (say ∼ 1/3), the two contributions in the denominator have

comparable size (for δ ∼ 1 and v = 246 GeV) and fine tuning is reduced by a

factor ≈ 2 from that in the absence of the new term in the denominator (i.e. the

MSSM case).

6.4.2 Limiting Cases and Loop Corrections

Some interesting limits of our “nonlinear” MSSM model are worth considering.

Firstly, in the limit of large f (i.e. large SUSY breaking scale in the hidden sector)

and with m1,2, B′ fixed, the new quartic term in (6.10) vanishes, while the usual

explicit soft SUSY breaking terms specific to the Higgs sector remain. This is

just the MSSM case. All other couplings suppressed by inverse powers of f

are negligible in this limit. Another limiting case is that of very small f . For

our analysis to be valid, one needs to satisfy the condition B′, m2
1,2 ≤ f . When
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f reaches this minimal bound, the new quartic couplings in (6.10), not present

in the MSSM, increase and eventually become closer to unity. The analysis is

then less reliable and additional effective contributions in the Lagrangian, sup-

pressed by higher powers like 1/ f 4 and beyond, may become relevant for SUSY

breaking effects.

Finally, one remark regarding the calculation of radiative corrections using

(6.10) and the electroweak symmetry breaking (EWSB). In our case EWSB was

assumed to take place by appropriate values of m2
1,2, B

′. However, the same

EWSB mechanism as in the MSSM is at work here, via quantum corrections

to these masses, which near the EW scale turn m2
2 + µ

2 negative and trigger

radiative EWSB. Indeed, if the loops of the MSSM states are cut off as usual

at the high GUT scale (well above
√

f ) and with the new Higgs quartic cou-

plings regarded as an effective, classical operator, radiative EWSB can take

place as in the MSSM. A similar example is the case of a MSSM Higgs sec-

tor extended with additional effective operators of dimension d = 5 such as

(1/M)
∫

d2θ(H1H2)2 giving a dimension-four (in fields) contribution to the scalar

potential V ⊃ h1h2 (|h1|2 + |h2|2); this is regarded as an effective operator and ra-

diative EWSB is implemented as in the MSSM, see for example [65, 71].

It is interesting to remark that that the loop corrections induced by the (ef-

fective) quartic couplings proportional to 1/ f 2 in eq. (6.10), can be under control

at large f . Indeed, the loop integrals this coupling induces can be quadratically

divergent and are then cut-off at momentum p2 ≤ f ; but the loop effects come

with a coupling factor that behaves like 1/ f 2, so overall they will be suppressed

like 1/ f and can then be under control even at large f . It would be interesting

to check if for a large enough f , radiative EW breaking is still achievable if the
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usual MSSM effects are also cut at this scale (with less an energy range to trigger

EWSB).

6.4.3 Invisible Decays of Higgs and Z Bosons

Let us analyze some implications of the interactions involving the goldstino

field, described by the Lagrangian found above. An interesting possibility, for a

light enough neutralino, is the decay of the neutral higgses into a goldstino and

the lightest neutralino χ0
1 (this is the NLSP, while the goldstino is the LSP). The

coupling Higgs-goldstino-neutralino is only suppressed by 1/ f . It arises from

the following terms in Lnew and from the terms in the on shell, supersymmetric

part of usual MSSM Lagrangian (6.2), hereafter denoted Lonshell
0 :

Lnew +Lonshell
0 ⊃−1

f

[
m2

1 ψXψh0
1
h0 ∗

1 + m2
2 ψXψh0

2
h0 ∗

2

]
− B′

f

[
ψXψh0

2
h0

1 + ψXψh0
1
h0

2

]

−1
f

∑

i=1,2

mλi√
2

D̃a
i ψXλ

a
i −

1√
2

[
g2λ

3
2 − g1λ1

][
h0 ∗

1 ψh0
1
− h0 ∗

2 ψh0
2

]
+ h.c.(6.31)

The last term (present in the MSSM) also brings a goldstino interaction. This is

possible through the goldstino components of the higgsinos ψh0
1,2

and EW gaugi-

nos λ1,2. The goldstino components are found via the equations of motion, after

EWSB, to give (see also [54]):

µψh0
1
=

1
f
√

2

(
− m2

2 v2 − B′ v1 −
1
2

v2 〈g2D3
2 − g1D1〉

)
ψX + · · ·

µψh0
2
=

1
f
√

2

(
− m2

1 v1 − B′ v2 +
1
2

v1 〈g2D3
2 − g1D1〉

)
ψX + · · ·

λ1 =
−1

f
√

2
〈D1〉 ψX + · · · , λ3

2 =
−1

f
√

2
〈D3

2〉 ψX + · · · (6.32)

which can be further simplified by using the MSSM minimum conditions in
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the terms multiplied by 1/ f (allowed in this approximation). As a consistency

check we also showed that the determinant of the neutralino mass matrix (now a

5×5 matrix, to include the goldstino) vanishes up to corrections of order O( f −4).

This is consistent with our approximation for the Lagrangian, and verifies the

existence of a massless goldstino (ultimately “eaten” by the gravitino). Using

(6.31) and (6.32), one finds after some calculations (for previous calculations of

this decay see [77, 78, 79]):

Lnew +Lonshell
0 ⊃ − 1

f
√

2

4∑

j,k=1

[
ψX χ

0
j H0 δkX∗jk + ψX χ

0
j h0 δ′kX∗jk

]
+ h.c. (6.33)

where

δ1 = mZ sin θw [mλ1 cos(α + β) + µ sin(α − β)],

δ2 = −mZ cos θw [mλ2 cos(α + β) + µ sin(α − β)],

δ3 = −m2
A sin β sin(α − β) − µ2 cosα

δ4 = m2
A cos β sin(α − β) − µ2 sinα, δ′i = δi

∣∣∣∣
α→α+π/2

(6.34)

X is the matrix that diagonalizes the MSSM neutralino mass matrix2: M2
d =

XM M† X†, and can be easily evaluated numerically (see [80] for its analytical

expression). Further H0, h0 are Higgs mass eigenstates (of mass mh,H computed

earlier) and h0
i = 1/

√
2 (vi + h0 ′

i + iσi) with 〈h0 ′
i 〉 = 0, 〈σi〉 = 0; the relation of H0, h0

to h0 ′
1,2 is a rotation, which in this case can be just that of the MSSM (due to extra

1/ f suppression in the coupling3). The angle α is

tan 2α = tan 2β
m2

A + m2
Z

m2
A − m2

Z
, −π/2 ≤ α ≤ 0 (6.35)

2The exact form of M is: M11 = mλ1 , M12 = 0, M13 = −mZ cos β sin θw, M14 = mZ sin β sin θw,
M21 = 0, M22 = mλ2 , M23 = mZ cos β cos θw, M24 = −mZ sin β cos θw, M33 = 0, M34 = µ, M44 = 0,
also Mi j = Mji. Note the sign of µ related to our definition of the holomorphic product of SU(2)
doublets. With this notation, in the text χ0

j = X jk ξk, with ξTk ≡ (λ1, λ3
2, ψh0

1
, ψh0

2
).

3The relation is h0 ′
1 = H0 cosα − h0 sinα, and h0 ′

2 = H0 sinα + h0 cosα.
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If the lightest neutralino is light enough, mχ0
1
< mh, then h0,H0 can decay into it

and a goldstino which has a mass of order f /MPlanck ∼ 10−3 eV; if this is not the

case, the decay of neutralino into h0 and goldstino takes place, examined in [79].

In the former case, the partial decay rate is

Γh0→χ0
1 ψX
=

mh

16 π f 2

∣∣∣∣
4∑

k=1

δ′kX1k

∣∣∣∣
2 (

1 −
m2
χ0

1

m2
h0

)2
(6.36)

The partial decay rate has corrections coming from both higgsino (X13, X14) and

gaugino fields (X11, X12), since they both acquire a goldstino component, see

eqs. (6.32). The gaugino correction arises after gaugino-goldstino mixing, SUSY

and EW symmetry breaking, (as shown by mλi , mZ dependence in δ′k) and was

not included in previous similar studies [77, 78, 79].

The partial decay rate is presented in Figure 6.2 for various values of µ, mA

and mλ1,2 which are parameters of the model. A larger decay rate requires a light

µ ∼ O(100) GeV, when the neutralino χ0
1 has a larger higgsino component. At

the same time an increase of mh above the LEP bound requires a larger value for

µ, close to µ ≈ 700 GeV if
√

f ≈ 1.5 TeV, and µ ≈ 850 GeV if
√

f ≈ 2 TeV, see

Figure 6.1 (c). The results in Figure 6.2 show that the partial decay rate can be

significant (∼ 3 × 10−6 GeV), if we recall that the total SM Higgs decay rate (for

mh ≈ 114 GeV) is about 3×10−3 GeV, with a branching ratio of h0 → γγ of 2×10−3,

(Figure 2 in [81]). Thus the branching ratio of the process can be close to that of

SM h0 → γγ. The decay is not very sensitive to tan β (Figure 6.2 (b)), due to the

extra contribution (beyond MSSM) from the quartic Higgs coupling.

An interesting coupling that is also present in the 1/ f order is that of gold-

stino to Zµ boson and to a neutralino. Depending on the relative mass relations,

it can bring about a decay of Zµ (χ0
j) into χ0

j (Zµ) and a goldstino, respectively.
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Figure 6.2: The partial decay rate of h0 → ψXχ0
1 for (a): tan β = 50, mλ1 = 70 GeV,

mλ2 = 150 GeV, µ increases from 50 GeV (top curve) by a step 50 GeV, mA = 150 GeV.
Compare against Figure 6.1 (c) corresponding to a similar range for the parameters. At
larger µ, mh increases, but the partial decay rate decreases. Similar picture is obtained
at low tan β ∼ 5. (b): As for (a) but with tan β = 5. Compare against Figure 6.1 (d). Note
that the total SM decay rate, for mh ∼ 114 GeV, is of order 10−3, thus the branching ratio
in the above cases becomes comparable to that of SM Higgs going into γγ (see Figure 2
in [81]).

The relevant terms are

Lnew +Lonshell
0 ⊃ −1

4
ψh0

1
σµψh0

1
(g2V3

2 − g1 V1)µ +
1
4
ψh0

2
σµψh0

2
(g2V3

2 − g1 V1)µ
}

−
2∑

i=1

mλi√
2 f
ψX σ

µν λa
i Fa
µν, i + h.c. (6.37)

where the last term was generated in (6.19) (i labels the gauge group). Since the

higgsinos acquired a goldstino component (∝ ψX/ f ) via mass mixing, the first

line above induces additional O(1/ f ) couplings of the higgsino to goldstino and

to Zµ = (1/g) (g2V3
2 − g1 V1)µ with g2 = g2

1 + g2
2. After some calculations one finds

the coupling Zµ χ0
j ψX:

Lnew+Lonshell
0 =

1
f
√

2

4∑

j=1

[
ψXσ

µ χ0
j Zµ (µmZ wj−m2

Zv j)−ψX(σµ∂ν−σν∂µ)χ0
jZµνv j

]

+ h.c. (6.38)
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where

wj = cos βX∗j4 − sin βX∗j3, v j = − sin θwX∗j1 + cos θwX∗j2, Zµν = ∂µZν − ∂νZµ(6.39)

If mχ0
1

is lighter than Zµ then a decay of the latter into χ0
1 + ψX is possible. The

decay rate of this process is (with j = 1):

ΓZ→ψXχ0
j
=

m5
Z

32π f 2

[
ζ1|wj|2 + ζ2 |v j|2 + ζ3 (wj v∗j + w∗j v j)

](
1 −

m2
χ j

m2
Z

)2
(6.40)

with ζ1 = 2(2 + r2) µ2/m2
Z, ζ2 = 2(8 + r2)(1 + 2r2), ζ3 = −2(4 + 5r2)µ/mZ where r =

mχ j/mZ (in (6.38) and subsequent one can actually replace µ by mχ j and wj → w∗j,

with X j4 ↔ X j3).

The decay rate should be within the LEP error for ΓZ, which is 2.3 MeV [82]

(ignoring theoretical uncertainties which are small). From this, one finds a lower

bound for
√

f , which can be as high as
√

f ≈ 700 GeV for the parameter space

considered previously in Figure 6.1, while generic values are
√

f ∼ O(400) GeV.

Therefore the results for the increase of mh, that needed a value for
√

f in the

TeV region, escape this constraint. This constraint does not apply if the lightest

neutralino has a mass larger than mZ, when the opposite decay (χ j → Z ψX) takes

place (this can be arranged for example by a larger mλ1).

There also exists the interesting possibility of an invisible decay of Zµ gauge

boson into a pair of goldstino fields, that we review here [54, 56, 69]. This is

induced by the following terms in the Lagrangian, after the Higgs field acquires

a VEV:

Lnew +Lonshell
0 ⊃

{ 1
4 f 2 ψXσ

µψX (g2V3
2 − g1 V1)µ (m2

1 v2
1/2 − m2

2 v2
2/2)

− 1
4
ψh0

1
σµψh0

1
(g2V3

2 − g1 V1)µ +
1
4
ψh0

2
σµψh0

2
(g2V3

2 − g1 V1)µ
}
+ h.c.(6.41)
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With (6.32) and (6.41) one finds the coupling of Z boson to a pair of goldstinos:

Lnew +Lonshell
0 ⊃ m2

Z

4 f 2 ψX σ
µ ψX Zµ 〈DZ〉 + h.c. (6.42)

where 〈DZ〉 ≡ cos θW 〈D3
2〉 − sin θW 〈D1〉 = −(m2

Z/g) cos 2β + O(1/ f ). The decay rate

is then

ΓZ→ψXψX =
mZ

24 π g2

[ m4
Z

2 f 2

]2
cos2 2β (6.43)

in agreement with previous results obtained for B′ = 0 [56, 54, 69]. The decay

rate is independent of mA and should be within the LEP error for ΓZ (2.3 MeV

[82]). One can then easily see that the increase of the Higgs mass above the

LEP bound (114.4 GeV) seen earlier in Figure 6.1 is consistent with the current

bounds for this decay rate, which thus places only mild constraints on f , below

the TeV scale (≈ 200 GeV) [56, 69].

Similarly, Lnew can also induce Higgs decays into goldstino pairs. The terms

in Lnew that contribute to Higgs decays are Laux
F (2), Laux

D , Lextra
m together with the

MSSM higgsino-Higgs-gaugino coupling (last term in (6.31)). After using (6.32),

expanding the Higgs fields about their v.e.v., one finds:

Lnew +Lonshell
0 ⊃ µ v

4 f 2 m2
A cos 2β ψXψX

[
h0 ′

1 sin β − h0 ′
2 cos β

]
+ h.c. + O(1/ f 3) (6.44)

which, similarly to Z couplings, is independent of gaugino masses. Here v = 246

GeV and h0
i = 1/

√
2 (vi+h0 ′

i +iσi), 〈h0 ′
i 〉 = 0, 〈σi〉 = 0. In the mass eigenstates basis

one simply replaces the square bracket in (6.44) by [H0 sin(β− α)− h0 cos(β− α)].

One can also replace mA by m2
A = m2

h+m2
H −m2

Z +O(1/ f 2), where the Higgs masses
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can be taken to be the MSSM values (up to higher order corrections in 1/ f ). The

decay rate of h0 into a pair of goldstinos is then

Γh0→ψXψX =
mh

8π f 4 g2
h0ψXψX

(6.45)

where gh0ψXψX is the coupling of h0ψXψX of the above Lagrangian. For relevant

values of f above ∼1 TeV it turns out that this decay rate is very small relative

to other partial decay rates of the Higgs in the MSSM/SM. For example, for a

total decay rate near 10−3 GeV (valid near a Higgs mass of order O(100) GeV),

the branching ratio of this decay mode is well below the usual ones and below

that of SM Higgs going into γγ, by a factor ≈ 10−3 − 10−2.
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CHAPTER 7

SUMMARY OF RESULTS

This part of the thesis consists of two different effective analyses in the con-

text of MSSM.

In the first one, covered in chapters 3, 4 and 5, we considered an extension

by the complete set of R-parity conserving, mass dimension 5 operators for the

MSSM and by dimension 5 and 6 for its Higgs sector. This set included all su-

persymmetric and supersymmetry breaking terms, the latter being incorporated

by the use of spurions. Some of these operators are not physical since they can

be related to each other by field redefinitions. We performed the appropriate,

spurion dependent, redefinitions that allowed us to write down the full irre-

ducible set of dimension 5 and dimension 6 operators. We further restricted the

parameter space by applying phenomenological constraints, in particular from

flavor changing neutral currents. We then studied the phenomenological conse-

quences of the model both in the production of new couplings and in the mass

of the Higgs.

The new couplings include “wrong” Higgs Yukawa terms which are also

generated at one loop in pure MSSM. One significant effect of these terms is

the tan β enhancement of the mass of the bottom quark. If the scale of the ef-

fective operators is at the multiTeV scale, the effective contribution is compa-
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rable or even bigger than the loop contribution. We also found couplings of

type 2 quarks - 2 squarks and 2 quarks - 2 sleptons. These are also relevant for

LHC since they contribute to processes of squark production. The correspond-

ing pure MSSM channels become weaker for higher collision energy, contrary

to the effective contribution which is simply suppressed by 1/M. The two can

become comparable for energy of the TeV scale as in LHC.

The effective analysis presented offers a solution to the little hierarchy prob-

lem of MSSM. This problem is related to the fact that the tree level calculation

for mh in pure MSSM reveals an upper bound, equal to mZ = 91.2 GeV, which

is in complete disagreement with the lower bound of 114 GeV from the LEPII

experiment. The only way to overpass this discrepancy in pure MSSM is to

suppose significant loop corrections implying very heavy stops or large stop

mixing. In any case fine tuning is reintroduced and this is what we call the little

hierarchy problem. However, we showed that effective operators can signifi-

cantly raise the mass of the Higgs thus reducing the fine tuning. This result

suggests an alternative interpretation of the little hierarchy. Instead of viewing

it as a deficiency of MSSM, it can be viewed as an indication for new physics at

the multiTeV range.

The second effective analysis, presented in chapter 6, is not related to some

“new physics” but to the SUSY breaking sector. Models of low energy SUSY

breaking predict a very light gravitino. In the low energy regime, the dynamics

of the gravitino can be accurately described by the dynamics of its goldstino

component. So if the breaking scale is around TeV, apart from the pure MSSM

spectrum we need to include the goldstino mode.

The effective description of the goldstino mode is done via nonlinear real-
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ization of supersymmetry. There are various ways to study such systems. We

chose the language of “constrained superfields” as the most general and easy

to reproduce the couplings of goldstinos to MSSM fields. We wrote the full set

of couplings and studied their phenomenological significance. One important

effect is again related to the mass of the Higgs. It is shown that the presence of a

goldstino can also increase mh providing us with yet another way to alleviate the

little hierarchy, even without the hypothesis of new physics. Furthermore, we

found that invisible decays of Higgs to goldstinos and other neutralinos can be

of comparable size with the standard decay to two photons. Finally, assuming

that the lightest neutralino is lighter than the Z gauge boson, we got a bound on

the SUSY breaking scale of around 700 GeV from invisible Z boson decays.
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Part II

BRANE - BULK INTERACTIONS IN

N = 2 GLOBAL AND LOCAL

SUPERSYMMETRY
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CHAPTER 8

PRELIMINARIES

8.1 The Dirac Born Infeld Action as the Effective Action of a

D-brane

In 1934, a few years before the development of Quantum Electrodynamics, M.

Born and L. Infeld proposed a generalization of Maxwell’s electrodynamics that

was free of the notorious divergence in the self-energy of the electron [83]. Their

inspiration derived from how Special Relativity (SR) accommodated what they

called “the principle of finiteness”, that consistent theories should not allow

physical quantities to become infinite.

In SR, the Newtonian kinetic energy of a particle is replaced by a function

that imposes an upper limit in the velocity.

1
2

mv2 → mc2


1 −

√
1 − v2

c2


 . (8.1)

The deeper reason behind this replacement is the principle of relativity, that

the kinetic action be invariant under Lorentz transformations. Born and Infeld
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suggested a similar replacement for electrodynamics

1
2

(H2 − E2) → b2




√
1 +

1
b2 (H2 − E2) − 1


 , (8.2)

where b is a constant with the same dimension as the fields. They supported it

by constructing a general expression for the Lorentz invariant action of a tensor

field Aµν. In a few lines, this is what they did: Under a coordinate transfor-

mation, the measure d4x becomes Jd4x and the determinant |A| becomes J−2|A|,

where J is the Jacobian of the transformation. It is obvious then that
√|A| d4x

forms an invariant piece. As for any arbitrary tensor, we can split Aµν into a sum

of its symmetric and antisymmetric part. The symmetric part was identified

with the metric gµν and the antisymmetric with the field strength Fµν. A general

expression for an invariant Lagrangian is then:

L =
√
−|g + F| + α

√
−|g| + β

√
−|F| . (8.3)

However, the last piece is a total derivative and can be ignored. Also, α = −1

by the requirement that we reduce to Maxwell’s electrodynamics in the limit of

small fields. After restoring dimensions we find that in flat space the Lagrangian

takes the form:

L = b2


1 −

√
−|η + F

b
|

 = b2


1 −

√

1 +
FµνFµν

2b2 − (FµνF̃µν)2

16b4


 , (8.4)

where F̃µν = εµνρσFρσ/2 is the dual field strength. We see that their derivation led

to the suggested action (8.2) up to the piece FF̃ that does not affect the resolution

of the electron self energy problem. In fact, we see that the electric field E has

a maximum value b, in direct correspondence to the maximum velocity c of a

particle in SR. As a consequence, the electric potential at zero distance doesn’t

diverge as 1/r but rather takes a maximum value proportional to
√

b/e, with e

the electron charge.
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The Born Infeld (BI) action offered an ingenious solution to the apparent di-

vergence of the electric field at short distances. However, it was a classical solu-

tion to a problem that is purely quantum mechanical. The advent of Quantum

Electrodynamics and renormalizable quantum field theories in the following

years resolved, beyond many other things, the self energy problem.

Little attention was paid to the BI action until 50 years later. In a paper by

E. Fradkin and A. Tseytlin in 1984, it was shown that the low energy effective

action for open bosonic strings propagating in a background of constant field

strength is given precisely by the BI action [84]. The same action is obtained in

the superstrings case, too [85, 86]. In this framework, the maximal value ‘b’ of

the field strength is interpreted as the string tension T = 1/2πα′. At such extreme

values, higher harmonics of the string can be excited and thus the energy of the

field is transferred into these modes. In a way, the extended nature of strings

smears the singularity. This was a remarkable discovery as it provided a closed

expression where α′ corrections are summed up to all orders.

The connection with D-branes, which were discovered some years later,

didn’t take long to reveal. It was soon demonstrated that the effective action

for the coupling of a D-brane with NSNS bulk fields is given by the Dirac-Born-

Infeld (DBI) action [87]. The DBI action is merely a dimensional reduction of a

generalization of BI action to include the coupling to the dilaton and the anti-

symmetric tensor. The effective action of a D-brane was extended after it was

discovered that these non perturbative objects break half of the bulk supersym-

metries and act as sources for the RR fields of the closed string spectrum [88].

This introduced a second piece in the effective action given by Wess-Zumino

terms [89]. All in all, the bosonic part of the world-volume effective action of a
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Dp-brane at the string tree level is given by:

S Dp = −Tp

∫
dp+1x e−φ

( √
−|g| −

√
−|g + 2πα′F + B|

)
+ µp

∫ ∑

l

e2πα′F+B ∧Cl (8.5)

at string frame. Tp is the brane tension, µp is the brane’s charge for the various

RR fields denoted by Cl (so l is even in type IIB and odd in type IIA) while B is

the NSNS 2-form.

In the previous paragraph we mentioned that D-branes are objects that break

half of the bulk supersymmetries and that their low energy effective action is

described by the DBI action. To be more precise, it has been shown that the

broken half of the supersymmetry is realized nonlinearly on the worldvolume

of the D-brane. These facts lead us to the following question: Is it possible to

apply the tools of nonlinear realizations developed in the previous part of the

thesis, in order to “reproduce” the low energy effective action of a D-brane? In

the following chapters we show that for the general case of N = 2 bulk super-

symmetry, it is. We do this by defining appropriate N = 2 superfields and then

upgrading the constrained superfields technique toN = 2 superspace. The con-

straint breaks one supersymmetry leaving one linear and one nonlinear in the

effective theory. The result comes out to be precisely the DBI action plus Wess -

Zumino terms.

8.2 Quaternion-Kähler and Hyper-Kähler Manifolds

Supersymmetric Lagrangians of interacting matter typically contain compli-

cated, field dependent terms in their kinetic part forming a nonlinear σ model.

An efficient way to study the structure of the allowed couplings is to view the
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fields as coordinates of a Riemannian manifold. Restrictions that supersymme-

try imposes on the couplings are translated into restrictions on the correspond-

ing manifold of the σmodel.

N = 1 global supersymmetry requires that the manifold of hypermultiplet

scalars is Kähler while for N = 1 supergravity it is further restricted to be

Hodge. Adding one more supersymmetry brings further conditions: The scalar

manifold in global N = 2 is restricted to be hyperKähler while in local N = 2 it

is quaternion-Kähler. Since we will focus onN = 2 supersymmetric models, we

briefly present some basic facts about these two manifolds.

A quaternion-Kähler manifold is a 4n real dimensional Kähler manifold with

holonomy contained in S p(2) × S p(2n). It has three complex structures

JiJk = −δikI + ε iklJl (8.6)

with i, k, l = 1, 2, 3 and a hermitian metric such that, for each i

gαβ Jiα
κ Ji β

λ = gκλ .

It is also Einstein, which means that its Ricci tensor is proportional to the metric:

Rαβ = 2ρ(2 + n)gαβ .

and is strictly non-vanishing. In addition, it has a self-dual Weyl curvature

(Weyl tensor is the traceless component of Riemann tensor). In 4D (n=1) the

holonomy is S p(2) × S p(2) ∼ S O(4) so the holonomy condition is empty. In this

case the proper condition is self-duality of the Weyl tensor. In N = 2 nonlinear

σ models coupled to SUGRA the Einstein parameter is identified as ρ = −k2

where k2 = 8πGN (GN is Newton’s constant). In the zero curvature limit (k → 0)

we obtain global supersymmetry and a manifold which is Ricci-flat (Ricci tensor

is zero).
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By properly taking the global supersymmetry limit in a SUGRA theory with

matter couplings, we should reduce to some global matter coupling theory

which, as we mentioned, is described by a hyper-Kähler manifold. Hyper-

Kähler manifolds are defined as the 4n real dimensional, connected, Rieman-

nian manifolds whose holonomy group is contained in S p(2n). All hyper-Kähler

manifolds are also Kähler and Ricci-flat, that is Rµν = 0. This matches with the

zero curvature limit of the quaternion-Kähler. However, hyper-Kähler are not

a subclass of quaternion-Kähler whose Ricci scalar and S p(2) connection are

strictly non-zero.

8.3 Superspace Conventions

The notation used henceforth is somewhat different from the one of the previous

part, being more suitable for the work done here. We present the notation as

well as some ingredients that will be proven useful in the following chapters.

The N = 1 supersymmetry variation of a superfield V1 is δV1 = (εQ + εQ)V1,

with supercharges verifying the algebra

{Qα,Qα̇} = −2i(σµ)αα̇ ∂µ. (8.7)

On V1, the supersymmetry algebra is

[δ1, δ2]V1 = −2i (ε1σµε2 − ε2σµε1) ∂µV1. (8.8)

The covariant derivatives

Dα =
∂

∂θα
− i(σµθ)α ∂µ , Dα̇ =

∂

∂θ
α̇
− i(θσµ)α̇ ∂µ (8.9)
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anticommute with supercharges and verify

{Dα,Dα̇} = −2i(σµ)αα̇ ∂µ (8.10)

as well.

The second supersymmetry will transform V1 into another superfield V2 and

these two will form an N = 2 supermultiplet. It is known that the covariant

derivatives themselves offer a good differential realization of the supersymme-

try algebra; this is easily seen here by comparing (8.7) and (8.10). So we choose

to realize the second supersymmetry algebra on the covariant derivatives by

postulating the following transformations:

δ∗V1 = −
i√
2

(ηD + ηD)V2 , δ∗V2 = i
√

2(ηD + ηD)V1 . (8.11)

where ηα is the spinorial parameter of the second supersymmetry. What we

have presented here is the realization ofN = 2 supersymmetry in terms ofN = 1

superfields. We will see later that for our purposes, we can also define N = 2

chiral superfields, which will be very useful in simplifying various expressions.

The N = 1 supersymmetry variations of the components (z, ψ, f ) of a chiral

superfield Φ, Dα̇Φ = 0, are

δz =
√

2 εψ ,

δψα = −
√

2 [ f εα + i(σµε)α∂µz] ,

δ f = −
√

2 i ∂µψσµε.

(8.12)

The bosonic expansions of the chiral superfields that will appear later are:

Wα(y, θ) = θαd(y) + i
2 (θσµσν)αFµν(y),

χα(y, θ) = −1
4θαC(y) + 1

4 (θσµσν)α bµν(y),

Φ(y, θ) = φ(y) − θθ fφ(y),

(8.13)
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and any other chiral superfield has an expansion similar to Φ. In this notation

χα̇ = (χα)∗ but W α̇ = −(Wα)∗. Since L = Dαχα − Dα̇χα̇, the linear superfield has

bosonic expansion

L(x, θ, θ) = C + θσµθvµ + 1
4θθθθ!C,

vµ = 1
2εµνρσ∂

νbρσ = 1
2εµνρσ∂

[νbρσ] = 1
6εµνρσHνρσ.

(8.14)

With these expansions,

∫
d2θd2θ

[
−L2 +

1
2

(Φ + Φ)2
]

is the Lagrangian of a free, canonically-normalized, single-tensor N = 2 multi-

plet. Its bosonic content is

1
2

(∂µC)(∂µC) +
1
12

HµνρHµνρ, Hµνρ = 3 ∂[µbνρ].

For more details on the single tensor multiplet see section 9.1.

The identities

DD θθ = DD θθ = −4,
∫

d2θd2θ = −1
4

∫
d2θDD = −1

4

∫
d2θDD, (8.15)

only valid under a space-time integral
∫

d4x, are commonly used. Also,

DαDβ = 1
2εαβDD, Dα̇Dβ̇ = −1

2εα̇β̇DD,

[Dα,DD] = −4i(σµD)α∂µ, [Dα̇,DD] = +4i(Dσµ)α̇∂µ,

DD Wα = 4i(σµ∂µW)α, DD W α̇ = −4i(∂µWσµ)α̇.
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CHAPTER 9

THE LINEAR N = 2
MAXWELL-DILATON SYSTEM

Our first objective is to describe, in the context of linear N = 2 supersym-

metry, the coupling of the single-tensor multiplet to N = 2 super-Maxwell the-

ory. Since these two supermultiplets admit off-shell realizations, they can be

described in superspace without reference to a particular Lagrangian. Gauge

transformations of the Maxwell multiplet use a single-tensor multiplet, we then

begin with the latter.

9.1 The Single-Tensor Multiplet

In global N = 1 supersymmetry, a real antisymmetric tensor field bµν is de-

scribed by a chiral, spinorial superfield χα with 8B + 8F fields [90]1:

χα = −
1
4
θα(C + iC′) +

1
4

(θσµσν)α bµν + . . . ( Dα̇χα = 0 ), (9.1)

C and C′ being the real scalar partners of bµν. The curl hµνρ = 3 ∂[µbνρ] is described

by the real superfield

L = Dαχα − Dα̇χα̇. (9.2)
1The notation mB + nF stands for ‘m bosonic and n fermionic fields’.
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Chirality of χα implies linearity of L: DDL = DDL = 0. The linear superfield L is

invariant under the supersymmetric gauge transformation2

χα −→ χα +
i
4

DDDα∆, χα̇ −→ χα̇ +
i
4

DDDα̇∆, (9.3)

of χα: this is the supersymmetric extension of the invariance of hµνρ under

δbµν = 2 ∂[µΛν]. Considering bosons only, the gauge transformation (9.3) elim-

inates three of the six components of bµν and the scalar field C′. Accordingly,

L only depends on the invariant curl hµνρ and on the invariant real scalar C.

The linear L describes then 4B + 4F fields. Using either χα or L, we will find

two descriptions of the single-tensor multiplet of global N = 2 supersymmetry

[17, 18, 19].

In the gauge-invariant description using L, theN = 2 multiplet is completed

with a chiral superfield Φ (8B + 8F fields in total). The second supersymmetry

transformations (with parameter ηα) are

δ∗L = − i√
2
(ηDΦ + ηDΦ) ,

δ∗Φ = i
√

2 ηDL , δ∗Φ = i
√

2 ηDL ,
(9.4)

where Dα and Dα̇ are the usual N = 1 supersymmetry derivatives verifying

{Dα,Dα̇} = −2i(σµ)αα̇∂µ. It is easily verified that the N = 2 supersymmetry alge-

bra closes on L and Φ.

We may try to replace L by χα with second supersymmetry transformation

δ∗χα = − i√
2
Φ ηα, as suggested when comparing eqs. (9.2) and (9.4). However,

with superfields χα and Φ only, the N = 2 algebra only closes up to a gauge

transformation (9.3). This fact, and the unusual number 12B + 12F of fields,

indicate that (χα,Φ) is a gauge-fixed version of the off-shell N = 2 multiplet.
2∆ is an arbitrary real superfield.
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We actually need another chiral N = 1 superfield Y to close the supersymmetry

algebra. The second supersymmetry variations are

δ∗Y =
√

2 ηχ ,

δ∗χα = − i√
2
Φ ηα −

√
2

4 ηα DD Y −
√

2i(σµη)α∂µY ,

δ∗Φ = 2
√

2i
[

1
4 DDηχ + i∂µχσµη

]
.

(9.5)

One easily verifies that the Y–dependent terms in δ∗χα induce a gauge trans-

formation (9.3). Hence, the linear L and its variation δ∗L do not feel Y . The

superfields χα, Φ and Y have 16B + 16F field components. Gauge transformation

(9.3) eliminates 4B + 4F fields. To further eliminate 4B + 4F fields, a new gauge

variation

Y −→ Y − 1
2

DD∆′, (9.6)

with ∆′ real, is then postulated. We will see below that this variation is actually

dictated by N = 2 supersymmetry. There exists then a gauge in which Y = 0

but in this gauge the supersymmetry algebra closes on χα only up to a transfor-

mation (9.3). This is analogous to the Wess-Zumino gauge of N = 1 supersym-

metry, but in our case, this particular gauge respectsN = 1 supersymmetry and

gauge symmetry (9.3).

Two remarks should be made at this point. Firstly, the superfield Y will play

an important role in the construction of the Dirac-Born-Infeld interaction with

nonlinear N = 2 supersymmetry. As we will see later on3, it includes a four-

index antisymmetric tensor field in its highest component. Secondly, a constant

(θ–independent) background value 〈Φ〉 breaks the second supersymmetry only,

δ∗χα = − i√
2
〈Φ〉ηα + . . . It is a natural source of partial supersymmetry breaking

in the single-tensor multiplet. Notice that the condition δ∗〈Φ〉 = 0 is equivalent
3See section 9.4.
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to Dα̇(Dχ − Dχ) = 0.

An invariant kinetic action for the gauge invariant single-tensor multiplet in-

volves an arbitrary function solution of the three-dimensional Laplace equation

(for the variables L, Φ and Φ) [18]:

LS T =

∫
d2θd2θH(L,Φ,Φ) ,

∂2H
∂L2 + 2

∂2H
∂Φ∂Φ

= 0. (9.7)

In the dual hypermultiplet formulation the Laplace equation is replaced by a

Monge-Ampère equation. We will often insist on theories with axionic shift

symmetry δΦ = ic (c real), dual to a double-tensor theory. In this case, H is a

function of L and Φ + Φ so that the general solution of Laplace equation is

LS T =

∫
d2θd2θ H(V) + h.c., V = L +

i√
2

(Φ + Φ), (9.8)

with an arbitrary analytic function H(V).

The single-tensor multiplet as well as its Poincaré duals will play a central

role in what follows. For this reason in Appendix C we give a detailed presen-

tation of these multiplets and the duality transformations that switch from one

to the other.

9.2 The Maxwell Multiplet, Fayet-Iliopoulos Terms

Take two real vector superfields V1 and V2. Variations

δ∗V1 = −
i√
2

[
ηD + ηD

]
V2 , δ∗V2 =

√
2i
[
ηD + ηD

]
V1 (9.9)

provide a representation ofN = 2 supersymmetry with 16B+16F fields. We may

reduce the supermultiplet by imposing on V1 and V2 constraints consistent with
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the second supersymmetry variations: for instance, the single-tensor multiplet

is obtained by requiring V1 = L and V2 = Φ + Φ. Another option is to impose a

gauge invariance: we may impose that the theory is invariant under4

δU(1) V1 = Λ6 , δU(1) V2 = Λc + Λc , (9.10)

where Λ6 and Λc form a single-tensor multiplet,

Λ6 = Λ6 , DDΛ6 = 0, Dα̇Λc = 0, (9.11)

with transformations (9.4). Defining the gauge invariant superfields5

Wα = −1
4 DDDα V2 , W α̇ = − 1

4 DDDα̇ V2 ,

X = 1
2 DD V1 , X = 1

2 DD V1,

(9.12)

the variations (9.9) imply6

δ∗X =
√

2 i ηαWα, δ∗X =
√

2 i ηα̇W
α̇
,

δ∗Wα =
√

2 i
[

1
4ηαDD X + i(σµη)α ∂µX

]
,

δ∗W α̇ =
√

2 i
[

1
4ηα̇DD X − i(ησµ)α̇ ∂µX

]
.

(9.13)

While (V1,V2) describes the N = 2 supersymmetric extension of the gauge po-

tential Aµ, (Wα, X) is the multiplet of the gauge curvature Fµν = 2 ∂[µAν] [91].

TheN = 2 gauge invariant Lagrangian depends on the derivatives of a holo-

morphic prepotential F (X):

LMax. =
1
4

∫
d2θ
[
F ′′(X)WW − 1

2F ′(X)DD X
]
+ c.c.

= 1
4

∫
d2θF ′′(X)WW + c.c. + 1

2

∫
d2θd2θ

[
F ′(X)X + F ′(X)X

]
+ ∂µ(. . .).

(9.14)
4For clarity, we use the following convention for field variations: δ∗ refers to the second

(N = 2) supersymmetry variations of the superfields and component fields; δU(1) indicates the
Maxwell gauge variations; δ appears for gauge variations of superfields or field components
related (by supersymmetry) to δbµν = 2 ∂[µΛν].

5Remember that with this (standard) convention, W α̇ is minus the complex conjugate of Wα.
6There is a phase choice in the definition of X: a phase rotation of X can be absorbed in a

phase choice of η.
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In the construction of the Maxwell multiplet in terms of X and Wα, one ex-

pects a triplet of Fayet-Iliopoulos terms,

LF.I. = −
1
4

(ξ1 + ia)
∫

d2θ X − 1
4

(ξ1 − ia)
∫

d2θ X + ξ2
∫

d2θd2θV2, (9.15)

with real parameters ξ1, ξ2 and a. They may generate background values of

the auxiliary components fX and d2 of X and V2 which in general break both

supersymmetries:

δ∗X =
√

2i ηθ 〈d2〉 + . . . , δ∗Wα =
√

2i ηα 〈 f X〉 + . . . (9.16)

In terms of V1 and V2 however, the relation X = 1
2 DDV1 implies that Im fX is the

curl of a three-index antisymmetric tensor (see section 9.4) and that its expec-

tation value is turned into an integration constant of the tensor field equation

[92, 93]. As a consequence,

−1
4

(ξ1 + ia)
∫

d2θ X − 1
4

(ξ1 − ia)
∫

d2θ X = ξ1
∫

d2θd2θV1 + derivative

and the Fayet-Iliopoulos Lagrangian becomes

LF.I. =

∫
d2θd2θ [ξ1V1 + ξ2V2], (9.17)

with two real parameters only.

The Maxwell multiplet with superfields (X,Wα) and the single-tensor mul-

tiplet (Y, χα,Φ) have a simple interpretation in terms of chiral superfields on

N = 2 superspace. We will use this formalism to construct their interacting

Lagrangians in section 9.5.
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9.3 The Chern-Simons Interaction

With a Maxwell field Fµν = 2 ∂[µAν] (in Wα) and an antisymmetric tensor bµν (in

χα or L), one may expect the presence of a b ∧ F interaction

εµνρσbµνFρσ = 2 εµνρσAµ∂νbρσ + derivative.

This equality suggests that its N = 2 supersymmetric extension also exists in

two forms: either as an integral over chiral superspace of an expression de-

pending on χα, Wα, X, Φ and Y , or as a real expression using L, Φ + Φ, V1 and

V2.

In the ‘real’ formulation, the N = 2 Chern-Simons term is7

LCS = −g
∫

d2θd2θ
[
LV2 + (Φ + Φ)V1

]
, (9.18)

with a real coupling constant g. It is invariant (up to a derivative) under the

gauge transformations (9.10) of V1 and V2 with L and Φ left inert. Notice that the

introduction of Fayet-Iliopoulos terms for V1 and V2 corresponds respectively to

the shifts Φ + Φ→ Φ + Φ − ξ1/g and L→ L − ξ2/g in the Chern-Simons term.

The ‘chiral’ version uses the spinorial prepotential χα instead of L. Turning

expression (9.18) into a chiral integral and using X = 1
2 DD V1 leads to

LCS , χ = g
∫

d2θ
[
χαWα +

1
2
ΦX
]
+ g
∫

d2θ
[
−χα̇W

α̇
+

1
2
ΦX
]
, (9.19)

which differs from LCS by a derivative. The chiral version of the Chern-Simons

term LCS ,χ transforms as a derivative under the gauge variation (9.3) of χα. Its

invariance under constant shift symmetry of ImΦ follows from X = 1
2 DD V1. It

does not depend on Y .
7The dimensions in mass unit of our superfields are as follows: V1,V2 : 0 , X,Y : 1 , Wα, χα :

3/2 , Φ, L : 2. The coupling constant g is then dimensionless.
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The consistent Lagrangian for the Maxwell – single-tensor system with

Chern-Simons interaction is then

LS T +LMax. +LCS or LS T +LMax. +LCS , χ. (9.20)

The first two contributions include the kinetic terms and self-interactions of the

multiplets while the third describes how they interact. Each of the three terms

is separately N = 2 supersymmetric.

Using aN = 1 duality, a linear multiplet can be transformed into a chiral su-

perfield with constant shift symmetry and the opposite transformation of course

exists. Hence, performing both transformations, a single-tensor multiplet La-

grangian (L,Φ) with constant shift symmetry of the chiral Φ has a ‘double-dual’

second version. Suppose that we start with a Lagrangian where Maxwell gauge

symmetry acts as a Stückelberg gauging of the single-tensor multiplet:8

L =
∫

d2θd2θH(L − gV1,Φ + Φ − gV2). (9.21)

The shift symmetry of ImΦ has been gauged and L is invariant under gauge

transformations (9.10) combined with

δU(1)L = gΛ6 , δU(1)Φ = gΛc , (9.22)

and under N = 2 supersymmetry if H verifies Laplace equation (9.7). If we

perform a double dualization (L,Φ+Φ)→ (Φ̃ + Φ̃, L̃), we obtain the dual theory

L̃ =

∫
d2θd2θ H̃(L̃, Φ̃ + Φ̃) + g

∫
d2θ

[
χ̃αWα +

1
2
Φ̃X
]
+ c.c. (9.23)

=

∫
d2θd2θ

[
H̃(L̃, Φ̃ + Φ̃) − gL̃V2

]
+

g
2

∫
d2θ Φ̃X + c.c.

8Strictly speaking, the coupling constant g in this theory has dimension (energy)2. There is
an irrelevant energy scale involved in the duality transformation of a dimension two L into a
dimension two chiral superfield. Hence, g in eq. (9.23) is again dimensionless.
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where H̃ is the result of the double Legendre transformation

H̃(ỹ, x̃) = H(x, y) − x̃x − ỹy. (9.24)

The dual theory is then the sum of the ungauged Lagrangian (9.7) and of the

Chern-Simons coupling (9.18). This single-tensor – single-tensor duality is actu-

ally N = 2 covariant: if H solves Laplace equation, so does H̃ , and every in-

termediate step of the duality transformation can be formulated with explicit

N = 2 off-shell supersymmetry.

We have then found two classes of couplings of Maxwell theory to the single-

tensor multiplet. Firstly, using the supersymmetric extension of the b ∧ F cou-

pling, as in eqs. (9.20). Secondly, using a Stückelberg gauging (9.21) of the

single-tensor kinetic terms. The first version only is directly appropriate to per-

form an electric-magnetic duality transformation. However, since the second

version can always be turned into the first one by a single-tensor – single-tensor

duality, electric-magnetic duality of the second version requires this preliminary

step: both theories have the same ‘magnetic’ dual.

9.4 The Significance of V1, X and Y

In the description of the N = 2 Maxwell multiplet in terms of two N = 1 real

superfields, V2 describes as usual the gauge potential Aµ, a gaugino λα and a real

auxiliary field d2 (in Wess-Zumino gauge). We wish to clarify the significance

and the field content of the superfields V1 and X = 1
2 DDV1, as well as the related

content of the chiral superfield Y used in the description in terms of the spinorial

potential χα of the single-tensor multiplet (Y, χα,Φ).
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The vector superfield V1 has theN = 2 Maxwell gauge variation δU(1)V1 = Λ6,

with a real linear parameter superfield Λ6. In analogy with the Wess-Zumino

gauge commonly applied to V2, there exists then a gauge where

V1(x, θ, θ) = θσµθ v1µ −
1
2
θθ x − 1

2
θθ x − 1√

2
θθθψX −

1√
2
θθθψX +

1
2
θθθθ d1. (9.25)

This gauge leaves a residual invariance acting on the vector field v1µ only:

δU(1)v
µ
1 =

1
2
εµνρσ∂νΛρσ . (9.26)

This indicates that the vector vµ1 is actually a three-index antisymmetric tensor,

vµ1 =
1
6
εµνρσAνρσ, (9.27)

with Maxwell gauge invariance

δU(1)Aµνρ = 3 ∂[µΛνρ]. (9.28)

By construction, X = 1
2 DDV1 is gauge invariant. In chiral variables,

X(y, θ) = x +
√

2 θψX − θθ(d1 + i∂µv
µ
1). (9.29)

Hence, while Re fX = d1,

Im fX = ∂µv
µ
1 =

1
24
εµνρσFµνρσ, Fµνρσ = 4 ∂[µAνρσ] (9.30)

is the gauge-invariant curl of Aµνρ. It follows that the field content (in Wess-

Zumino gauge) of V1 is the second gaugino ψX, the complex scalar of the

Maxwell multiplet x, a real auxiliary field d1 and the three-form field Aµνρ, which

corresponds to a single, non-propagating component field. The gauge-invariant

chiral X includes the four-form curvature Fµνρσ.

At the Lagrangian level, the implication of relations (9.30) is as follows. Sup-

pose that we compare two theories with the same Lagrangian L(u) but either
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with u = φ, a real scalar, or with u = ∂µVµ, as in eq. (9.30). Since L(φ) does not

depend on ∂µφ, the scalar φ is auxiliary. The field equations for both theories are

∂

∂φ
L(φ) = 0, ∂ν

∂

∂u
L(u)
∣∣∣∣∣
u=∂µVµ

= 0

The second case allows a supplementary integration constant k related to the

possible addition of a ‘topological’ term proportional to ∂µVµ to the Lagrangian

[92, 93]:
∂

∂u
L(u)
∣∣∣∣∣
u=∂µVµ

= k.

In the first case, the same integration constant appears if one considers the fol-

lowing modified theory and field equation:

L(φ) − k φ −→ ∂

∂φ
L(φ) = k.

Returning to our super-Maxwell case, the relation is φ = Im fX and the modifi-

cation of the Lagrangian is then

−k Im fX = −
ik
2

∫
d2θ X + c.c. (9.31)

This is the third Fayet-Iliopoulos term, which becomes a ‘hidden parameter’

[92] when using V1 instead of X.

Consider finally the single-tensor multiplet (Y, χα,Φ) and the supersymmet-

ric extension of the antisymmetric-tensor gauge symmetry, as given in Eqs. (9.3)

and (9.6):

δY = −1
2

DD∆′, δχα =
i
4

DDDα∆, δΦ = 0.

Using expansion (9.29), there is a gauge in which Y reduces simply to

Y = −i θθ Im fY (9.32)
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and one should identify Im fY as a four-index antisymmetric tensor field,

Im fY =
1

24
εµνρσCµνρσ, (9.33)

with residual gauge invariance

δCµνρσ = 4 ∂[µΛνρσ]. (9.34)

The antisymmetric tensor Cµνρσ describes a single field component which can be

gauged away using Λνρσ. Applying this extended Wess-Zumino gauge to the

N = 2 multiplet (Y, χα,Φ), the fields described by these N = 1 superfields are as

given in the following table.

N = 1 superfield Field Gauge invariance Number of fields

χα bµν δbµν = 2 ∂[µΛν] 6B − 3B = 3B

C 1B

χα 4F

Φ Φ 2B

fΦ 2B (auxiliary)

ψΦ 4F

Y Cµνρσ δCµνρσ = 4 ∂[µΛνρσ] 1B − 1B = 0B

The propagating bosonic fields bµν, C and Φ (four bosonic degrees of freedom)

have kinetic terms defined by Lagrangian LS T , eq. (9.7).

9.5 Chiral N = 2 Superspace

Many results of the previous section can be reformulated in terms of chiral su-

perfields on N = 2 superspace. We now turn to a discussion of this framework,

including an explicitlyN = 2 covariant formulation of electric-magnetic duality.
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9.5.1 Chiral N = 2 Superfields

A chiral superfield on N = 2 superspace can be written as a function of yµ, θ, θ̃:

Dα̇Z = D̃α̇Z = 0 −→ Z = Z(y, θ, θ̃) (9.35)

with yµ = xµ − iθσµθ − iθ̃σµθ̃ and Dα̇ yµ = D̃α̇ yµ = 0. Its second supersymmetry

variations are

δ∗Z = i(ηQ̃ + ηQ̃)Z, (9.36)

with supercharge differential operators Q̃α and Q̃α̇ which we do not need to ex-

plicitly write. It includes fourN = 1 chiral superfields and 16B+ 16F component

fields and we may use the expansions

Z(y, θ, θ̃) = Z(y, θ) +
√

2 θ̃αωα(y, θ) − θ̃θ̃F(y, θ)

= Z(y, θ) +
√

2 θ̃αωα(y, θ) − θ̃θ̃
[

i
2ΦZ(y, θ) + 1

4 DD Z(y, θ)
]
,

(9.37)

where θ̃ and D̃α are the Grassmann coordinates and the super-derivatives asso-

ciated with the second supersymmetry. The second supersymmetry variations

(9.36) are easily obtained by analogy with the N = 1 chiral supermultiplet:

δ∗Z =
√

2 ηω,

δ∗ωα = −
√

2[Fηα + i(σµη)α ∂µZ] = − i√
2
ΦZ ηα −

√
2

4 ηα DD Z −
√

2i(σµη)α∂µZ,

δ∗F = −
√

2i ∂µωσµη,

δ∗ΦZ = 2
√

2i
[

1
4 DDηω + i∂µωσµη

]
.

(9.38)

We immediately observe that the second expansion (9.37) leads to the second

supersymmetry variations (9.5) of a single-tensor multiplet (Y = Z, χ = ω,Φ =

ΦZ). Similarly, the expansion

W(y, θ, θ̃) = X(y, θ) +
√

2i θ̃W(y, θ) − θ̃θ̃ 1
4

DDX(y, θ), (9.39)
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which is obtained by imposing ΦZ = 0 in expansion (9.37), leads to the Maxwell

supermultiplet (9.13) [94]. The Bianchi identity DαWα = Dα̇W
α̇

is required by

δ∗ΦZ = 0. The N = 2 Maxwell Lagrangian (9.14) rewrites then as an integral

over chiral N = 2 superspace,

LMax. =
1
2

∫
d2θ

∫
d2θ̃F (W) + c.c., (9.40)

and the Fayet-Iliopoulos terms (9.17) can be written [95]

LF.I. =

∫
d2θd2θ [ξ1V1 + ξ2V2] = −1

4

∫
d2θ

∫
d2θ̃
[
θ̃θ̃ ξ1 −

√
2i θθ̃ ξ2

]
W + c.c. (9.41)

Considering the unconstrained chiral superfield (9.37) with 16B + 16F fields,

the reduction to the 8B+8F components of the single-tensor multiplet is done by

imposing gauge invariance (9.3) and (9.6). In terms of N = 2 chiral superfields,

this gauge symmetry is simply

δY = −Ŵ, (9.42)

where Ŵ is a Maxwell N = 2 superfield parameter (9.39). In terms of N = 1

superfields, this is

δY = −X̂, δχα = −iŴα, δΦ = 0, (9.43)

as in eqs. (9.3) and (9.6). Hence, a single-tensor superfieldY is a chiral superfield

Zwith the second expansion (9.37) and with gauge symmetry (9.42).

The chiral version of the Chern-Simons interaction (9.19) can be easily writ-

ten on N = 2 superspace. Using Y with gauge invariance (9.42) and W to

respectively describe the single-tensor and the Maxwell multiplets. Then

LCS ,χ = ig
∫

d2θ

∫
d2θ̃YW + c.c. (9.44)
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It is gauge-invariant since for any pair of Maxwell superfields

i
∫

d2θ

∫
d2θ̃WŴ + c.c. = derivative. (9.45)

Notice that the lowest component superfield Y of Y does not contribute to the

field equations derived from LCS ,χ: it only contributes to this Lagrangian with a

derivative.

Finally, a second method to obtain an interactive Lagrangian for the

Maxwell–single-tensor system is then obvious. Firstly, a generic N = 2 chiral

superfieldZ can always be written as

Z =W + 2gY. (9.46)

It is invariant under the single-tensor gauge variation (9.42) if one also postu-

lates that

δW = 2gŴ, (9.47)

which amounts to a N = 2 Stückelberg gauging of the symmetry of the anti-

symmetric tensor. With this decomposition, Fµν and bµν only appear in the θαθ̃β

component ofZ through the gauge-invariant combination Fµν − gbµν. The chiral

integral

L = 1
2

∫
d2θ

∫
d2θ̃F (W + 2gY) + c.c. +LS T (9.48)

provides a N = 2 invariant Lagrangian describing 16B + 16F (off-shell) interact-

ing fields. There exists a gauge in which W = 0, in which case theory (9.48)

describes a massive chiral N = 2 superfield.

Theory (9.48) is actually related to the Chern-Simons Lagrangian (9.20) by

electric-magnetic duality, as will be shown below.
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9.5.2 Electric-Magnetic Duality

The description in chiral N = 2 superspace of the Maxwell multiplet allows

to derive a N = 2 covariant version of electric-magnetic duality. The Maxwell

Lagrangian (9.14) supplemented by the Chern-Simons coupling (9.19) can be

written

Lelectric =

∫
d2θ

∫
d2θ̃

[
1
2
F (W) + igYW

]
+ c.c., (9.49)

adding eqs. (9.40) and (9.44). Replace then W by an unconstrained chiral su-

perfield Ẑ (with N = 1 superfields Ẑ, ω̂α and Φ̂) and introduce a new Maxwell

multiplet W̃ (with N = 1 superfields X̃ and W̃α). Using

X̃ =
1
2

DD Ṽ1 , W̃α = −
1
4

DDDαṼ2 ,

we have

i
∫

d2θ

∫
d2θ̃ W̃Ẑ + c.c. =

∫
d2θ
[

1
2Φ̂X̃ + ω̂W̃

]
+ c.c.

= −
∫

d2θd2θ
[
Ṽ1(Φ̂ + Φ̂) + Ṽ2(Dαω̂α − Dα̇ω̂

α̇
)
]
.

(9.50)

Consider now the Lagrangian

L =
∫

d2θ

∫
d2θ̃

[
1
2
F (Ẑ) +

i
2
Ẑ(W̃ + 2gY)

]
+ c.c. (9.51)

Invariance under the gauge transformation of the single-tensor superfield,

eq. (9.42), requires a compensating gauge variation of W̃, as in eq. (9.47). Elim-

inating W̃ leads back to theory (9.49) with Ẑ = W. This can be seen in two

ways. Firstly, the condition

i
∫

d2θ

∫
d2θ̃ W̃Ẑ + c.c. = derivative

leads to Ẑ = W, a N = 2 Maxwell superfield, up to a background value. Sec-

ondly, using eqs. (9.50), we see that Ṽ2 imposes the Bianchi identity on ω̂ while
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Ṽ1 cancels Φ̂ up to an imaginary constant.9 We will come back to the (impor-

tant) role of a nonzero background value in the next section. For the moment

we disregard it.

On the other hand, we may prefer to eliminate Ẑ, using its field equation

F ′(Ẑ) = −iV , V ≡ W̃ + 2gY , (9.52)

which corresponds to a Legendre transformation exchanging variables Ẑ and

V. Defining

F̃ (V) = F (Ẑ) + iVẐ, (9.53)

we have

F̃ ′(V) = iẐ , F ′(Ẑ) = −iV , F̃ ′′(V)F ′′(Ẑ) = 1. (9.54)

The dual (Legendre-transformed) theory is then

L̃magnetic =
1
2

∫
d2θ

∫
d2θ̃ F̃ (W̃ + 2gY) + c.c. (9.55)

or, expressed in N = 1 superspace,10

L̃magnetic =
1
4

∫
d2θ
[
F̃ ′′(X̃ + 2gY) (W̃ − 2igχ)α(W̃ − 2igχ)α

−1
2F̃ ′(X̃ + 2gY) DD(X̃ + 2gY) − 2ig F̃ ′(X̃ + 2gY)Φ

]
+ c.c.

(9.56)

We then conclude that the presence of the Chern-Simons term in the electric

theory induces a Stückelberg gauging in the dual magnetic theory.

As explained in ref. [95], the situation changes when Fayet-Iliopoulos terms

(9.41) are present in the electric theory. In the magnetic theory coupled to the

single-tensor multiplet, with Lagrangian (9.56), the gauging δW̃ = 2gŴ forbids

9An unconstrained X̃ would forbid this constant.
10The free, canonically-normalized theory corresponds to F (W) = 1

2W2 and F̃ (V) = 1
2V2.
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Fayet-Iliopoulos terms for the magnetic Maxwell superfields Ṽ1 and Ṽ2. Sponta-

neous supersymmetry breaking by Fayet-Iliopoulos terms in the electric theory

finds then a different origin in the magnetic dual.

For our needs, we only consider the Fayet-Iliopoulos term induced by V1,

i.e. we add

LFI = ξ1

∫
d4θV1 = −

1
4
ξ1

∫
d2θ

∫
d2θ̃ θ̃θ̃W + c.c. (9.57)

to Lelectric, eq. (9.49). In turn, this amounts to add

−1
4
ξ1

∫
d2θ

∫
d2θ̃ θ̃θ̃ Ẑ + c.c.

to theory (9.51). But, in contrast to expression (9.57), this modification is not

invariant under the second supersymmetry: according to the first eq. (9.38), its

δ∗ variation

−
√

2
4
ξ1

∫
d2θ ηω + c.c.

is not a derivative.11 To restore N = 2 supersymmetry, we must deform the δ∗

variation of W̃α − 2igχα into

δ∗de f ormed(W̃α − 2igχα) =
1√
2
ξ1ηα + δ

∗(W̃α − 2igχα), (9.58)

the second term being the usual, undeformed, variations (9.13) and (9.5). Hence,

the magnetic theory has a goldstino fermion and linear N = 2 supersymmetry

partially breaks toN = 1, as a consequence of the electric Fayet-Iliopoulos term.

Concretely, the magnetic theory is now

L̃magnetic =
1
2

∫
d2θ

∫
d2θ̃ F̃

(
W̃ + 2gY + i

2ξ1θ̃θ̃
)
+ c.c.

= 1
2

∫
d2θ

∫
d2θ̃
[
F̃
(
W̃ + 2gY

)
+ i

2ξ1θ̃θ̃ F̃ ′
(
W̃ + 2gY

)]
+ c.c.

=

[
1
2

∫
d2θ

∫
d2θ̃ F̃

(
W̃ + 2gY

)
+ i

4ξ1

∫
d2θ F̃ ′

(
X̃ + 2gY

)]
+ c.c.

(9.59)

11It would be a derivative if ωα would be replaced by the Maxwell superfield Wα, as in
eq. (9.57).
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One easily checks that N = 2 supersymmetry holds, using the deformed varia-

tions (9.58).
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CHAPTER 10

NONLINEAR N = 2
SUPERSYMMETRY AND THE DBI

ACTION

In the previous sections, we have developed various aspects of the coupling

of a Maxwell multiplet to a single-tensor multiplet in linearN = 2 supersymme-

try. With these tools, we can now address our main subject: show how a Dirac-

Born-Infeld Lagrangian (DBI) coupled to the single-tensor multiplet arises from

nonlinearization of the second supersymmetry.

It has been observed that the DBI Lagrangian with nonlinear second super-

symmetry can be derived by solving a constraint invariant under N = 2 su-

persymmetry imposed on the super-Maxwell theory [20, 21]. We start with a

summary of this result, following mostly Roček and Tseytlin [21], and we then

generalize the method to incorporate the fields of the single-tensor multiplet.

10.1 The N = 2 Super-Maxwell DBI Theory

The constraint imposed on the N = 2 Maxwell chiral superfieldW is [21]1

W2 − 1
κ
θ̃θ̃W =

(
W− 1

2κ
θ̃θ̃

)2
= 0. (10.1)

1See also Ref. [96] and very recently Ref. [54] in the context of N = 1 supersymmetry.
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It imposes a relation between the super-Maxwell Lagrangian superfieldW2 and

the Fayet-Iliopoulos ‘superfield’ θ̃θ̃W, eq. (9.57). The real scale parameter κ has

dimension (energy)−2. In terms ofN = 1 superfields, the constraint is equivalent

to

X2 = 0, XWα = 0, WW − 1
2

XDDX =
1
κ

X. (10.2)

The third equality leads to

X =
2 WW

2
κ + DDX

(10.3)

which, since WαWβWγ = 0, implies the first two conditions. Solving the third

constraint amounts to express X as a function of WW [20]2. The DBI theory

is then obtained using as Lagrangian the Fayet-Iliopoulos term (9.57) properly

normalized:

LDBI =
1
4κ

∫
d2θ X + c.c =

1
8κ2

[
1 −
√
−det(ηµν + 2

√
2κFµν)

]
+ . . . (10.4)

The constraints (10.1) and (10.2) are not invariant under the second linear su-

persymmetry, with variations δ∗. However, one easily verifies that the three

constraints (10.2) are invariant under the deformed, nonlinear variation

δ∗de f ormedWα =
√

2 i
[

1
2κ
ηα +

1
4
ηαDD X + i(σµη)α ∂µX

]
, (10.5)

with δ∗X unchanged. The deformation preserves the N = 2 supersymmetry

algebra. It indicates that the gaugino spinor in Wα = −iλα + . . . transforms inho-

mogeneously, δ∗λα = − 1√
2κ
ηα+ . . ., like a goldstino for the breaking of the second

supersymmetry. In other words, at the level of the N = 2 chiral superfieldW,

δ∗de f ormedW = −1
κ
θ̃η + i

(
ηQ̃ + ηQ̃

)
W = i

(
ηQ̃ + ηQ̃

) (
W− 1

2κ
θ̃θ̃

)
.

The deformed second supersymmetry variations δ∗de f ormed act onW as the usual

variations δ∗ act on the shifted superfieldW− 1
2κ θ̃θ̃. In fact, this superfield trans-

forms like a chiral N = 2 superfield (9.37) with Z = X, ωα = iWα verifying the
2See Appendix B.
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Bianchi identity and with ΦZ = −i/κ. The latter background value of ΦZ may be

viewed as the source of the partial breaking of linear supersymmetry.

Hence, the scale parameter κ introduced in the nonlinear constraint (10.1)

appears as the scale parameter of the DBI Lagrangian and also as the order

parameter of partial supersymmetry breaking. The Fayet-Iliopoulos term (10.4)

has in principle an arbitrary coefficient −ξ1/4, as in eq. (9.17). We have chosen

ξ1 = −κ−1 to canonically normalize gauge kinetic terms.

The DBI Lagrangian is invariant under electric-magnetic duality.3 In ourN =

2 case, the invariance is easily established in the language of N = 2 superspace.

We first include the constraint as a field equation of the Lagrangian:

LDBI =

∫
d2θ

∫
d2θ̃




1
4κ
θ̃θ̃W + 1

4
Λ

(
W− 1

2κ
θ̃θ̃

)2  + c.c. (10.6)

The field equation of the N = 2 superfield Λ enforces (10.1). We then intro-

duce two unconstrained N = 2 chiral superfields U and Υ and the modified

Lagrangian

LDBI =

∫
d2θ

∫
d2θ̃

[
1
4κ
θ̃θ̃W + 1

4
ΛU2 − 1

2
Υ

(
U −W + 1

2κ
θ̃θ̃

)]
+ c.c.

Since the Lagrange multiplier Υ imposes U = W − 1
2κ θ̃θ̃, the equivalence with

(10.6) is manifest. But we may also eliminateW which only appears linearly in

the last version of the theory. The result is

Υ = −iW̃ − 1
2

(
1
κ
− iζ
)
θ̃θ̃

where W̃ is a Maxwell N = 2 superfield dual to W and ζ an arbitrary real

constant. As in subsection 9.5.2, N = 2 supersymmetry of the theory with a

Fayet-Iliopoulos term requires a nonlinear deformation of the δ∗ variation of
3For instance, in the context of D3-branes of IIB superstrings, see Ref. [97]. Our procedure is

inspired by Ref. [21].
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W̃: W̃ − i
2

(
1
κ − iζ

)
θ̃θ̃ should be a ‘good’ N = 2 chiral superfield. Replacing Υ in

the Lagrangian and taking ζ = 0 leads to

LDBI =

∫
d2θ

∫
d2θ̃

[
1
4
ΛU2 +

i
2

U
[
W̃ − i

2κ
θ̃θ̃
]
+

i
4κ
W̃ θ̃θ̃

]
+ c.c.

Finally, eliminating U gives the magnetic dual

LDBI =

∫
d2θ

∫
d2θ̃

[
1

4Λ

(
W̃ − i

2κ
θ̃θ̃
)2
+

i
4κ
W̃ θ̃θ̃

]
+ c.c. (10.7)

One easily verifies that the resulting theory has the same expression as the initial

‘electric’ theory (10.4). The Lagrange multiplier Λ−1 imposes constraint (10.1) to

−iW̃, which reduces to eq. (10.3) applied to −iX̃. The Lagrangian is then given

by the Fayet-Iliopoulos term for this superfield.

10.2 Coupling the DBI Theory to a Single-Tensor Multiplet:

a Super-Higgs Mechanism without Gravity

The N = 2 super-Maxwell DBI theory is given by a Fayet-Iliopoulos term for

a Maxwell superfield submitted to the quadratic constraint (10.1), which also

provides the source of partial supersymmetry breaking. The second supersym-

metry is deformed by the constraint: it isW− 1
2κ θ̃θ̃which transforms as a regular

N = 2 chiral superfield. Instead of expression (9.44), we are thus led to consider

the following Chern-Simons interaction with the single-tensor multiplet:

LCS ,de f . = ig
∫

d2θ

∫
d2θ̃Y

(
W− 1

2κ θ̃θ̃
)
+ c.c.

= g
∫

d2θ
[

1
2ΦX + χαWα − i

2κY
]
+ c.c. + derivative.

(10.8)

The new term induced by the deformation of δ∗Wα is proportional to the four-

form field described by the chiral superfield Y , as explained in section 9.4 [see
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eq. (9.33)]. This modified Chern-Simons interaction, invariant under the de-

formed second supersymmetry variations, may be simply added to the Maxwell

DBI theory (10.6). We then consider the Lagrangian

LDBI =

∫
d2θ

∫
d2θ̃


igY

(
W− 1

2κ
θ̃θ̃

)
− 1

4
ξ1θ̃θ̃W +

1
2
Λ

(
W− 1

2κ
θ̃θ̃

)2  + c.c.,

(10.9)

for the constrained Maxwell and single-tensor multiplets, keeping the Fayet-

Iliopoulos coefficient ξ1 arbitrary. For a coherent theory with a propagating

single-tensor multiplet, a kinetic Lagrangian LS T [eq. (9.7)] should also be

added. Since
∫

d2θ

∫
d2θ̃

[
igYW − 1

4
ξ1θ̃θ̃W

]
+c.c. =

∫
d2θ

[
g χW +

g
2
ΦX − 1

4
ξ1X
]
+c.c.+deriv.,

we see that the Fayet-Iliopoulos term is equivalent to a constant real shift of Φ

which, according to variations (9.5), partially breaks supersymmetry. We will

choose to expand Φ around 〈Φ〉 = 0 and keep ξ1 ! 0.

Again, the constraint (10.1) imposed by the Lagrange multiplier Λ can be

solved to express X as a function of WW: X = X(WW). The result is [20]

X(WW) = κWW − κ3DD



WWWW

1 + κ2A +
√

1 + 2κ2A + κ4B2


 , (10.10)

where A and B are defined in Appendix B. The DBI Lagrangian coupled to the

single-tensor multiplet reads then

LDBI =

∫
d2θ

[
1
4

(2gΦ − ξ1) X(WW) + gχαWα −
ig
2κ

Y
]
+ c.c. +LS T . (10.11)

The bosonic Lagrangian depends on a single auxiliary field4, d2 in Wα or V2:

LDBI, bos. =
1
8κ (2g ReΦ − ξ1)

(
1 −
√
−8κ2d2

2 − det(ηµν + 2
√

2κ Fµν)
)
− g

2Cd2

+gεµνρσ
(
κ
4 ImΦFµνFρσ − 1

4bµνFρσ + 1
24κCµνρσ

)
+LS T, bos..

(10.12)
4Since X(WW)|θ=0 is a function of fermion bilinears, the auxiliary fΦ does not contribute to the

bosonic Lagrangian and χα does not include any auxiliary field.
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The real scalar field C is the lowest component of the linear superfield L. Con-

trary to 〈Φ〉, its background value is allowed by N = 2 supersymmetry. How-

ever, a non-zero 〈C〉 would induce a non-zero 〈d2〉 which would spontaneously

break the residual N = 1 linear supersymmetry. This is visible in the bosonic

action which, after elimination of

d2, bos. =
gC
2κ

√
− det(ηµν + 2

√
2κ Fµν)

(2g ReΦ − ξ1)2 + 2g2C2 , (10.13)

becomes

LDBI, bos. =
1
8κ (2g ReΦ − ξ1)

[
1 −
√

1 + 2g2C2

(2g ReΦ−ξ1)2

√
− det(ηµν + 2

√
2κ Fµν)

]

+gεµνρσ
(
κ
4 ImΦFµνFρσ − 1

4bµνFρσ + 1
24κCµνρσ

)
+LS T, bos..

(10.14)

First of all, as expected, the theory includes a DBI Lagrangian for the Maxwell

field strength Fµν, with scale ∼ κ. With the Chern-Simons coupling to the single-

tensor multiplet, the DBI term acquires a field-dependent coefficient,

− 1
8κ

√
(2g ReΦ − ξ1)2 + 2g2C2

√
− det(ηµν + 2

√
2κ Fµν). (10.15)

It also includes a F∧F term which respects the axionic shift symmetry of ImΦ, a

b ∧ F coupling induced by (linear) N = 2 supersymmetry and a ‘topological’ C4

term induced by the nonlinear deformation. These terms are strongly reminis-

cent of those found when coupling a D-brane Lagrangian to IIB supergravity.

The contribution of the four-form can be eliminated by a gauge choice of the

single-tensor symmetry (9.34). We have however insisted on keeping off-shell

(deformed) N = 2 supersymmetry, hence the presence of this term.

The theory also includes a semi-positive scalar potential5

V(C,ReΦ) =
2g ReΦ − ξ1

8κ




√

1 +
2g2C2

(2g ReΦ − ξ1)2 − 1


 (10.16)

5We only consider 2g ReΦ−ξ1 > 0, in order to have well-defined positive gauge kinetic terms.
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which vanishes only if C is zero.6 The scalar potential determines then 〈C〉 = 0

but leaves ReΦ arbitrary. Since

〈d2〉 =
g〈C〉
2κ

〈
(2g ReΦ − ξ1)2 + 2g2C2

〉−1/2
,

the vacuum line 〈C〉 = 0 is compatible with linear N = 1 and deformed second

supersymmetry. While Φ is clearly massless, C has a mass term

−1
2

M2
C C2 = − g2

4κ(2 ReΦ − ξ1)
C2.

The same mass is acquired by the U(1) gauge field coupled to the antisymmetric

tensor bµν, and by the goldstino (the U(1) gaugino in Wα) that forms a Dirac

spinor with the fermion of the linear multiplet χα. In other words, the Chern-

Simons coupling χW pairs the Maxwell goldstino with the linear multiplet to

form a massive vector, while the chiral multiplet Φ remains massless with no

superpotential.

At 〈C〉 = 〈ReΦ〉 = 0, gauge kinetic terms are canonically normalized if ξ1 =

−κ−1. The Maxwell DBI theory (10.4) is of course recovered when the Chern-

Simons interaction decouples with g = 0. Notice finally that the kinetic terms

LS T of the single-tensor multiplet are given by eq. (9.7), as with linear N = 2

supersymmetry. Since the nonlinear deformation of the second supersymmetry

does not affect δ∗L or δ∗Φ even if 〈ReΦ〉 ! 0, the functionH remains completely

arbitrary.

The phenomenon described above provides a first instance of a super-Higgs

mechanism without gravity: the nonlinear goldstino multiplet is ‘absorbed’ by

the linear multiplet to form a massive vector N = 1 superfield. One may won-

der how this can happen without gravity; normally one expects that the gold-
6With respect to ReΦ, the potential is stationary, ∂V

∂ReΦ = 0, only if C = 0. All local minima are
then characterized by C = 0 and ReΦ arbitrary and are then (supersymmetric) global minima.
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stino can be absorbed only by the gravitino in local supersymmetry. The reason

of this novel mechanism is that the goldstino sits in the same multiplet of the

linear supersymmetry as a gauge field which has a Chern-Simons interaction

with the tensor multiplet. This will become clearer in Section 10.6, where we

will show by a change of variables that this coupling is equivalent to an ordi-

nary gauge interaction with a charged hypermultiplet, providing non derivative

gauge couplings to the goldstino. Actually, this particular super-Higgs mecha-

nism is an explicit realization of a phenomenon known in string theory where

the U(1) field of the D-brane world-volume becomes in general massive due to

a Chern-Simons interaction with the R–R antisymmetric tensor of a bulk hyper-

multiplet.7

We have chosen a description in terms of the single-tensor multiplet because

it admits an off-shell formulation well adapted to our problem. Our DBI La-

grangian (10.9), supplemented with kinetic terms LS T , admits however several

duality transformations. Firstly, since it only depends onW, we may perform

an electric-magnetic duality transformation, as described in section 10.4. Then,

for any choice of LS T , we can transform the linear N = 1 superfield L into a

chiral Φ′. The resulting theory is a hypermultiplet formulation with superfields

(Φ,Φ′) and N = 2 supersymmetry realized only on-shell. As already explained

in section 9.3, the b ∧ F interaction is replaced by a Stückelberg gauging of the

axionic shift symmetry of the new chiral Φ′: the Kähler potential of the hyper-

multiplet formulation is a function of Φ′ + Φ
′ − gV2. Explicit formulae are given

in the next section and in section 10.6 we will use this mechanism in the case of

nonlinearN = 2 QED. Finally, if kinetic terms LS T also respect the shift symme-

try of ImΦ, the chiral Φ can be turned into a second linear superfield L′, leading
7This can be avoided in the orientifold case: theN = 2 bulk supermultiplets are truncated by

the orientifold projection.
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to two formulations which are also briefly described below.

10.3 Hypermultiplet, Double-Tensor and Single-Tensor Dual

Formulations

As already mentioned, using the single-tensor multiplet is justified by the exis-

tence of an off-shell N = 2 formulation. The hypermultiplet formulation, with

two N = 1 chiral superfields, is however more familiar and the first purpose of

this subsection is to translate our results into this formalism. In the DBI theory

(10.11), the linear superfield L only appears in

LS T + g
∫

d2θ χαWα + c.c. =
∫

d2θd2θ
[
H(L,Φ,Φ) + gLV2

]
+ derivative.

These contributions are not invariant under δ∗ variations: the nonlinear defor-

mation acts on Wα and on V2. Nevertheless, the linear superfield can be trans-

formed into a new chiral superfield Φ′. The resulting ‘hypermultiplet formula-

tion’ has Lagrangian

LDBI, hyper. =

∫
d2θd2θK

(
Φ′ + Φ

′ − gV2,Φ,Φ
)

+

∫
d2θ
[

1
4 (2gΦ − ξ1) X(WW) − ig

2κY
]
+ c.c.

(10.17)

The Kähler potential is given by the Legendre transformation

K(Φ′ + Φ
′
,Φ,Φ) = H(U,Φ,Φ) − U(Φ′ + Φ

′
), (10.18)

where U is the solution of

∂

∂U
H(U,Φ,Φ) = Φ′ + Φ

′
. (10.19)

In the single-tensor formulation, N = 2 supersymmetry implies that H solves

Laplace equation. As a result of the Legendre transformation, the determinant
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of K is constant and the metric is hyperkähler [18]. It should be noted that the

Legendre transformation defines the new auxiliary scalar fΦ′ of Φ′ according to

fΦ′ =
(
∂2H
∂U∂Φ

)

θ=0
fΦ. (10.20)

Hence, the hypermultiplet formulation has the same number of independent

auxiliary fields as the single-tensor version: d2 and fΦ.

The second supersymmetry variation δ∗ of Φ′ is also defined by transforma-

tion (10.19): in the hypermultiplet formulation, N = 2 is realized on-shell only,

using the Lagrangian function. The nonlinear deformation of variations δ∗ acts

on V2. Since Wα = −1
4 DDDαV2, eq. (10.5) indicates that

δ∗V2 =
i√
2κ

(θθθη − θθθη) +
√

2i (ηD + ηD)V1.

The κ-dependent term in the δ∗ variation of the Kähler potential term in

LDBI, hyper. is then the same as the κ-dependent part in g δ∗
∫

d2θ χαWα + c.c, which

is compensated by the variation of the four-form field. This can again be shown

using eqs. (10.18) and (10.19). This hypermultiplet formulation will be used in

Section 10.6, on the example of nonlinear DBI QED with a charged hypermulti-

plet.

For completeness, let us briefly mention two further formulations of the

same DBI theory, using either a double-tensor, or a dual single-tensor N = 2

multiplet. These possibilities appear if Lagrangian (10.11) has a second shift

symmetry of ImΦ. This is the case if the single-tensor kinetic Lagrangian has

this isometry:

LS T =

∫
d2θd2θH(L,Φ + Φ).

We may then transform Φ into a linear superfield L′ using an N = 1 duality

transformation. Keeping L and turning Φ into L′ leads to a double-tensor for-
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mulation with superfields (L, L′). The Lagrangian has the form

LDT =

∫
d2θd2θG

(
L, L′ − gV1(WW)

)
−
∫

d2θ

[
1
4
ξ1X(WW) − gχαWα +

ig
2κ

Y
]
+ c.c.

(10.21)

The function G is the Legendre transform of H with respect to its second vari-

able Φ + Φ and the real superfield V1(WW) is defined by the equation

X(WW) =
1
2

DD V1(WW). (10.22)

It includes the DBI gauge kinetic term in its d1 component and the Lagrangian

depends on the new tensor b′µν through the combination 3 ∂[µb′νρ] − gωµνρ, where

ωµνρ = 3 A[µFνρ] is the Maxwell Chern-Simons form.

Finally, turning Φ and L into L′ and Φ′, leads to another single-tensor theory

with a Stückelberg gauging of both Φ′ and L′, as in theory (9.21). In this case,

the Lagrangian is

LS T ′ =

∫
d2θd2θ H̃

(
Φ′ +Φ

′ − gV2, L′ − gV1(WW)
)
−
∫

d2θ

[
1
4
ξ1X(WW) +

ig
2κ

Y
]
+ c.c.

(10.23)

While in the double-tensor theory (10.21) the second nonlinear supersymmetry

only holds on shell, it is valid off shell in theory (10.23). The function H̃ veri-

fies Laplace equation, as required by N = 2 linear supersymmetry.8 Using the

supersymmetric Legendre transformation, one can show that the nonlinear de-

formation of δ∗V2, which affects δ∗H̃ , is again balanced by the variation of the

four-form superfield Y .
8See eq. (9.7).
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10.4 The Magnetic Dual

To perform electric-magnetic duality on theory (10.9), we first replace it with

LDBI =

∫
d2θ

∫
d2θ̃
[
igY
(
W− 1

2κ θ̃θ̃
)
− 1

4ξ1θ̃θ̃W

+1
4ΛU2 − 1

2Υ
(
U −W + 1

2κ θ̃θ̃
)]
+ c.c. +LS T .

(10.24)

Both U and Υ are unconstrained chiral N = 2 superfields. The Lagrange mul-

tiplier Υ imposes U = W − 1
2κ θ̃θ̃, which leads again to theory (10.9). The first

two terms, which have gauge and N = 2 invariance properties related to the

Maxwell character ofW are left unchanged. The term quadratic inW has been

turned into a linear one using the Lagrange multiplier. Hence, the Maxwell

superfieldW, which contributes to Lagrangian (10.24) by

∫
d2θ

∫
d2θ̃W

(
igY + 1

2
Υ − 1

4
ξ1 θ̃θ̃

)
+ c.c., (10.25)

can as well be eliminated: Υ should be such that this contribution is a derivative.

In terms of N = 1 chiral superfields, W has components X and Wα and since

there exists two real superfields V1 and V2 such that X = 1
2 DD V1 and Wα =

−1
4 DDDα V2, we actually need to eliminate V1 and V2 with result

Υ = −iW̃ − 2igY + 1
2

(ξ1 + iζ) θ̃θ̃. (10.26)

In this expression, W̃ is a Maxwell N = 2 superfield, the ‘magnetic dual’ of the

eliminatedW. There is a new arbitrary real deformation parameter ζ, allowed

by the field equation of V2. Notice however that ξ1 + iζ can be eliminated by

a constant complex shift of Φ. Invariance of Υ under the single-tensor gauge

variation (9.42) implies that δW̃ = 2gŴ = −2gδY and

Z ≡ W̃ + 2gY (10.27)
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is then a gauge-invariant chiral superfield. As already mentioned, any uncon-

strained chiral N = 2 superfield can be decomposed in this way and our theory

may as well be considered as a description of the chiral superfields Z and Y

with Lagrangian

LDBI =

∫
d2θ

∫
d2θ̃
[1
4
ΛU2 + iU

(1
2
Z + i

4
(ξ1 + iζ)θ̃θ̃

)
+

i
4κ
θ̃θ̃(Z− 2gY)

]
+ c.c. +LS T .

(10.28)

Invariance under the second supersymmetry implies thatZ + i
2 (ξ1 + iζ)θ̃θ̃ trans-

forms as a standard N = 2 chiral superfield and then

δ∗de f ormedZ = i(ξ1 + iζ)θ̃η + i(ηQ̃ + ηQ̃)Z. (10.29)

Eliminating U leads finally to

L̃DBI =

∫
d2θ

∫
d2θ̃
[ 1
4Λ

(
Z + i

2
(ξ1 + iζ)θ̃θ̃

)2
+

i
4κ
θ̃θ̃(Z− 2gY)

]
+ c.c. +LS T , (10.30)

which is the electric-magnetic dual of theory (10.9).9 The Lagrange multiplier

superfield Λ−1 implies now the constraint

0 =
(
Z + i

2
(ξ1 + iζ)θ̃θ̃

)2
= Z2 + i(ξ1 + iζ)θ̃θ̃Z. (10.31)

Using the expansion (9.37),

Z(y, θ, θ̃) = Z(y, θ) +
√

2 θ̃ω(y, θ) − θ̃θ̃
[

i
2
ΦZ(y, θ) +

1
4

DDZ(y, θ)
]
,

with Z = X̃ + 2gY , ωα = iW̃α + 2gχα and ΦZ = 2gΦ, this constraint corresponds to

Z2 = 0, Zωα = 0,
1
2

ZDDZ + ωω = −iZ[ΦZ − (ξ1 + iζ)].

In this case, and in contrast to the electric case, the constraint leading to the DBI

theory is due to the scale 〈ΦZ〉 = 2g〈Φ〉: we will actually choose ζ = 0, absorb ξ1
9It reduces to eq. (10.7) if g = 0.
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into ΦZ and consider the constraint Z2 = 0 with a non-zero background value

〈ΦZ〉 breaking the second supersymmetry. Our magnetic theory is then

L̃DBI =

∫
d2θ

∫
d2θ̃
[ 1
4Λ
Z2 +

i
4κ
θ̃θ̃(Z− 2gY)

]
+ c.c. +LS T , (10.32)

with constraints

Z2 = 0, Zωα = 0,
1
2

ZDDZ + ωω = −iZΦZ, (10.33)

the DBI scale arising from ΦZ = φZ + 〈ΦZ〉. As in the Maxwell case, the third

equation, which also reads

Z =
iωω

ΦZ − i
2 DDZ

, (10.34)

implies Zωα = Z2 = 0 and allows to express Z as a function of ωω and Φ, Z =

Z(ωω,Φ), using ΦZ = 2gΦ − ξ1. The magnetic theory (10.32) is then simply

L̃DBI = −
1
2κ

Im
∫

d2θ
[
Z(ωω,Φ) − 2gY

]
+LS T . (10.35)

It is the electric-magnetic dual of expression (10.11). At this point, it is important

to recall that ω and Φ are actually N = 1 superfields components of Z = W̃ +

2gY, i.e.

ωα = iW̃α + 2gχα. (10.36)

The kinetic terms for the single-tensor multiplet (L,Φ), L = Dχ−Dχ, are included

in LS T while Z(ωω,Φ) includes the DBI kinetic terms for the Maxwell N = 1

superfield W̃α. As in the electric case, the magnetic theory has a contribution

proportional to the four-form field included in Y .

The third constraint (10.33) is certainly invariant under the variations (9.38),

using Zωα = 0. But with a non-zero background value Φ = φ + 〈Φ〉, the spinor

ωα transforms nonlinearly, like a goldstino:10

δ∗ωα = −
i√
2
〈Φ〉 ηα −

i√
2
φ ηα −

√
2

4
ηα DD Z −

√
2i(σµη)α∂µZ. (10.37)

10See eq. (10.29).
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10.4.1 The Bosonic Lagrangian

The bosonic Lagrangian included in the magnetic theory (10.35) is

L̃DBI,bos. =
ReΦZ

8κ −
ReΦZ

8κ|ΦZ|2

{
−|ΦZ|4 det

[
ηµν − 2

√
2 |ΦZ|−1(F̃µν − gbµν)

]

−8d̃2
2 (|ΦZ|2 + 2g2C2) + 2g2C2|ΦZ|2

+8gCd̃2 εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ)
}1/2

− ImΦZ
8κ|ΦZ|2

[
εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ) − 4gCd̃2

]

+ g
24κ ε

µνρσCµνρσ +LS T,bos..

(10.38)

It depends on a single auxiliary field, the Maxwell real scalar d̃2, with field equa-

tion

d̃2, bos. = −
g C

2(|ΦZ|2 + 2g2C2)
εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ)

−g C ImΦZ
2|ΦZ|2

√
− det

(
ηµν +

2
√

2√
2g2C2+|ΦZ|2

(F̃µν − g bµν)
)

√
(ReΦZ)2 + 2g2C2

.

(10.39)

Eliminating d̃2 and using ΦZ = 2gΦ − ξ1 to reintroduce the superfield Φ of the

single-tensor multiplet and the ‘original’ Fayet-Iliopoulos term ξ1, we finally

obtain the magnetic, bosonic Lagrangian

L̃DBI,bos. =
2g ReΦ − ξ1

8κ
− 1

8κ

√
(2g ReΦ − ξ1)2 + 2g2C2

×
√
− det

(
ηµν − 2

√
2√

2g2C2+|2gΦ−ξ1 |2
(F̃µν − gbµν)

))

− g ImΦ
4κ(2g2C2 + |2gΦ − ξ1|2)

εµνρσ(F̃µν − gbµν)(F̃ρσ − gbρσ)

+
g

24κ
εµνρσCµνρσ +LS T,bos. .

(10.40)
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As in the electric case, the DBI term has a field-dependent coefficient,

− 1
8κ

√
(2g ReΦ − ξ1)2 + 2g2C2

√
− det

(
ηµν −

1
√

2g2C2 + |2gΦ − ξ1|2
(F̃µν − gbµν)

)
,

(10.41)

and, as expected, the scalar potentials of the magnetic and electric [eq. (10.16)]

theories are identical.

Define the complex dimensionless field

S = κ
√

(2g ReΦ − ξ1)2 + 2g2C2 + 2iκg ImΦ, (10.42)

for which κ−2|S |2 = |2gΦ − ξ1|2 + 2g2C2. In terms of S , the magnetic theory (10.40)

rewrites as

L̃DBI,bos. =
2g ReΦ − ξ1

8κ
− 1

8κ2
Re

1
S

√
− det

(
|S |ηµν − 2

√
2κ(F̃µν − gbµν)

)

+
1
8

Im
1
S
εµνρσ(F̃µν − gbµν)(F̃ρσ − gbρσ) +

g
24κ
εµνρσCµνρσ +LS T,bos.

=
2g ReΦ − ξ1

8κ
− 1

8κ2
Re S

√
− det

(
ηµν − 2

√
2κ|S |−1(F̃µν − gbµν)

)

+
1
8

Im
1
S
εµνρσ(F̃µν − gbµν)(F̃ρσ − gbρσ) +

g
24κ
εµνρσCµνρσ +LS T,bos..

(10.43)

This is to be compared with the electric theory (10.14):

LDBI, bos. =
2g ReΦ − ξ1

8κ
− 1

8κ2
Re S

√
− det(ηµν − 2

√
2κ Fµν)

+
1
8

Im S εµνρσFµνFρσ −
g
4
εµνρσbµνFρσ +

g
24κ
εµνρσCµνρσ +LS T, bos..

(10.44)

Hence, the duality from the electric to the magnetic theory corresponds to the

transformations

bµν → 0, Fµν → F̃µν − gbµν, S → S −1, ηµν → |S |ηµν, (10.45)

which can be also derived from electric-magnetic duality applied on the bosonic

DBI theory only.
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10.5 Double-Tensor Formulation and Connection with the

String Fields

In IIB superstrings compactified to four dimensions with eight residual super-

charges, the dilaton belongs to a double-tensor supermultiplet. This representa-

tion of N = 2 supersymmetry includes two Majorana spinors, two antisymmet-

ric tensors Bµν (NS–NS) and Cµν (R–R) with gauge symmetries

δgauge Bµν = 2 ∂[µΛν], δ ′gauge Cµν = 2 ∂[µΛ
′
ν] (10.46)

and two (real) scalar fields, the NS–NS dilaton and the R–R scalar, for a total of

4B + 4F physical states. In principle, both antisymmetric tensors can be dualized

to pseudoscalar fields with axionic shift symmetry, in a version of the effective

field theory where the dilaton belongs to a hypermultiplet with four scalars

in a quaternion-Kähler manifold possessing three perturbative shift isometries,

since the R–R scalar has its own shift symmetry. It is easy to see that only two

shift isometries, related to the two antisymmetric tensors, commute, while all

three together form the Heisenberg algebra. Indeed, in the double-tensor basis,

the R–R field strength is modified [98] due to its anomalous Bianchi identity

to 3 ∂[λCµν] − 3 C(0)∂[λBµν]. Thus, a shift of the R–R scalar C(0) by a constant λ

is accompanied by an appropriate transformation of Cµν to leave its modified

field-strength invariant:

δHC(0) = λ, δHCµν = λBµν. (10.47)

It follows that δgauge, δ′gauge and δH verify the Heisenberg algebra, with a single

non-vanishing commutator

[
δgauge, δH

]
= δ ′gauge . (10.48)
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More details about the Heisenberg algebra in local and global supersymme-

try are given in chapter 11 where we obtain the global supersymmetry limit of

the universal hypermultiplet. Our aim is to use the Heisenberg algebra in order

to establish the connection between the general formalism developed so far and

string theory. This formalism would then describe the coupling of a D-brane

with bulk fields in the limit of global supersymmetry.

To this end, we transform the N = 2 double-tensor into a single-tensor rep-

resentation by dualizing one of its two N = 1 linear multiplet components L′,

containing the R–R fields Cµν and C(0), into a chiral basis Φ+Φ. In this basis, the

two R–R isometries correspond to constant complex shifts of the N = 1 super-

field Φ. Imposing this symmetry to the kinetic function of eqs. (9.7)–(9.8), one

obtains (up to total derivatives, after superspace integration):

H(L,Φ,Φ) = α
(
−1

3
L3 +

1
2

L(Φ + Φ)2
)
+ β
(
−L2 +

1
2

(Φ + Φ)2
)
, (10.49)

where α and β are constants. Note that the second term proportional to β can be

obtained from the first by shifting L + β/α. For α = 0 however, it corresponds

to the free case of quadratic kinetic terms for all fields of the single-tensor mul-

tiplet. The coupling to the Maxwell goldstino multiplet is easily obtained using

eqs. (10.12), (10.22) and (9.18). Up to total derivatives, the action is:

L =

∫
d2θd2θ

[
α
(
− 1

3 L3 + 1
2 L(Φ + Φ)2

)
+ β
(
− L2 + 1

2 (Φ + Φ)2
)

−g(Φ + Φ)V1(WW)
]
+ g
∫

d2θ
[
χαWα − i

2κY −
ξ1
4g X(WW)

]
+ c.c.

(10.50)

In general, the four-form field is not inert under the variation δH of eq. (10.47)

[99]. In our single-tensor formalism, δHL = 0 and δHΦ = c where c is complex

when combined with the axionic shift δ′gauge of ImΦ dual to Cµν of eq. (10.46); in

addition

δHY = −icκX(WW). (10.51)
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With this variation, the Lagrangian, including the Chern-Simons interaction, is

invariant under the Heisenberg symmetry.

We can now dualize back Φ+Φ to a second linear multiplet L′ by first replac-

ing it with a real superfield U:

L =
∫

d2θd2θ
[
α
(
−1

3 L3 + 1
2 LU2

)
+ β
(
−L2 + 1

2U2
)
− U(mL′ + gV1)

]

+g
∫

d2θ
[
χαWα − i

2κY −
ξ1
4g X
]
+ c.c.,

(10.52)

where the constant m corresponds to a rescaling of L′. Solving for U,

U =
mL′ + gV1

αL + β
, (10.53)

delivers the double-tensor Lagrangian

L̃ =
∫

d2θd2θ
[
− α

3
L3 − βL2 − 1

2
(mL′ + gV1)2

αL + β

]
+ g
∫

d2θ
[
χαWα −

i
2κ

Y − ξ1
4g

X
]
+ c.c.,

(10.54)

where as before V1 = V1(WW) and X = X(WW) = 1
2 DD V1(WW). It is invari-

ant under variation (10.51) of the four-form superfield combined with δHL′ =

2c(αL + β)/m.

After elimination of the Maxwell auxiliary field (choosing m =
√

2)

d2, bos. =
gC
2κ

√√√√√√− det(ηµν + 2
√

2κ Fµν)
( √

2g C′
αC+β − ξ1

)2
+ 2g2C2

, (10.55)

the component expansion of the bosonic Lagrangian is

L̃bos. = (αC + β)
[

1
2 (∂µC)2 + 1

2∂µ
(

C′
αC+β

)2
+ 1

12(3 ∂[µbνρ])2
]

+ 1
12(αC+β)

(
3 ∂[µb′νρ] +

gκ√
2
ωµνρ − C′

αC+β3 ∂[µbνρ]
)2

− g
4κ
√

2
( C′
αC+β +

ξ1√
2g

) + g
4κ
√

2

√
( C′
αC+β +

ξ1√
2g

)2 +C2
√
− det(ηµν + 2

√
2κFµν)

−g
4ε
µνρσbµνFρσ +

g
24κ ε

µνρσCµνρσ .
(10.56)
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in terms of the Maxwell Chern-Simons form ωνρσ = 3 A[νFρσ].

This is the explicit expression of the interacting action (10.21) and the ki-

netic part for the double-tensor multiplet. It describes the global supersymme-

try limit of the effective four dimensional action of a D-brane coupled to the

universal dilaton hypermultiplet of the perturbative type II string. The precise

identification of the fields will be done in section 11.3 in the dual single-tensor

basis but we can already see the similarities here: As mentioned previously, its

general form in the local case depends also on two constant parameters, upon

imposing the perturbative Heisenberg isometries, that correspond to the tree

and one-loop contributions [28]. We expect that these two parameters are re-

lated to α and β of our action. Moreover, by identifying the two antisymmetric

tensors bµν and b′µν with the respective NS–NS Bµν and R–R Cµν and the combi-

nation C′/(αC + β) with the R–R scalar C(0), as the Heisenberg transformations

indicate, one finds that the two actions match up to normalization factors de-

pending on the NS–NS dilaton that should correspond to the scalar C.

10.6 Nonlinear N = 2 QED

We will now show that the effective theory presented above describing a super-

Higgs phenomenon of partial (global) supersymmetry breaking can be identi-

fied with the Higgs phase of nonlinear N = 2 QED, up to an appropriate choice

of the single-tensor multiplet kinetic terms. We will then analyze its vacuum

structure in the generally allowed parameter space.

In linear N = 2 quantum electrodynamics (QED), the Lagrangian couples

a hypermultiplet with two chiral superfields (Q1,Q2) to the vector multiplet
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(V1,V2) or (X,Wα). The U(1) gauge transformations of the hypermultiplet are

linear, and Q1 and Q2 have opposite U(1) charges:

LQED =

∫
d2θd2θ

[
Q1Q1eV2 + Q2Q2e−V2

]
+

∫
d2θ

i√
2

XQ1Q2 + c.c. +LMax. + ∆L,

(10.57)

where LMax. includes (canonical) gauge kinetic terms and ∆L contains three pa-

rameters:

∆L = m
∫

d2θQ1Q2 + c.c. +
∫

d2θd2θ [ξ1V1 + ξ2V2]. (10.58)

The hypermultiplet mass term with coefficient m can be eliminated by a shift

of X and ξ1,2 are the two Fayet-Iliopoulos coefficients. Since ξ1
∫

d2θd2θV1 =

−1
4

∫
d2θ ξ1X + c.c., the complete superpotential w is

w =
(

i√
2

X + m
)

Q1Q2 −
1
4
ξ1X.

There are six real auxiliary fields, fQ1 , fQ2 , d1 and d2 but only four are actually

independent:11 Q1 f Q1
= Q2 f Q2

. Since the metric is canonical, det Ki j = 1 and

trivially hyperkähler. If ξ1 = ξ2 = 0, the gauge symmetry is not broken and the

hypermultiplet mass m+ i〈X〉/
√

2 is arbitrary. Any nonzero ξ1 or ξ2 induces U(1)

symmetry breaking with all fields having the same mass. In any case, N = 2

supersymmetry remains unbroken at the global minimum.

In order to first bring the theory to a form allowing dualization to our single-

tensor formulation, we use the holomorphic field redefinition12

Q1 = a
√
Φ eΦ′ , Q2 = ia

√
Φ e−Φ′ ,

Q1Q2 = ia2Φ, Q1/Q2 = −ie2Φ′ ,

(10.59)

11We use the same notation for a chiral superfield Φ, Q1, Q2, . . . and for its lowest complex
scalar component field.

12This field redefinition has constant Jacobian.
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with a2 = 1/
√

2. The QED Lagrangian becomes

LQED = 1√
2

∫
d2θd2θ

√
ΦΦ
[
eΦ′+Φ

′
+V2 + e−Φ′−Φ

′−V2
]
+LMax.

+

∫
d2θ
[
−1

2Φ(X −
√

2im) − 1
4ξ1X
]
+ c.c. + ξ2

∫
d2θd2θV2.

(10.60)

While the gauge transformation of Φ′ is δU(1)Φ
′ = Λc, Φ is gauge invariant. Since

the Kähler potential is now a function of Φ′ + Φ
′
, with a Stückelberg gauging of

the axionic shift of Φ′, the chiral Φ′ can be dualized to a linear L using a N = 1

Legendre transformation. The result is

LQED =

∫
d2θd2θ

[ √
2ΦΦ + L2 − L ln

( √
2ΦΦ + L2 + L

)]
+LMax.

−
∫

d2θ
[

1
2 XΦ + χαWα − i√

2
mΦ + 1

4ξ1X
]
+ c.c. + ξ2

∫
d2θd2θV2.

(10.61)

The dual single-tensor QED theory has off-shell N = 2 invariance (the Laplace

equation (9.7) is verified) and the two multiplets are now coupled by a N = 2

Chern-Simons interaction (9.19). Notice that the free quadratic kinetic terms of

the charged hypermultiplet lead to a highly non-trivial kinetic function in the

single-tensor representation. Moreover, there are only four auxiliary fields, fΦ,

d1 and d2. The Legendre transformation defines the scalar field C in L as

e2 ReΦ′ =
1

√
2ΦΦ

(√
2ΦΦ +C2 +C

)
, e−2 ReΦ′ =

1
√

2ΦΦ

(√
2ΦΦ +C2 −C

)

(10.62)

and eqs. (10.59) relate then C and Φwith Q1 and Q2:

C = |Q1|2 − |Q2|2, Φ = −
√

2i Q1Q2. (10.63)

According to eq. (10.11), the nonlinear DBI version ofN = 2 QED is obtained

by replacing in Lagrangian (10.61) X by X(WW), which includes DBI gauge ki-

netic terms, by omitting LMax. which is removed by the third constraint (10.2)
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and by adding the four-form term i
2κ

∫
d2θ Y + c.c.:

LQED,DBI =

∫
d2θd2θ

[ √
2ΦΦ + L2 − L ln

( √
2ΦΦ + L2 + L

)
+ ξ2 V2

]

−
∫

d2θ
[(

1
2Φ +

1
4ξ1
)

X(WW) − i√
2
mΦ + χαWα − i

2κY
]
+ c.c.

(10.64)

Notice that two additional terms appear compared to the action studied in Sec-

tion 10: a Fayet-Iliopoulos term proportional to ξ2 and a term linear in Φ which

is also invariant under the second (nonlinear) supersymmetry (9.4); they gen-

erate, together with ξ1 the general parameter space of nonlinear QED coupled

to a charged hypermultiplet. Without loss of generality, we choose m to be real,

while the choice ξ1 = −1/κ would canonically normalize gauge kinetic terms for

a background where Φ vanishes. We may return to chiral superfields (Φ,Φ′) or

(Q1,Q2) to write the DBI theory as13

LQED =

∫
d2θd2θ

[
Q1Q1eV2 + Q2Q2e−V2 + ξ2V2

]

+

∫
d2θ
[(

i√
2
Q1Q2 − 1

4ξ1
)

X(WW) + mQ1Q2 +
i

2κY
]
+ c.c.

(10.65)

Since X(WW)|θ=0 only depends on fermion fields, the auxiliary fields f1 and f2

only contribute to the bosonic Lagrangian by a hypermultiplet mass term
(
| f1|2 + | f2|2

)
bos.
= m2

(
|Q1|2 + |Q2|2

)

to be added to the scalar potential obtained from eq. (10.16) with the substitu-

tions

2g ReΦ − ξ1 −→ 2
√

2 Im(Q1Q2) − ξ1, gC −→ C + ξ2 = ξ2 + |Q1|2 − |Q2|2

(since we have chosen g = 1). The complete potential is then14

VQED,DBI =
1
8κ

(
2
√

2 Im(Q1Q2) − ξ1
)



√

1 +
2[ξ2 + |Q1|2 − |Q2|2]2

[2
√

2 Im(Q1Q2) − ξ1]2
− 1




+m2
(
|Q1|2 + |Q2|2

)
.

(10.66)

13See eq. (10.17).
14The auxiliary d2 is given in eq. (10.13).
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The analysis is then very simple. The first line vanishes only for

〈ξ2 + |Q1|2 − |Q2|2〉 = 0, 〈2
√

2 Im(Q1Q2) − ξ1〉 > 0. (10.67)

The first condition is the usual D–term equation 〈d2〉 = 0 for the Maxwell su-

perfield. The second condition is necessary to have a well-defined DBI gauge

kinetic term at the minimum. Hence, if m = 0, conditions (10.67), which can

always be solved, define the vacuum of the theory. Choosing 〈Q1〉 = v and

〈Q2〉 =
√

v2 + ξ2, with v real (and arbitrary), we find a massive vector boson

which, along with a real scalar and the two Majorana fermions

1
√

2v2 + ξ2

[
vψQ1 −

√
v2 + ξ2 ψQ2

]
± iλ,

makes a massive N = 1 vector multiplet of mass
√

v2 + ξ2/2. Hence the poten-

tially massless gaugino λ, with its goldstino-like second supersymmetry vari-

ation δ∗λα = − 1√
2κ
ηα + . . ., has been absorbed in the massive U(1) gauge boson

multiplet. This is possible only because the second supersymmetry transforma-

tion of the four-form field compensates the gaugino nonlinear variation. The

fermion
√

v2 + ξ2 ψQ1 + vψQ2

is massless and corresponds to the fermion of the chiral superfield Φ in the

single-tensor formalism, in agreement with our analysis in Section 10.2 [see be-

low eq. (10.16)]. With two real scalars, it belongs to a massless N = 1 chiral

multiplet.

If m ! 0, a supersymmetric vacuum has 〈Q1〉 = 〈Q2〉 = 0. It only exists if

ξ2 = 0 and ξ1 ! 0. The second condition is again to have DBI gauge kinetic

terms on this vacuum. In this case, the U(1) gauge symmetry is not broken, the

goldstino vector multiplet remains massless and the hypermultiplet has mass
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m. If m ! 0, a nonzero Fayet-Iliopoulos coefficient ξ2 breaks then N = 1 linear

supersymmetry. Note that the single-tensor formalism is appropriate for the de-

scription of the Higgs phase of nonlinear QED in a manifest N = 1 superfield

basis (with respect to the linear supersymmetry), while the charged hypermul-

tiplet representation is obviously convenient for describing the Coulomb phase.

One can finally expand the action (10.65) in powers of κ in order to find the

lowest dimensional operators that couple the goldstino multiplet of partial su-

persymmetry breaking to theN = 2 hypermultiplet. Besides the dimension-four

operators corresponding to the gauge factors e±V2 , one obtains a dimension-six

superpotential interaction ∼ κQ1Q2W2 coming from the solution of the nonlin-

ear constraint X = κW2 +O(κ3); it amounts to a field-dependent correction to the

U(1) gauge coupling.
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CHAPTER 11

THE UNIVERSAL HYPERMULTIPLET
IN LOCAL AND GLOBAL

SUPERSYMMETRY

11.1 On the Heisenberg Algebra and Global Supersymmetry

In the context of IIB superstrings, the Heisenberg algebra is generated by a com-

bination of the gauge symmetries of the two antisymmetric tensors Bµν (NS-NS)

and Cµν (R-R) and of the shift symmetry of the R-R scalar C0:

δBµν = 2 ∂[µΛν], δCµν = 2 ∂[µΛ̃ν] + λBµν, δC0 = λ. (11.1)

As a consequence, the theory depends on the invariant three-forms

Hµνρ = 3 ∂[µBνρ], Fµνρ = 3 ∂[µCνρ] −C0Hµνρ (11.2)

and on ∂µC0. The Heisenberg algebra follows from

[δ1, δ2] Cµν = 2 ∂[µλ2Λ1ν] − 2 ∂[µλ1Λ2ν]. (11.3)

After reduction to four dimensions, the gauge symmetries imply that each ten-

sor can be dualized into a scalar field with axionic shift symmetry. The third

global symmetry (with parameter λ) combines then with the axionic shifts to

realize again the Heisenberg algebra on three scalar fields.
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Indeed, one obtains three scalar fields ϕ, τ and η = C0, with Heisenberg

variations

δη = cX, δϕ = cY , δτ = cZ − cXϕ . (11.4)

The scalars ϕ and τ are Poincaré dual to Cµν and Bµν, respectively. The duality

relations are, schematically,

∂µϕ ∼ εµνλρFνλρ, ∂µτ + η ∂µϕ ∼ εµνλρHνλρ .

The algebra is [X,Y] ∼ Z, with Y and Z generating the axionic shifts (with pa-

rameters cY and cZ), while X generates the shift of the R-R scalar (with parameter

cX). Notice that the central charge of the algebra is (depending on the represen-

tation) the gauge symmetry of the R-R tensor and the axionic symmetry of τ,

dual to the NS-NS tensor.

The Heisenberg algebra is extended by a fourth perturbative generator M

that rotates X,Y and commutes also with the central charge Z:

δMη = cMϕ , δMϕ = −cMη , δMτ =
cM

2
(η2 − ϕ2). (11.5)

Equivalently, M rotates the phase of the complex R-R scalar η + iϕ. As a result,

the perturbative symmetry becomes the two-dimensional Euclidean group E2

with central extension Z.

11.1.1 Lagrangians

Consider a N = 1 globally supersymmetric theory with two superfields, a

chiral Φ and a real linear L. It contains three real scalars, Re φ = ReΦ|θ=0,

Im φ = ImΦ|θ=0, and C = L|θ=0, and L also depends on the curl of an antisym-

164



metric tensor Hµνρ = 3 ∂[µBνρ]. The Lagrangian (up to two derivatives) is

L =
∫

d2θd2θH(L,Φ,Φ) +
∫

d2θW(Φ) +
∫

d2θW(Φ) . (11.6)

Besides the gauge invariance of Bµν which does not act on the superfields, we

also impose a two-parameter global symmetry acting on Φwith variations

δΦ = α − iβ. (11.7)

In this formulation, all three symmetries trivially commute. Nevertheless, in

the version where Bµν is dualized to a scalar, or in the version where Im φ (for in-

stance) is transformed into a second antisymmetric tensor, the three-parameter

symmetry realizes a Heisenberg algebra acting either on three scalars according

to eq. (11.4), as in the hypermultiplet formulation of IIB strings compactified to

four dimensions, or on two tensors and one scalar according to eqs. (11.1) and

(11.3). The Lagrangian compatible with the required symmetry (11.7) has

H(L,Φ,Φ) = F (L) + [AL + B]ΦΦ, W(Φ) = kΦ, (11.8)

with an arbitrary function F (L) and real constants A and B. 1 The constant k

generates a C–dependent potential V = |k|2/(AC + B) which does not admit a

vacuum if A ! 0. We take then k = 0.

The superfields Φ and L provide an off-shell representation of the N = 2

single-tensor multiplet. On the N = 1 Lagrangian, the condition for a second

supersymmetry is [18]
∂2H
∂L2 + 2

∂2H
∂Φ∂Φ

= 0, (11.9)

which in turn indicates that

FN=2(L) = −A
3

L3 − BL2. (11.10)

1Of course, B can be eliminated by a constant shift of L.
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The same theory is given by

F̂N=2(L) = − 1
3A2 (AL + B)3. (11.11)

Hence, the N = 2 theory compatible with complex shift symmetry of Φ is the

sum

LN=2 =

∫
d2θd2θ

[
A
(
−1

3
L3 + LΦΦ

)
+ B(−L2 + ΦΦ)

]
(11.12)

of a trilinear interacting term and of a free term where the symmetry is trivial.

If canonical dimensions are assigned to L and Φ, A has dimension (mass)−1 and

B is dimensionless.

Fur further use, we need the bosonic component expansion of this superfield

theory. Using (8.14) and the expansion of Φ

Φ(x, θ, θ) = φ(x) − iθσµθ ∂µφ − θθ f − 1
4
θθθθ!φ,

we obtain2

LN=2, bos. = (AC + B)
[

1
2 (∂µC)2 + (∂µφ)(∂µφ) + 1

12 HµνρHµνρ
]

− i
12 A εµνρσ(φ ∂µφ − φ ∂µφ)Hνρσ.

(11.13)

Since, ∂[µHνρσ] = 0, the variation (11.7) of φ induces a total derivative. Kinetic

terms are positive if AC + B > 0. If A ! 0, B can be eliminated by shifting C.

The (shifted) field C will be assumed strictly positive and the two options are an

interacting, cubic theory with A > 0 and B = 0, or the free theory A = 0, B > 0.

We may then perform two supersymmetric duality transformations [90] on

theory (11.8), either turning the linear L into a chiral S or turning the chiral Φ

into a second linear multiplet L′. The first transformation leads to

L =
∫

d2θd2θ
[
F̃ (Y) + BΦΦ

]
, (11.14)

2The auxiliary field f vanishes.
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where F̃ (Y) is the Legendre transform of F (L) and the variable is3 Y = S + S +

AΦΦ. Invariance of Y under shift symmetries (11.7) requires a compensating

variation of S :

δHS = (αδX + βδY + γδZ)S = −A(α + iβ)Φ + 2iγ, (11.15)

where the axionic shift symmetry of Im S is dual to the gauge symmetry of Bµν,

and the subscripts X,Y,Z make clear the correspondence with the transforma-

tions (11.4). Indeed, since

[δ′H, δH]S ≡ −A(α′ + iβ′)δHΦ + A(α + iβ)δ′HΦ = 2iA(α′β − αβ′), [δH, δ
′
H]Φ = 0,

(11.16)

the chiral theory has Heisenberg symmetry. Moreover, the theory (11.14) has

another symmetry M rotating the chiral superfield Φ, as already mentioned in

the Introduction (see eq. (11.5)).

For the N = 2 single-tensor theory (11.12), the dual hypermultiplet theory4

is

LN=2 =

∫
d2θd2θK(Y) =

2
3A2

∫
d2θd2θ

(
AY + B2

)3/2
. (11.17)

Eliminating some derivatives, the limiting case A = 0 is a free theory. As re-

quired for a hyper-Kähler sigma-model, the determinant of the Kähler metric is

constant (and positive).

A useful change of variable is

Ŝ = S − A
2
Φ2, Y = Ŝ + Ŝ +

A
2

(Φ + Φ)2. (11.18)

and transformation (11.15) becomes δHŜ = −2AαΦ + 2iγ. With these variables,

the transformations with parameters β and γ only act as shift symmetries of

3Notice that
∫

d2θd2θΦΦ = 1
A

∫
d2θd2θY + derivative.

4With positive Kähler metric.
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ImΦ and Im Ŝ respectively. In terms of variablesY, Im Ŝ , ReΦ and ImΦ, one im-

mediately deduces that the most general Heisenberg-invariant supersymmetric

theory is of the form (11.14).

Performing the second duality transformation of the chiral Φ into a linear L′,

always leads to the dual theory

L =
∫

d2θd2θ

[
F (L) − 1

2
L′2

AL + B

]
, (11.19)

with F given in eq. (11.10). Expression (11.19) is actually the most generalN = 1

Lagrangian for L and L′ with symmetry

δL′ = α(AL + B). (11.20)

This transformation, which links the two antisymmetric tensors in L and L′ as

in variation (11.1), forms with their respective gauge symmetries a Heisenberg

algebra realized as in type IIB strings.

Instead of ImΦ, we could have chosen to dualize eiaΦ for any phase a, since

∫
d2θd2θ (AL + B)ΦΦ =

1
2

∫
d2θd2θ (AL + B)(eiaΦ + e−iaΦ)2 + derivative.

The result would be again theory (11.19). This is a consequence of symmetry M,

which is however fixed by the choice of dualization and does not act on L′.

11.1.2 Hyper-Kähler Metrics with Heisenberg Symmetry

The Kähler coordinates defined by N = 1 chiral superfields S and Φ are not

necessarily the most appropriate to describe a hyper-Kähler manifold. There

is a ‘standard’ set of coordinates used to describe hyper-Kähler metrics with
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shift isometries in the literature. For comparison purposes, we define in this

subsection these coordinates in terms of our superfield components.

For any hyper-Kähler manifold with a shift symmetry, one can find coordi-

nates in which the metric has the Gibbons-Hawking form [100]

ds2 = f (1x) dxi dxi + f (1x)−1(dτ + ωi dxi)2, (11.21)

with condition 1∇×1ω = 1∇ f . Imposing the requirement of a Heisenberg symmetry

acting according to

δH x1 =
√

2α, δH x2 = −
√

2 β, δH x3 = 0, δH τ = −
√

2α x2 + γ (11.22)

also defines dτ + x1 dx2 as the invariant derivative of τ and indicates that 1ω =

(0, x1, 0). The value of f (1x) follows then from 1∇ × 1ω = 1∇ f . This last condition is

invariant under 1ω → 1ω + 1∇λ(1x), for any gauge function λ(1x). In turn, invariance

of the metric requires the compensating transformation τ→ τ − λ(1x).

From the N = 2 Kähler potential (11.17), the Kähler metric can be written5

ds2 = 1
2 (AY + B2)−1/2

[
1
4dY2 +

(
d Im S + i A

2 (Φ dΦ − Φ dΦ)
)2]

+(AY + B2)1/2 dΦdΦ,
(11.23)

using coordinates (Y, Im S ,ReΦ, ImΦ). The supersymmetric duality transfor-

mation from L to S exchanges a real scalar C = L|θ=0, invariant under Heisen-

berg variations, and Re S with variation (11.15). The Legendre transformation

defines the change of variable from Y to C:

AC + B =
√

AY + B2. (11.24)

Then, in terms of coordinates (C, Im S ,ReΦ, ImΦ), the metric becomes

ds2 =
AC + B

2

[
dC2 + 2 dΦdΦ

]
+

2
(AC + B)

(
dτ + A ReΦ d ImΦ

)2
. (11.25)

5From here on, we do not distinguish chiral superfields S and Φ and their lowest complex
scalar components.
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This is the Gibbons-Hawking metric (11.21) with 1x = (
√

2 ReΦ,
√

2 ImΦ,C) and

τ =
1
2

(Im S − A ReΦ ImΦ) =
1
2

Im Ŝ .

The function

f (1x) =
AC + B

2
(11.26)

solves the hyper-Kähler condition 1∇ × 1ω = 1∇ f with 1ω = (0, A
2 x1, 0). Choosing for

instance λ = −A
2 x1x2 turns then 1ω into (−A

2 x2, 0, 0) and dτ+ A
2 x1dx2 into dτ− A

2 x2dx1.

Similarly, a rotation of Φ

δM x1 = mx2, δM x2 = −mx1,

which is compatible with the shift symmetry (11.7), corresponds to λ(1x) =

Am
4 (x2

2 − x2
1). It is the isometry M of metric (11.25).

The conclusion is that the Gibbons-Hawking ansatz for the hyper-Kähler

metric corresponds to coordinates where Re S is replaced by its Legendre dual

C, which is also the lowest scalar component of the linear superfield dual to S .

11.2 The Universal Hypermultiplet in N = 2 Supergravity

Hypermultiplet scalars of N = 2 supergravity live on 4n–dimensional

quaternion-Kähler manifolds with holonomy included in S p(2n)×S p(2). Super-

gravity requires that the curvature of these Einstein spaces is proportional to the

gravitational coupling κ2 [14]. Hence, the decoupling limit κ → 0 turns the hy-

permultiplet manifold into a Ricci-flat hyper-Kähler space, as required by global

N = 2 supersymmetry [16]. For a single hypermultiplet, or a four-dimensional

quaternion-Kähler manifold, the defining condition on the holonomy is not per-
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tinent since S p(2)× S p(2) ∼ S O(4). The relevant condition is then self-duality of

the Weyl tensor.

11.2.1 The Calderbank-Pedersen Metric with Heisenberg Sym-

metry

Calderbank and Pedersen [101] have classified all four-dimensional Einstein

metrics with self-dual Weyl curvature and two commuting isometries. Using

coordinates (ρ, η, ϕ, τ) with the isometries acting as shifts of ϕ and τ, their met-

rics are written in terms of any single function F(ρ, η) verifying

∂2F
∂ρ2 +

∂2F
∂η2 =

3F
4ρ2 . (11.27)

It is simple to see [28] that metrics with Heisenberg symmetry are then obtained

if F does not depend on η, i.e. if 6

√
ρ F(ρ) =

1
2

[ρ2 − χ], (11.28)

with an arbitrary real parameter χ. The Calderbank-Pedersen metric with

Heisenberg symmetry (the CPH metric) reads then

ds2
CPH =

ρ2 + χ

(ρ2 − χ)2 (dρ2 + dη2 + dϕ2) +
4ρ2

(ρ2 − χ)2(ρ2 + χ)
(dτ + η dϕ)2 . (11.29)

The coordinate ρ is positive, ρ > 0, and positivity of the metric requires

ρ2 + χ > 0, a stronger condition if χ is negative. It is an Einstein metric with

negative curvature, and is Kähler only if χ = 0. Notice that if χ ! 0, the rescaling

(ρ, η, ϕ, τ) → (|χ|1/2ρ, |χ|1/2η, |χ|1/2ϕ, |χ|τ) turns χ in metric (11.29) into ±1. This is
6The metric does not make sense without the ρ3/2 contribution to F and the overall normal-

ization of F is a choice of coordinates. Our χ is χ̂ in Ref. [28].
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not true if we turn on string interactions, such as in the presence of D-branes

where the dilaton, or equivalently the field ρ, couples to the Dirac-Born-Infeld

(DBI) action in a non-trivial way (see section 11.3). For this reason, we keep

explicitly χ throughout the paper. We may use a new coordinate V = ρ2 with

metric

ds2
CPH =

V + χ
(V − χ)2

(
dV2

4V
+ dη2 + dϕ2

)
+

4V
(V − χ)2(V + χ)

(
dτ + η dϕ

)2
. (11.30)

The particular case χ = 0 has extended symmetry: it is the S U(2, 1)/S U(2)×U(1)

metric with Kähler potential

K(Ŝ , Ŝ ,Φ,Φ) = − ln V, V = Ŝ + Ŝ − (Φ + Φ)2, (11.31)

and with Φ = 1√
2
(η + iϕ), τ = −1

2 Im Ŝ .

The CPH metric is invariant under four isometry variations acting on coor-

dinates (η, ϕ, τ):

δXη =
√

2, δYη = 0, δZη = 0, δMη = ϕ,

δXϕ = 0, δYϕ = −
√

2, δZϕ = 0, δMϕ = −η,

δXτ = −
√

2ϕ, δYτ = 0, δZτ = 1, δMτ =
1
2 (η2 − ϕ2).

(11.32)

The non-zero commutators are

[X,Y] = 2Z, [M, X] = Y, [M,Y] = −X. (11.33)

Hence, X, Y and Z generate the Heisenberg algebra and Z is a central extension

of a two-dimensional euclidean algebra generated by M (which rotates ϕ and η),

X and Y (which translate ϕ and η). With these conventions,

δH Φ = (αX + βY + γZ)Φ = α − iβ, δH Ŝ = 4αΦ − 2iγ (11.34)
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and V is invariant.

The metric (11.30) appears in the one-loop-corrected Lagrangian of the uni-

versal hypermultiplet of type II strings, reduced to four dimensions, with the

NS-NS and R-R tensors dualized to scalars with shift symmetry [28]. At one-

loop order, the four-dimensional dilaton field is related to coordinate V and pa-

rameter χ by

e−2φ4 = V − χ, χ = −χ1, χ1 =
χE

12π
, (11.35)

where χE is the Euler number of the internal CY3 manifold. The real number χ1

encodes the one-loop correction [28]. Notice that this relation also indicates that

V − χ = V + χ1 > 0, which is stronger than V = ρ2 > 0 if the Euler number is

negative (χ > 0). Since positivity of the CPH metric also requires V + χ > 0 if

χ < 0, the domain of V is naturally restricted to V > |χ|.

The R-R scalar is

C0 ≡ η , (11.36)

and is shifted by symmetry X. Finally, Poincaré duality gives the following

equivalences

dϕ ∼ F3 = dC2 − η dB2,

dτ + η dϕ ∼ H3 = dB2.

In the scalar version, the central charge is the shift Z of τ (related to the NS-NS

tensor B2) while in the two-tensor version, it is the gauge variation of the (R-R)

tensor C2. Writing η and ϕ in a complex Φ is conventional: we always use

Φ =
1√
2

(η + iϕ).

In the previous section, we found a unique four-dimensional hyper-Kähler

manifold with Heisenberg symmetry. It also admits the fourth isometry M ro-
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tating Φ. In the quaternion-Kähler case, the theorem of Calderbank-Pedersen

[101] leads then to a very similar uniqueness conclusion. We will see how these

two results are connected when taking an appropriate zero-curvature limit. But

we first want to obtain the N = 2 supergravity coupling of the universal hyper-

multiplet on the CPH manifold.

11.2.2 Coupling to N = 2 Supergravity

There are different methods to construct hypermultiplet couplings to N = 2 su-

pergravity. The simplest procedure, which is however not the most general, is

to use hypermultiplets coupled to local N = 2 superconformal symmetry [102]

and to perform a quaternionic quotient [29, 30] using supplementary hypermul-

tiplet(s) and non-propagating vector multiplet(s). In this section, we use this

procedure to obtain the supergravity theory of the one-loop-corrected dilaton

hypermultiplet.

Related constructions, using more general but also more complicated meth-

ods, can be found in ref. [108], in the language of projective superspace or in

ref. [109], using harmonic superspace.

ConformalN = 2 supergravity is the gauge theory of S U(2, 2|2), which has a

S U(2)R × U(1)R R–symmetry with non-propagating gauge fields. Pure Poincaré

N = 2 supergravity is obtained from the superconformal coupling of one prop-

agating vector multiplet7 (which may be charged under U(1)R) and one hyper-

multiplet (charged under S U(2)R) by gauge-fixing of the extraneous symme-

tries. These two multiplets include in particular the compensating fields used
7Its gauge field is the graviphoton.
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in the gauge-fixing to the Poincaré theory.

For the superconformal construction of our particular hypermultiplet sigma-

model, we also need a physical hypermultiplet, with positive kinetic metric, to

describe the dilaton multiplet. In addition, for the quaternionic quotient, we

need a non-propagating vector multiplet with gauge field Wµ, gauging a spe-

cific generator T to be discussed below, and, since the elimination of the alge-

braic vector multiplet involves three constraints and one gauge choice on scalar

fields, we also need a third non-physical hypermultiplet. Its kinetic metric can

have a positive or negative sign, depending on the constraints induced by the

choice of T . Hence, we need to consider theN = 2 superconformal theory of two

vector multiplets and three hypermultiplets. The superconformal hypermulti-

plet scalar sector has then an ‘automatic’ S p(2, 4) global symmetry in which the

gauge generator T of the quaternionic quotient is chosen.

11.2.3 Sp(2, 4)

In the following, we consider three hypermultiplets coupled to (superconfor-

mal) N = 2 supergravity. One (compensating) hypermultiplet has negative

signature, the physical hypermultiplet has positive signature, the third hyper-

multiplet, associated to the non-propagating vector multiplet, may have a pos-

itive or negative signature, depending on the constraints applied to the scalar

fields. In any case, we are considering S p(2, 4)–invariant supergravity couplings

of N = 2 hypermultiplets.

The hypermultiplet scalars are Aαi , with S U(2)R index i = 1, 2 and S p(2, 4)

index α = 1, . . . , 6. They transform in representation (6, 2) of S p(2, 4) × S U(2)R.
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Their conjugates are8

Ai
α = (Aαi )∗ = ε i jραβA

β
j (11.37)

with ραβρβγ = −δαγ and ε i jε jk = −δi
k. We choose the S p(2, 4)–invariant metric as

ρ = I3 ⊗ iσ2 =




0 I3

−I3 0




(11.38)

and we use

d =



η 0

0 η



, η = diag(−1, 1,−1), ρ d ρ = −d. (11.39)

In our choice of η, direction 1 corresponds to the superconformal compensator,

direction 2 to the physical hypermultiplet and our choice of quaternionic quo-

tient will require a negative metric in direction 3; otherwise, our construction

does not work. On scalar fields, S p(2, 4) acts according to

δAαi = g tαβA
β
i , δAi

α = g tαβAi
β, tαβ = −ραγ tγδ ρδβ. (11.40)

Since relation (11.37) also implies tαβ = (tαβ)∗, the choice (11.38) and the invari-

ance of dαβAi
αA
β
i lead to

t =




U ηQ

−ηQ∗ U∗



, U† = −ηUη, Q = Qτ, t† = −d t d. (11.41)

This is an element of S p(2, 4): U generates the U(1, 2) subgroup (9 generators)

and Q (12 generators) generates S p(2, 4)/U(1, 2). The (2 × 2) matrix A† d t A, with

matrix elements Ai
αdαβ t

β
γA
γ
j , is antihermitian, as required by gauge invariance of

A†dA, and traceless.
8We follow the conventions of the second paper of ref. [102].

176



11.2.4 The Heisenberg Subalgebra of SU(1, 2) and Sp(2, 4)

At string tree-level, the universal hypermultiplet of the dilaton in type II strings

lives, when formulated in terms of four real scalars, on the quaternion-Kähler

and Kähler manifold S U(1, 2)/S U(2)×U(1) = U(1, 2)/U(2)×U(1). Since U(1, 2) =

S U(1, 2)×U(1)0 is maximal in S p(2, 4), S p(2, 4) has a unique generator commut-

ing with S U(1, 2): the generator of U(1)0. At one-loop however, the isometry is

reduced and includes the Heisenberg algebra which is known to be a subalge-

bra of S U(1, 2). We need to find the most general generator T of S p(2, 4) which

commutes with a Heisenberg subalgebra. In the following subsections, we will

perform the quaternionic quotient construction induced by the gauging of T .

Since elements U of the U(1, 2) algebra verify U† = −ηU η and we have cho-

sen η = diag(−1, 1,−1), a generic U is

U =




ia A B

A ib C

−B C ic




, (11.42)

with a, b, c real, A, B, C complex and elements of S U(1, 2) are traceless. On a

three-dimensional complex vector, U(1, 2) variations are δA = UA.

We may define the Heisenberg subalgebra as the U(1, 2) transformations

leaving A1 − A2 invariant: (δHA)1 − (δHA)1 = (UA)1 − (UA)2 = 0. The transfor-

mations acting on A1 and A2 are generated by the following three elements

X =




0 0 1

0 0 1

−1 1 0




, Y =




0 0 i

0 0 i

i −i 0




, Z =




i −i 0

i −i 0

0 0 0




(11.43)
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which verify

0 = XZ = ZX = YZ = ZY = Z2, XY = −YX = Z, X2 = Y2 = iZ. (11.44)

The Heisenberg algebra

[X,Y] = 2Z, [X,Z] = [Y,Z] = 0 (11.45)

is then realized as a subalgebra of S U(1, 2), with variations

δH A = (αX + βY + γZ) A =




iγ −iγ α + iβ

iγ −iγ α + iβ

−α + iβ α − iβ 0







A1

A2

A3




(11.46)

in the fundamental representation. Since Z is a central charge of the Heisenberg

algebra, we are interested in the elements of U(1, 2) which commute with Z.

They form an algebra generated by five elements, U0, M, X, Y and Z, with

U0 = iI3, M = i




1 0 0

0 1 0

0 0 −2




(11.47)

(U0 generates the abelian factor of U(1, 2) = S U(1, 2)×U(1)0). Besides the Heisen-

berg algebra generated by X,Y,Z, we also have

[M, X] = 3Y, [M,Y] = −3X (11.48)

and M generates a rotation of (X,Y) leaving X2+Y2 = 2iZ invariant: [M, X2+Y2] =

2i[M,Z] = 0.

One then easily checks that the most general U(1, 2) generator which com-

mutes with the Heisenberg algebra generated by X,Y,Z is proportional to

T̂ = U0 + χZ = i




1 + χ −χ 0

χ 1 − χ 0

0 0 1




, U0 = iI3, (11.49)
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where χ is an arbitrary real number. If χ = 0, T̂ = U0 commutes with the whole

U(1, 2). If χ ! 0, T̂ commutes with the Heisenberg algebra supplemented by U0

and M. The extension to S p(2, 4) is straightforward. Requiring that

T =




T̂ 0

0 T̂ ∗




(11.50)

in S p(2, 4) commutes with an element of S p(2, 4)/U(1, 2) corresponds to find

a (nonzero) symmetric matrix Q in eq. (11.41) such that T̂ †Q is also antisym-

metric, which is impossible.9 Hence, T is also the most general generator in

S p(2, 4) which commutes with the Heisenberg algebra generated by X, Y and Z

in S U(1, 2). It actually commutes with X, Y , Z, M and U0.

11.2.5 N = 2 Supergravity Scalar Lagrangian

To construct the scalar kinetic metric, the relevant terms of theN = 2 conformal

supergravity Lagrangian are [102, 29, 30]

e−1L = dαβ (DµA
β
i )(DµAi

α) + (g dαβ Ai
αT βγA

γ
k Yk

i + c.c.)

+1
6R(−X0X0 + dαβAi

αA
β
i ) + d(X0X0 +

1
2dαβAi

αA
β
i ).

(11.51)

The complex scalar X0 is the partner of the graviphoton, Yi
j, Yi

i = 0, is the triplet

of real auxiliary scalars in the non-propagating vector multiplet with gauge field

Wµ used in the quaternionic quotient. The covariant derivatives are

DµAαi = ∂µA
α
i − g′WµTαβA

β
i − gVµi jAαj ,

DµAi
α = ∂µAi

α − g′WµTαβAi
β − gVµi

jA
j
α,

(11.52)

9This would not be true for T̂ = Z, which commutes with a larger subalgebra of S p(2, 4). The
U0 component is necessary.
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where g and g′ are S U(2)R and U(1)T coupling constant. The (anti-hermitian)

S U(2) gauge fields Vµ i
j, Vµ i

i = 0, and the real auxiliary scalar d belong to the

multiplet of superconformal gauge fields:

Vµ i
j =

i
2

V x
µ(σ

x)i
j, Vµi

j = ε
ikε jlVµ k

l = (Vµ i
j)∗.

We will commonly use a matrix notation, with a 6 × 2 complex matrix A and

its 2 × 6 conjugate A† replacing Aαi and Ai
α. Condition (11.37) implies that A

contains six complex components only. It also implies, in particular, that A†dA =

1
2 Tr(A†dA) I2. Since Vµ = −V†µ , the Lagrangian and the derivatives read

e−1L = Tr(DµA†)d(DµA) + g Tr YA†d T A + c.c.

+1
6R(−X0X0 + Tr A†dA) + d(X0X0 +

1
2 Tr A†dA);

DµA = ∂µA − g′WµT A − gAVµ,

DµA† = ∂µA† − g′WµA†T † + gVµA†.

(11.53)

Constraints are obtained from the elimination of the auxiliary fields and from

the gauge-fixing of dilatation symmetry in the Poincaré theory:

• Einstein frame gauge-fixing condition and d auxiliary field equation:

X0X0 =
1
κ2
, Tr A†dA = − 2

κ2
. (11.54)

The second condition is invariant under S U(2)R and S p(4, 2). With an

S U(2) gauge choice, it allows to eliminate four scalar fields and would

lead to the S p(4, 2)/S p(4) × S p(2) sigma-model.

• Auxiliary fields Yi
j:

A†d T A = 0. (11.55)

Since this 2×2 matrix is traceless and antihermitian, these conditions elim-

inate three scalars and the associated abelian gauge invariance removes a

fourth field.

180



The S U(2)R gauge fields Vµi j and the abelian Wµ have then algebraic field equa-

tions:

• Gauge field Wµ, associated with generator T :

Wµ =
Tr(∂µA†d T A − A†d T∂µA)

2g′ Tr(A†T †d T A)
. (11.56)

• S U(2)R gauge fields Vµ i
j:

Vµ = −
∂µA†d A − A†d ∂µA

g Tr(A†dA)
. (11.57)

According to the second eq. (11.54), the denominator is −2g/κ2.

At this point, the scalar kinetic Lagrangian in theory (11.51) reduces to

e−1L = e−1(Lkin. +LT +LS U(2))

= Tr(∂µA†)d(∂µA) − g′2 Tr(A†T †d T A)WµWµ − g2

κ2
Tr(VµVµ).

(11.58)

The scalar fields are submitted to constraints (11.54) and (11.55) and the gauge

fields Wµ and Vµ i
j are defined by their field equations (11.56) and (11.57).

To study the constraints (11.54) and (11.55) for our specific choice (11.49)

and (11.50) of gauged generator T , we introduce two three-component complex

vectors:

Aαi =




1A+ 1A−

−1A∗− 1A∗+



, Ai

α =




1A∗+ 1A∗−

−1A− 1A+



, (11.59)

verifying the reality condition (11.37). On each doublet A+a, A−a, a = 1, 2, 3,

act two different S U(2) groups. Firstly, the superconformal S U(2)R acts on ±

indices. Secondly, S p(2, 4) ⊃ S p(2)1 × S p(2)2 × S p(2)3 ∼ S U(2)1 × S U(2)2 × S U(2)3

and (A+a,−A∗−a) is a doublet of S U(2)a. One could define three quaternions

Qa =




A+a A−a

−A∗−a A∗+a




a = 1, 2, 3 (11.60)
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with a left action of S U(2)a and a right action of the superconformal S U(2)R.

They verify (for each a)

Qa Q†a = Q†a Qa = det Qa I2, det Qa = |A+a|2 + |A−a|2. (11.61)

The second condition (11.54) from N = 2 supergravity becomes:

1A∗+ · 1A+ + 1A∗− · 1A− = −
1
κ2
, 1A∗ · 1A = 1A†η1A = −|A1|2 + |A2|2 − |A3|2. (11.62)

With eq. (11.50), condition (11.55) leads to three (real) equations:

1A†+ iηT̂ 1A+ = 1A†− iηT̂ 1A−,

1A†− iηT̂ 1A+ = 0
(11.63)

([iηT̂ ]† = iηT̂ ). With the explicit form of T̂ , eq. (11.49), and defining dimension-

less fields a±i =
√

2κA±i, the four constraints (11.62) and (11.63) read finally

I : |a+1|2 + |a−1|2 − |a+2|2 − |a−2|2 + |a+3|2 + |a−3|2 = 2,

II : −|a+1|2 + |a+2|2 − |a+3|2 − χ|a+1 − a+2|2

= −|a−1|2 + |a−2|2 − |a−3|2 − χ|a−1 − a−2|2,

III : 0 = −a+1a−1 + a+2a−2 − a+3a−3 − χ(a+1 − a+2)(a−1 − a−2).

(11.64)

They are invariant under Heisenberg variations (11.46) of 1a+ and 1a−. The case

χ = 0 has been considered by Galicki [29]. Since it leads to S U(1, 2)/S U(2)×U(1),

coordinates more appropriate for this larger isometry have been used.

11.2.6 Solving the Constraints

To solve the constraints (11.64), we insist on keeping in 1a− a field Φwhich trans-

forms under the Heisenberg variations10 δH 1a− = (αX+βY+γZ)1a− with a complex
10See eq. (11.46).
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shift:

δH Φ = α − iβ. (11.65)

This is the case if a−1 = a−2, and a−3 is then invariant. We may define Φ = a−1/a−3

and constraint III reduces to a+3 = (a+2 − a+1)Φ. Since

δH

(
a+2 + a+1

a+2 − a+1

)
= −2iγ + 2(α + iβ)

a+3

a+2 − a+1
= −2iγ + 2Φ δHΦ,

we finally define

S =
a+2 + a+1

a+2 − a+1
+ Y, δHS = −2iγ + 2(α + iβ)Φ (11.66)

and the quantity

Y = S + S − 2ΦΦ (11.67)

is invariant under Heisenberg variations. The algebra follows from [δ′H, δH] =

(α′β − αβ′)[X,Y] = 2(α′β − αβ′)Z:

[δ′H, δH]S = 2(α′ + iβ′)δHΦ − 2(α + iβ)δ′HΦ = −4i(α′β − αβ′) = 2(α′β − αβ′)Z.

These definitions are summarized in the choice

1a− =
K
∆




Φ

Φ

1




, 1a+ =
1
∆




S − Y − 1

S − Y + 1

a




, (11.68)

with complex fields S , Φ and a. The four available gauge choices have been

used to take ∆ = |∆|, K = |K| and a−1 = a−2. Under Heisenberg variations, ∆ and

K are invariant. Hence, we are left with eight real scalar fields submitted to the

four constraints (11.64) which drastically simplify:

I : ∆2
(
2 − |a+1|2 + |a+2|2 − |a+3|2

)
= K2,

II : 2(S + S ) − |a|2 − 4Y = 4χ − K2,

III : a = 2Φ.

(11.69)
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Hence, the solution is

1a− =

√
Y + 2χ
Y + χ




Φ

Φ

1




, 1a+ =
1

√
2(Y + χ)




S − Y − 1

S − Y + 1

2Φ




. (11.70)

The solution implies Y + χ > 0 if χ > 0 or Y + 2χ > 0 if χ < 0. The scalar kinetic

Lagrangian (11.58) obtained from this solution is11

κ2L =
(Y + 3χ)

4(Y + 2χ)(Y + χ)2 (∂µY)2 − 2
Y + χ

∂µΦ ∂
µΦ

+
1

2(Y + χ)(Y + 3χ)

[
Im(∂µS − 2Φ ∂µΦ)

]2

+
1

2(Y + χ)2

[
Im(∂µS − 2Φ ∂µΦ)

]2
+

4(Y + 2χ)
(Y + χ)2 ∂µΦ ∂

µΦ.

(11.71)

The first line comes from the basic scalar kinetic terms Lkin. in Lagrangian

(11.58). The second line is the contribution LT of the gauge field of T , the third

line arises from the supergravity S U(2)R gauge fields. Each term is separately

invariant under Heisenberg variations. Collecting terms, the final form of the

theory is

κ2L =
Y + 3χ

(Y + χ)2

[
1
4

(∂µY)2

Y + 2χ
+ 2∂µΦ ∂µΦ

]

+
Y + 2χ

(Y + 3χ)(Y + χ)2

(
∂µ Im Ŝ − 4 ReΦ ∂µ ImΦ

)2
,

(11.72)

where

Ŝ = S + Φ2, (11.73)

for which Y = Ŝ + Ŝ − (Φ+Φ)2 and Im(dS − 2Φ dΦ) = d Im Ŝ − 4 ReΦ d ImΦ. From

the existence of solutions (11.70) and positivity of the Lagrangian, the range of

Y is Y + χ > 0 if χ > 0 and Y + 3χ > 0 if χ < 0 Writing as usual

L = 1
κ2

gab(∂µqa)(∂µqb) = Gab(∂µqa)(∂µqb), (11.74)

11All fields and parameter χ are dimensionless.
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qa = (Y,ReΦ, ImΦ, Im Ŝ ), and comparing ds2 = gab dqadqb with expression (11.30),

we see that the hypermultiplet kinetic metric gab is the CPH metric with

Y = V − 2χ = ρ2 − 2χ, (11.75)

and with12

Φ =
1√
2

(η + iϕ), Im Ŝ = −2τ. (11.76)

Positivity of kinetic terms is obtained if V = ρ2 > |χ|which is, as explained at the

end of subsection 11.2.1, the natural domain of V .

As already observed, the case χ = 0 corresponds to the S U(2, 1)/S U(2)×U(1)

metric

ds2 =
1

Y2

[
1
4

dY2 +
(
d Im Ŝ − 4 ReΦ d ImΦ

)2
]
+

2
Y

dΦdΦ. (11.77)

With Kähler coordinates Ŝ and Φ, the Kähler potential is K = − ln Y , with Y =

V = Ŝ + Ŝ − (Φ + Φ)2.

This relatively simple construction of the one-loop-corrected dilaton hyper-

multiplet metric allows easily to derive the fullN = 2 supergravity Lagrangian,

using N = 2 superconformal tensor calculus [102, 29, 30].

11.3 Zero-Curvature Hyper-Kähler Limit

All quaternion-Kähler metrics are Einstein spaces with nonzero curvature. With

one hypermultiplet, the scalar kinetic Lagrangian (11.74) verifies [14]

Rab = −6 gab = −6κ2 Gab. (11.78)
12This choice is not unique. We may for instance rotate Φ using isometry M.
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The link with global N = 2 supersymmetry is realized by defining a κ → 0

hyper-Kähler limit of the CPH metric (11.30) or (11.72) in which, if feasible,

the Heisenberg algebra does not contract to an abelian symmetry. As observed

in Subsection 11.2.1, the magnitude of χ can be eliminated by rescaling of the

coordinates (in the absence of D-branes). We then have three |χ|-independent

cases to examine: firstly, positive χ, with V > 0; secondly, χ = 0 (V > 0) which

is S U(1, 2)/S U(2) × U(1); thirdly, a negative χ, with V > |χ|. In each case, we

should seek to find a parameter-free zero-curvature limit. The most interesting

case turns out to be χ negative, which we first study.

With χ negative, we are interested in the CPH metric in the region V + χ ∼ 0.

We then apply to metric (11.30) the following change of variables:

V = 2|χ| κ2/3µ−1/3 C − χ , ϕ =
√
|χ| κ2/3µ−1/3 ϕ̂ ,

η =
√
|χ| κ2/3µ−1/3 η̂ , τ = |χ| κ4/3µ1/3 τ̂ ,

(11.79)

where µ is an arbitrary mass scale. Positivity of the metric, V +χ > 0 implies C >

0. While the original fields are dimensionless, the new, hatted, fields (C, φ̂, η̂, τ̂)

have canonical dimension. With this choice of dependence in κ, the resulting

metric is

ds2 = gab dqadqb =
κ2

2
µC

[(κµ)2/3C + µ]2

[
dC2

2κ2/3µ−1/3C + 1
+ dη̂2 + dϕ̂2

]

+
κ2µ2

2C
2(κµ)2/3C + µ

[(κµ)2/3C + µ]2

[
dτ̂ +

1
µ
η̂dϕ̂
]2
,

(11.80)

since χ = −|χ|. Using this metric in Lagrangian (11.74), the overall factor κ2

cancels and we can take the limit κ → 0, with result

Lκ→0 =
C
2µ

[
(∂µC)2 + (∂µη̂)2 + (∂µϕ̂)2

]
+
µ

2C

[
∂µτ̂ +

1
µ
η̂ ∂µϕ̂

]2
. (11.81)

This scalar Lagrangian has the hyper-Kähler metric with Heisenberg symmetry

(11.25) with A = 1/µ and B = 0 and with relations Φ = 1√
2
(η̂ + iϕ̂), τ̂ = 2τ. As
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noticed earlier, parameter B can always be absorbed in a shift of C, as long as

A ! 0.

Notice that to obtain limit (11.81), we only need the change of variables

(11.79) up to higher orders in κ. In particular, according to eq. (11.35), we may

write the four-dimensional string dilaton as

e−2φ4 = 2|χ|κ2/3µ−1/3 C − 2χ,

φ4 = 〈φ4〉 − κ2/3µ−1/3φ̂4,

e−2〈φ4〉 = −2χ = 2|χ|, C = 2φ̂4,

(11.82)

in terms of the fluctuation φ̂4 and of the background value 〈φ4〉. Since |χ| = χ1 =

χE/(12π), we are considering the case of a positive Euler number χE = 2(h11−h21),

with h11, h12 the corresponding Betti numbers of the CY3 manifold. A typical

example with a single hypermultiplet would be IIA strings on a CY3 manifold

with h21 = 0. Positivity-related questions with several hypermultiplets, as is in

particular the case with a negative Euler number, should be reanalyzed.

Comparing the scalings (11.79) and the identification of the string coupling

in the last eq. (11.82), we see that the R-R fields η and ϕ carry as expected a

supplementrary factor gstring.

We could also consider the single-tensor version of the theory. Dualizing τ̂

into Hµνρ, we find

Lκ→0,S T =
C
µ

[
1
2

(∂µC)2 +
1
12

HµνρHµνρ + (∂µΦ)(∂µΦ)
]

− i
12µ
εµνρσ(Φ∂µΦ − Φ∂µΦ)Hνρσ.

(11.83)

This is the bosonic sector (11.13) of the single-tensor theory (11.12) with again

A = 1/µ and B = 0. Then, for negative χ, the N = 2 supergravity hypermultiplet
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with Heisenberg symmetry is described in the global supersymmetry limit by

the unique nontrivial theory with the same symmetry.

For completeness, we may also consider the case of the CPH metric with

positive χ. The interesting limiting regions are V ∼ 0 and V−χ ∼ 0. If V = ρ2 . χ,

ds2
CPH =

1
χ

(dρ2 + dη2 + dϕ2) +
4ρ2

χ3 (dτ + η dϕ)2. (11.84)

The appropriate rescalings are (ρ, η, ϕ, τ) = (√χκρ̂, √χκη̂, √χκϕ̂, χτ̂) to obtain

ds2
CPH = κ

2
[
dρ̂2 + dη̂2 + dϕ̂2 + 4ρ̂2(dτ̂ + κ2 η̂dϕ̂)2

]
. (11.85)

The Heisenberg symmetry acting on the rescaled fields has algebra [X,Y] = 2κ2Z.

In the limit κ → 0, it contracts to [X,Y] = 0 and we find

lim
κ→0

1
κ2

ds2
CPH = dρ̂2 + 4ρ̂2dτ̂2 + dη̂2 + dϕ̂2, (11.86)

which is the trivial four-dimensional euclidean space. The second region of

interest if χ > 0 is V − χ ∼ 0. First, we change coordinates to

V = 2λC + χ, η = λη̂/
√
χ, ϕ = λϕ̂/

√
χ, τ = λτ̂ (11.87)

and the metric for λ→ 0 and χ finite reads

ds2
CPH =

1
2C2

[
dC2 + dη̂2 + dϕ̂2 + dτ̂2

]
. (11.88)

This limiting metric is S O(1, 4)/S O(4), again with Ri j = −6gi j and with radius

∼ 〈C〉. In the large radius, zero-curvature limit, the metric is trivial. Finally, in

the S U(1, 2)/S U(2) × U(1) case χ = 0, the zero-curvature limit is again trivial.

The conclusion is that in the zero-curvature limit, the CPH one-loop La-

grangian for the dilaton hypermultiplet is the hyper-KählerN = 2 sigma-model

with Heisenberg symmetry (11.12). If the one-loop parameter χ is negative, then
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A ! 0 and the Heisenberg algebra has a non-trivial realization in this limit. If

χ ≥ 0 however, A = 0 and the limit of N = 2 global supersymmetry is the free

hypermultiplet. In the string context, the above non-trivial limit can be taken

if the string coupling is tuned at a fixed value, according to the third line of

eq. (11.82), which applies with positive Euler number.

In chapter 10 we constructed the interaction of a hypermultiplet with the

Dirac-Born-Infeld Maxwell Lagrangian. The hypermultiplet sector has a full

linear N = 2 supersymmetry while the second supersymmetry is nonlinearly

realized on the Maxwell superfield Wα. As an application of our results, we can

easily use our identification of the string universal hypermultiplet. The bosonic

DBI action, after elimination of the Maxwell auxiliary field and using the single-

tensor formulation, is13

LDBI =
1

8F (2gReΦ − 1
F )


1 −

√

1 +
2g2C2

(2g ReΦ − 1
F )2

√
− det(ηµν + 2

√
2F Fµν)




+ gεµνρσ
(F

4
ImΦFµνFρσ −

1
4

BµνFρσ +
1

24F Cµνρσ
)
.

(11.89)

In this expression, F is the breaking scale of the second, nonlinearly realized su-

persymetry (with dimension (energy)−2) and g is the Chern-Simons coupling14

(equal to the string coupling for a D3-brane). The four-form field Cµνρσ is a com-

ponent of the single-tensor multiplet required by supersymmetry of the nonlin-

ear theory [see section 9.4].

Since we have control of the kinetic Lagrangian of the universal string hy-

permultiplet in the global supersymmetry limit, we can then identify the single-
13In chapter 10, this is the electric version of the theory, induced by a N = 2 Chern-Simons

coupling gB ∧ F.
14In contrast to chapter 10, we have defined single-tensor fields with canonical dimension so

that g has dimension (energy). We also chose the Fayet-Iliopoulos term to be 1/F so that gauge
kinetic terms are canonically normalized at ReΦ = 0.
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tensor fields in terms of string fields. First, C is the global dilaton and Bµν is the

NS-NS tensor. Then, the complex scalar Φ includes the R-R fields. The super-

symmetric minimum of the scalar potential included in theory (11.89) implies

〈C〉 = 0 and Φ corresponds to flat directions of this vacuum.
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CHAPTER 12

SUMMARY OF RESULTS

This part of the thesis constitutes a detailed study, in the context of global

supersymmetry, of the D-brane effective action of N = 2 compactifications in

type II string theory, including both the gauge part as well as the couplings of

the brane to bulk fields. From a field theoretic point of view, this is the inter-

action of the Maxwell goldstino multiplet of N = 2 nonlinear supersymmetry

to a hypermultiplet with at least one isometry. The hypermultiplet is described

by its Poincaré dual single tensor multiplet whereN = 2 supersymmetry can be

realized off shell. The nonlinear breaking of the second SUSY is realized with a

supersymmetric constraint while the coupling of the single-tensor to the gold-

stino multiplet is realized with a supersymmetric generalization of the usual

Chern-Simons term B ∧ F. This system has equivalent descriptions in terms of

different chiral and tensor multiplets. We proved the equivalence of these de-

scriptions by performing N = 1 and N = 2 Poincaré type dualities which led us

to a net of theories summarized in the figure below.

Up to appropriate field redefinitions, this system is also equivalent to the

Higgs phase of N = 2 nonlinear QED coupled to a charged hypermultiplet.

The system also explores a phase with all supersymmetries broken and a phase

with the U(1) gauge symmetry unbroken. In the Higgs phase an interesting phe-

nomenon appears. The goldstino multiplet combines with the hypermultiplet to
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Single-tensor
Stückelberg
gauging
(L′,Φ′) (10.23)

!"
ST-ST duality Single-tensor

Chern-Simons
(L,Φ) (10.11)

!"

E-M duality Magnetic dual
Single-tensor
(L,Φ) (10.35)

#

$

Double-tensor
(L, L′) (10.21)

#

$
Hypermultiplet
(Φ,Φ′) (10.17)

Figure 12.1: Web of dualities: double arrows indicate duality trans-
formations preserving off-shell N = 2 supersymmetry, simple ar-
rows are N = 1 off-shell dualities only, leading to theories with on-
shell N = 2 supersymmetry. The N = 1 superfields and the related
equations are indicated.

form a massive vector multiplet and a massless chiral multiplet. In the massive

multiplet, the goldstino combines with a hypermultiplet fermion and becomes

massive, thus realizing a new type of super-Higgs mechanism that doesn’t in-

volve a gravitino. This is possible because the hypermultiplet is charged under

the U(1) partner of the goldstino.

The next step is to find how the Lagrangian of our system eq. (10.14) re-

lates with the global limit of the low energy effective D-brane action in N = 2

compactifications. In other words, we have to relate the field basis used in our

construction with the string basis of the universal hypermultiplet. To do that we

need to specify the correct global limit of the universal hypermultiplet. At string

tree level, the universal hypermultiplet is described by the symmetric coset
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S U(2, 1)/S U(2) × U(1). At the quantum level this isometry structure reduces to

the centrally extended Euclidean algebra E2 which contains a Heisenberg subal-

gebra. Requiring that the same isometry structure survive in the global limit we

found that apart from the trivial global limit of canonical kinetic terms (which

destroys this isometry), there is also a limit leading to a hyperKähler manifold.

An independent derivation of the most general hyperKähler manifold that sat-

isfies the Heisenberg isometries had as a result precisely the same manifold that

we obtained from this global limit. We could then identify the string basis of the

system.
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APPENDIX A

COEFFICIENTS FOR THE HIGGS
MASSES

For completeness, we present the expressions of the coefficients in eq. (5.47):

γ±1 =
±v2

2u2(1 + u2)3 w1/2

×
[
(B0m0µ0)2 (1 + u2)4 − 2m2

Z u2 [m2
Z(1 − u2)2 + (1 + u2) (8µ2

0 u2 ± (u2 − 1) w1/2))]

+ (B0 m0µ0) u(1 + u2)2[m2
Z (1 + u2) − (±w1/2(1 + u2) + 16µ2

0 u2)]
]

(A.1)

γ±2 =
±v2

2(1 + u2)3 w1/2

×
[
(B0m0µ0)2(1 + u2)4 − 2m2

Zu2[8µ2
0(1 + u2) + m2

Z(1 − u2)2 ± w1/2(1 − u4)]

− (B0m0µ0) u (1 + u2)2[16µ2
0 − m2

Z(1 + u2) ± (1 + u2) w1/2]
]

(A.2)

γ±3 = γ
±
4 =

±v2

u (1 + u2)2 w1/2 {µ
2
0[−B0m0µ0 (1+u2)3+ m2

Zu(1 −6u2+ u4) ∓ u(1+u2)2 w1/2]

+ B0m0µ0 u2 (1 + u2) m2
Z + m2

Z u3 (m2
Z ∓ w1/2)} (A.3)

γ±5 =
∓v2

8u3 (1 + u2)3 w1/2

[
(B0m0µ0)2(1 + u2)4 (−1 + 3u2) − (B0m0µ0) u(1 + u2)2

× [ − 2m2
Z(1 + 5u2) + 2µ2

0 (1 + 8u2 + 25u4 + 2u6) ± (1 + u2)(3u2 − 1) w1/2]

− u2 m2
Z[m2

Z(1 − 19u2 − u4 + 3u6) − 2µ2
0 (1 + u2)(1 − 16 u2 − 23u4 + 2u6)

± (1 + u2)2(1 + 3u2) w1/2] + 2µ2
0 u2 [ ± (1 + u2)2 (1 − 9u2 + 2u4)w1/2 ]

]
(A.4)

γ±6 =
±v2

8u2 (1 + u2)3 w1/2

[
(B0m0µ0)2 u (1 + u2)4 (−3 + u2) − (B0m0µ0) (1 + u2)2

× [2m2
Z(5 + u2) u4 − 2µ2

0 (2 + 25u2 + 8u4 + u6) ± (1 + u2) (u2 − 3) u2 w1/2]
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+ u m2
Z[m2

Z(3 − u2 − 19u4 + u6) u2 − 2µ2
0 (1 + u2)(2 − 23 u2 − 16u4 + u6)

± u2 (1 + u2)2(3 + u2) w1/2] − 2µ2
0 u [ ± (1 + u2)2 (2 − 9u2 + u4)w1/2 ]

]
(A.5)

γ±7 =
∓v2m2

Z

16u2(1 + u2)3 w1/2

[
− B0m0µ0 (1 + u2)(1 + 40u2 − 114u4 + 40u6 + u8)

+ m2
Z (u + 30u5 + u9) ± u(1 + u2)2(1 − 10u2 + u4) w1/2

]
(A.6)

γ±x =
±8 (u2 − 1)2 v4

u (1 + u2)3 w3/2 [m2
Z u − B0m0µ0 (1 + u2)][2 m2

Z u − B0m0µ0 (1 + u2)] m0 µ0 (A.7)

γ±y = ∓ (−1 + u2)2 v4

(1 + u2)4 w3/2 [m2
Z u − B0 m0 µ0 (1 + u2)]2 (4 m2

0) (A.8)

γ±z =
∓v4

µ2
0 u2 (1 + u2)3 w3/2

(A.9)

×
[
− 2 (B0m0µ0)3 u (1 + u2)4 + m4

Z u2(1 + u2)(4 µ2
0(−1 + u2)2 − u2(2m2

Z ± w1/2))

+ 2 B0m0µ0 m2
Z u [ − 2µ2

0(u4 − 1)2 + u2(m2
Z(1 − 14u2 + u4) ± (u4 − 6u2 + 1) w1/2)]

+ (B0m0µ0)2 (1 + u2)[µ2
0 (u4 − 1)2 + u2(2m2

Z (1 − 14u2 + u4) ∓ (1 + u2)2 w1/2)]
]
(4µ2

0)
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APPENDIX B

THE SOLUTION OF THE QUADRATIC
CONSTRAINT

In sec. 10.4, the quadratic constraint Z2 = 0 must be solved to obtain the

magnetic DBI theory coupled to a single-tensor multiplet. Using the expansion

Z(y, θ, θ̃) = Z(y, θ) +
√

2 θ̃ω(y, θ) − θ̃θ̃
[

i
2
ΦZ +

1
4

DDZ(y, θ)
]
,

in terms of theN = 1 chiral superfields Z, ωα andΦZ, the constraint is equivalent

to the single equation

Z = − ωω

iΦZ + 1
2 DDZ

. (B.1)

The electric constraint equation (10.3), which was solved by Bagger and

Galperin [20] using a method which applies to eq. (B.1) as well, corresponds

to the particular case ωα = iWα, ΦZ = −i/κ and Z = X. Following then Ref. [20],

the solution of eq. (B.1) is

Z(ωω,ΦZ) =
i
ΦZ


ωω + DD




ωωωω

|ΦZ|2 + A +
√
|ΦZ|4 + 2A|ΦZ|2 + B2





 , (B.2)

where
A = −1

2 (DDωω + DDωω) = A∗,

B = −1
2 (DDωω − DDωω) = −B∗.
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Another useful expression is

Z(ωω,ΦZ) =
i
ΦZ

(
ωω

+DD
[

ωωωω

(DDωω)(DDωω)

{
|ΦZ|2 + A −

√
|ΦZ|4 + 2A|ΦZ|2 + B2

}])
.

(B.3)

In the text, we need the bosonic content of Z(ωω,ΦZ). We write:

ωα(y, θ) = θα ρ +
1
2

(θσµσν)αPµν + . . . , (B.4)

where ρ is a complex scalar (2 bosons), Pµν a real antisymmetric tensor (6 bosons)

and dots indicate omitted fermionic terms. Hence,

ωω = θθ
[
ρ2 + 1

2 PµνPµν + i
4ε
µνρσPµνPρσ

]
+ . . . ,

A = 2(ρ2 + ρ2) + 2PµνPµν + . . . ,

B = 2(ρ2 − ρ2) + iεµνρσPµνPρσ + . . .

Since the bosonic expansion of ωα carries one θα, it follows from solution (B.2)

that the bosonic Z(ωω,ΦZ) has a θθ component only, and that this component

only depends on ρ, Pµν and the lowest scalar component of ΦZ (which we also

denote by ΦZ). As a consequence, the bosonic Z(ωω,ΦZ) does not depend on

the auxiliary scalar fΦZ of ΦZ. We then find:

Z(ΦZ, ωω)bos. =
iΦZ
|ΦZ|2

ωω− iΦZ
4|ΦZ|2

θθ
(
|ΦZ|2 + A −

√
|ΦZ|4 + 2A|ΦZ|2 + B2

)

θ=0
. (B.5)

The parenthesis is real. In terms of component fields:

Z = − iΦZ
4|ΦZ|2 θθ

[
|ΦZ|2 − iεµνρσPµνPρσ − 2(ρ2 − ρ2)

]

+
iΦZ

4|ΦZ|2 θθ
[(
|ΦZ|2 + 2(ρ2 + ρ2)

)2 − 16ρ2ρ2 + 4(ρ2 − ρ2)iεµνρσPµνPρσ

+4|ΦZ|2PµνPµν −
(
εµνρσPµνPρσ

)2]1/2
+ . . .

(B.6)

The decomposition (10.27),Z = W̃ + 2gY, indicates that

ρ = −g
2

C + id̃2, Pµν = gbµν − F̃µν , ΦZ = 2gΦ. (B.7)
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In Lagrangian (10.35), we need the imaginary part of the θθ component of

Z(ωω,ΦZ):

Im Z(ωω,ΦZ)|θθ = −g ReΦ
2 + ReΦ

8g|Φ|2

{
16g4|Φ|4 + 8g2|Φ|2(g2C2 − 4d̃2

2) − 16g2C2d̃2
2

+16g2|Φ|2(F̃µν − g bµν)(F̃µν − g bµν)

+8gCd̃2 εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ)

−
[
εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ)

]2
}1/2

+ ImΦ
8g|Φ|2
[
εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ) − 4gCd̃2

]
.

(B.8)

We now use

−det(|Φ|ηµν +
√

2
g Pµν) = −|Φ|4 det(ηµν +

√
2

g|Φ| Pµν)

= |Φ|4 + |Φ|2g2 PµνPµν − 1
16g4 (εµνρσPµνPρσ)2

(B.9)

to rewrite

Im Z(ωω,ΦZ)|θθ = −g ReΦ
2 + ReΦ

4g|Φ|2

{
−4g4|Φ|4 det

[
ηµν −

√
2

g|Φ| (F̃µν − gbµν)
]

−4g2d̃2
2

(
2|Φ|2 +C2

)
+ 2g4C2|Φ|2

+2gCd̃2 εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ)
}1/2

+ ImΦ
8g|Φ|2
[
εµνρσ(F̃µν − g bµν)(F̃ρσ − g bρσ) − 4gCd̃2

]
.

(B.10)

As a check, choosing Φ = −1/(2gκ) and g = 0 to decouple the single-tensor

multiplet leads back to theory (10.4) since in that case d̃2 = 0.
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APPENDIX C

EQUIVALENT DESCRIPTIONS OF THE
DILATON MULTIPLET

We present in detail three dual descriptions of the dilaton multiplet as well

as the duality transformations that take us from one to another. We start by

repeating the analysis of section 9.1 on the single-tensor multiplet, this time with

more details, and then we go on to the hyper- and the two-tensor multiplets.

C.1 The Single Tensor Formulation

The single-tensor multiplet [18, 103, 104] is the N = 2 extension of the antisym-

metric tensor field bµν with gauge symmetry δgaugebµν = 2∂[µΛν]. It admits two

descriptions, either in terms of the gauge-invariant curl ∂[µbνρ] or in terms of the

antisymmetric tensor field submitted to its gauge transformation.

In the case of N = 1 supersymmetry, a real linear superfield L, DDL = 0,

L = L, describes the curl of the antisymmetric tensor. It can be expressed in

terms of a chiral spinor potential including the antisymmetric tensor:

L = Dαχα − Dα̇χα̇, (C.1)

with Dα̇χα = 0. The gauge invariance of the two-form field acts on the potential
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χα according to

χα −→ χα + iDDDα∆, χα̇ −→ χα̇ + iDDDα̇∆, (C.2)

which, since DαDDDα = Dα̇DDD
α̇
, leaves invariant the linear superfield L for

any real ∆. The potential χα includes the antisymmetric tensor in its θ compo-

nent:

χα = . . . −
1
4
θαC +

1
2

(θσµσν)α bµν + . . . , (C.3)

C being the real scalar partner of bµν. The two descriptions of the N = 2 single-

tensor multiplet use either L or χα, completed with one or two chiral N = 1

superfields.

In the gauge-invariant description using L, theN = 2 multiplet is completed

with a chiral superfield Φ (8B + 8F fields in total). The second supersymmetry

transformations are

δ∗L = − i√
2
(ηDΦ + ηDΦ) ,

δ∗Φ = i
√

2 ηDL , δ∗Φ = i
√

2 ηDL ,
(C.4)

The supersymmetry algebra closes (off-shell) on L and Φ.

Alternatively, in terms of χα and Φ, eqs. (C.3) suggest the variations

δ∗χα = − i√
2
Φ ηα , δ∗χα̇ =

i√
2
Φ ηα̇ ,

δ∗Φ = 2
√

2i
[

1
4 DDηχ + i∂µχσµη

]
,

δ∗Φ = −2
√

2i
[

1
4 DDηχ − iησµ∂µχ

]
.

(C.5)

On χα however, the supersymmetry algebra closes up to a gauge transformation

(C.2):

[δ∗1, δ
∗
2]χα = −2i (η2σµη1 − η1σµη2) ∂µχα

+ i
2 DDDα

[
i η1θ η2χ − i η1θ η2χ − i η2θ η1χ + i η2θ η1χ

]
.

(C.6)
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This result suggests that the N = 1 superfields Φ and χα do not complete a true

off-shell supermultiplet of N = 2 supersymmetry. Another hint is given by the

degrees of freedom: Φ and χα contain 12B+12F fields and gauge invariance (C.2),

which is only compatible withN = 1, removes 4B+4F fields, to give the expected

8B + 8F degrees of freedom in L and Φ. We should then expect that the N = 2

supermultiplet of the potential χα (including the antisymmetric tensor among its

component fields) has 16B + 16F fields, with an extended gauge transformation

using a Maxwell N = 2 multiplet and removing 8B + 8F components.

From the structure of relation (C.6), one may guess that the introduction of

another chiral superfield Y (with 4B + 4F fields) with δ∗Y ∼ ηχ would be appro-

priate if we also add to δ∗χα a gauge transformation proportional to

i DDDα [iηθY − iηθY] = −ηαDD Y − 4i(σµη)α ∂µY.

This modification, being a gauge transformation of χα, does not affect δ∗L. One

then easily verifies that the second supersymmetry variations

δ∗Y =
√

2 ηχ ,

δ∗χα = − i√
2
Φ ηα −

√
2

4 ηα DD Y −
√

2i(σµη)α∂µY ,
(C.7)

with δ∗Φ as in (C.5), close the N = 2 superalgebra.

It is then natural to generalize gauge transformation (C.2) to N = 2, using a

Maxwell supermultiplet with N = 1 superfields Ŵα and X̂:

δgaugeχα = iŴα, δgaugeY = X̂, δgaugeΦ = 0. (C.8)

Since L = Dχ − Dχ, the Bianchi identity verified by Ŵ implies the gauge in-

variance of L. The second variation, which is the same as transformation (C.2),

contains in particular δgauge bµν = F̂µν. This N = 2 gauge transformation removes

8B + 8F component fields, leaving as expected 8B + 8F fields.
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It may be useful to remark that giving a constant background value to the

chiral N = 1 superfield Φ seems to break N = 2 supersymmetry to N = 1.

According to the second variation (C.7), χα transforms like a Goldstino if Φ ac-

quires a background value. The lowest component of χα does however trans-

form under gauge symmetry (C.2) and a Goldstino is generated only if a gauge-

invariant quantity is created in a theory where the single-tensor multiplet in-

teracts with other fields. In a theory depending only on the gauge-invariant L

and Φ, a background value of Φ does not break the second supersymmetry: it is

invariant under transformations (C.4).1

The chiral superfield Y does not contain any physical state: neither L nor φ

do depend on Y . There is a gauge similar to the Wess-Zumino gauge of N = 1

supersymmetry in which Y = 0. This gauge choice respectsN = 1 supersymme-

try and gauge symmetry (C.2).

An invariant kinetic action for the single-tensor multiplet involves an arbi-

trary function solution of the three-dimensional Laplace equation (for the vari-

ables L, Φ and Φ) [18]:

LS T =

∫
d2θd2θH(L,Φ,Φ) ,

∂2H
∂L2 + 2

∂2H
∂Φ∂Φ

= 0. (C.9)

It is in particular straightforward to show that

LS T =

∫
d2θd2θ H(V) + h.c., (C.10)

with

V = L +
i√
2

(Φ + Φ)

transforms with a derivative under the second supersymmetry for any function

H(V). It is also invariant under a constant shift of ImΦ, the symmetry which
1A background value of the scalar C in χα [see expansion (C.3)] does not break supersymme-

try. It corresponds to a constant background value of L.
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allows dualization of Φ into the second linear superfield of the double-tensor

multiplet.

C.2 Hypermultiplet Formulation

In terms ofN = 1 superfields, a hypermultiplet has two chiral superfieldsΦ and

T . The linear L of the single-tensor multiplet has been dualized to a chiral T with

axionic shift symmetry. Since the duality involves a Legendre transformation

using the Lagrangian function, the second supersymmetry transformations will

not any longer hold off-shell when acting on Φ and T : the hypermultiplet does

not admit an off-shell formulation.

We start with the single-tensor Lagrangian

LS T =

∫
d2θd2θH(L,Φ,Φ). (C.11)

To dualize the theory, use a real vector superfield U and rewrite

LS T =

∫
d2θd2θ

[
H(U,Φ,Φ) − m(T + T )U

]
, (C.12)

with an arbitrary real parameter m. Eliminating U with

∂

∂U
H(U,Φ,Φ) = m(T + T ), (C.13)

one obtains the dual hypermultiplet theory

L̃S T =

∫
d2θd2θ K(T+T ,Φ,Φ), K(T+T ,Φ,Φ) = H

(
u,Φ,Φ

)
−m(T+T )u, (C.14)

where U = u(T + T ,Φ,Φ) is the solution of the Legendre transformation (C.13).
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One can then derive various relations between derivatives of the Kähler po-

tential K and derivatives ofH :

KTT = − m2

HUU
, KΦΦ = HΦΦ −

HUΦHUΦ

HUU
,

KTΦ = m
HUΦ

HUU
, KΦT = m

HUΦ

HUU
,

(C.15)

using the notation

HUU =
∂2H
∂U2 , HΦΦ =

∂2H
∂Φ ∂Φ

, . . .

As a consequence, the determinant of the (2 × 2) Kähler metric is

KTT KΦΦ − KTΦKΦT = −m2 HΦΦ
HUU

. (C.16)

In this N = 1 Legendre transformation, the condition for N = 2 supersymmetry

has not been used. Hence for a single-tensor multiplet, the second eq. (C.9)

implies [105, 106]

KTT KΦΦ − KTΦKΦT =
1
2

m2 (C.17)

(Monge-Ampère equation). This result implies Ricci-flatness which, for a two-

dimensional complex manifold, indicates that the hypermultiplet scalar mani-

fold is hyper-Kähler, as expected in general [16]. Hypermultiplet scalar kinetic

terms are2

KTT

[
∂µT +

KΦT
KTT
∂µΦ
] [
∂µT + KTΦ

KTT
∂µΦ
]
+ m2

2KTT
∂µΦ ∂µΦ

= − 1
HUU

∣∣∣∣m ∂µT −HUΦ ∂µΦ
∣∣∣∣
2
− 1

2HUU(∂µΦ)(∂µΦ).
(C.18)

using the same notation T and Φ for the chiral superfields and for their lowest

scalar components. The chiral superfields T and Φ are Kähler coordinates.

One should remark that adding toH the quantity

∆H = L[g(Φ) + g(Φ)] (C.19)
2Positivity of kinetic terms requires thatHUU < 0.
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does not change the single-tensor theory:3 its superspace integral is a derivative.

Since

∆HU = g(Φ) + g(Φ), ∆HUΦ = gΦ(Φ),

the Legendre transformation (C.13) and the kinetic terms (C.18) are affected by

a modification of T :

T −→ T − g(Φ)
m
. (C.20)

Hence, for a given single-tensor theory defined by the function H , we have a

family of hypermultiplet theories generated by the arbitrary function g(Φ). In

other words, the chiral superfield dual to L can be defined as T − g(Φ)
m , for any

function g.

The hyper-Kähler scalar metric is commonly expressed in “mixed” coordi-

nates where u, the solution of the Legendre transformation (C.13), is used in-

stead of Re T . Defining then coordinates

qa = (τ, xi) = (Im T,
√

2 Re φ,
√

2 Im φ, u), a = 0, i, i = 1, 2, 3, (C.21)

the line-element can be written

ds2 = gab dqa dqb

= −HUU
4 du2 +HΦΦ dΦ dΦ − m2

HUU

[
d Im T + i

2m (HUΦ dΦ −HUΦ dΦ)
]2
.

(C.22)

With the condition for N = 2 supersymmetry,HΦΦ = −1
2HUU , this is

ds2 = −HUU
4 [du2 + 2 dΦ dΦ] − m2

HUU

[
d Im t + i

2m (HUΦ dΦ −HUΦ dΦ)
]2

= m
2

(
V dxi dxi + V−1[dτ − ωi dxi]2

)
,

(C.23)

with functions V(xi) and ωi(x j) given by

V = −HUU

2m
, ω1 =

ImHUΦ√
2m
, ω2 =

ReHUΦ√
2m
, ω3 = 0. (C.24)

3It is a trivial solution of Laplace equation.

205



Using again the condition for N = 2 supersymmetry, which implies that the

metric is hyper-Kähler, one finds that

1∇V = 1∇ ∧ 1ω. (C.25)

This indicates that V solves Laplace equation

∂i∂i V = (∂2
u + 2 ∂Φ∂Φ)V = 0, (C.26)

in agreement with its definition (C.24). A (four-dimensional) hyper-Kähler met-

ric with shift symmetry of τ = Im T is then defined by V and ωi related by equa-

tions (C.25) [100]. Given a metric of this form, the single-tensor formulation of

the N = 2 supersymmetric theory is then obtained by integrating eqs. (C.24) to

findH . Notice that eq. (C.25) remains valid if

1ω −→ 1ω + 1∇F ,

for an arbitrary real function F . The metric is unchanged if coordinate τ is

changed according to

τ −→ τ + F .

Comparing with eqs. (C.19) and (C.20), one sees that F = 1√
2m

Im g(Φ).

The Kähler formulation with complex coordinates T and Φ is defined by

relations

KTT =
m
2V
, KΦT = −

m√
2 V

(ω2 + iω1) (C.27)

(ω3 = 0) and by the Legendre transformation KT = −mu [see eqs. (C.15) and

(C.14)].

Notice that if the theory is also invariant under the shift of ImΦ, then isH a

real function of L (or U) and Φ + Φ and ω1 = 0. Relation (C.25) implies then that

V does not depend on x2: obviously, V does not depend on ImΦ.
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As an example, the Taub-NUT metric is considered in Appendix D.2.

C.3 Two-Tensor Formulation

Similarly, we can turn Φ + Φ into a second linear superfield L′ to obtain the

two-tensor formulation of the kinetic Lagrangian (C.11). Rewriting it as

LS T =

∫
d2θd2θ

[H(L,V) − mL′ V
]
, (C.28)

with an unconstrained real superfield V to impose V = Φ + Φ and an arbitrary

parameter m. If we instead eliminate V by its field equation

HV = mL′, HV =
∂

∂V
H(L,V), (C.29)

the resulting two-tensor theory is

L2T =

∫
d2θd2θG(L, L′), G(L, L′) = H(L,V) − mL′ V, (C.30)

with V replaced by the solution V(L, L′) of eq. (C.29). Again the Legendre trans-

formation generates relations between derivatives of G andH :

GLL = HLL −
H2

LV

HVV
, GLL′ = m

HLV

HVV
, GL′L′ = −

m2

HVV
. (C.31)

As in the hypermultiplet formulation, we have a determinant relation

GLLGL′L′ − G2
LL′ = −m2HLL

HVV
. (C.32)
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The bosonic kinetic terms of the two-tensor formulation can then be written

L2T,kin. = −1
4GLL

[
(∂µC)(∂µC) + 1

12 HµνρHµνρ
]

−1
4GL′L′

[
(∂µC′)(∂µC′) + 1

12 H′µνρH′ µνρ
]

−1
2GLL′

[
(∂µC)(∂µC′) + 1

12 HµνρH′ µνρ
]

= −1
4HLL

[
(∂µC)(∂µC) + 1

12 HµνρHµνρ
]

+ m2

4HVV

[
(∂µC′ − 1

mHLV ∂µC)(∂µC′ − 1
mHLV ∂µC)

+ 1
12 (H′µνρ − 1

mHLV Hµνρ)(H′ µνρ − 1
mHLV Hµνρ)

]
,

(C.33)

with Hµνρ = 3 ∂[µBνρ] and H′µνρ = 3 ∂[µB′νρ] and, as before, V should be replaced by

the solution V(L, L′).

The condition imposed by the second supersymmetry has not been imposed

yet. In the single-tensor formulation,N = 2 supersymmetry is obtained ifHLL =

−2HVV . The two-tensor version (C.30) has then N = 2 supersymmetry if

GLLGL′L′ − G2
LL′ = 2m2, (C.34)

i.e. if the determinant is a positive constant. Bosonic kinetic terms of the N = 2

theory are then

L2T,kin. = − m2

2GL′L′

[
(∂µC)(∂µC) + 1

12 HµνρHµνρ
]

−1
4GL′L′

[
(∂µC′ +

GLL′
GL′L′
∂µC)(∂µC′ + GLL′

GL′L′
∂µC)

+ 1
12 (H′µνρ +

GLL′
GL′L′

Hµνρ)(H′ µνρ +
GLL′
GL′L′

Hµνρ)
]
,

= −1
4HLL

[
(∂µC)(∂µC) + 1

12 HµνρHµνρ
]

− m2

2HLL

[
(∂µC′ − 1

mHLV ∂µC)(∂µC′ − 1
mHLV ∂µC)

+ 1
12 (H′µνρ − 1

mHLV Hµνρ)(H′ µνρ − 1
mHLV Hµνρ)

]
.

(C.35)
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While the first supersymmetry imposes a relation between scalar and tensor

kinetic terms, the second imposes a specific relation between the kinetic terms

of the two linear superfields.

In comparing with the reduction of a IIB supergravity Lagrangian, one

should then choose a gravity frame in which the relation between scalar and ten-

sor kinetic terms is verified. The first supersymmetry and kinetic terms (C.33)

are then sufficient for this choice.
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APPENDIX D

OBTAINING THE TAUB-NUT
METRIC FROM CONFORMAL

SUPERGRAVITY

D.1 SU(2, 1)/SU(2) × U(1) and its Global Hyper-Kähler Limit

The superconformal construction of the N = 2 S U(2, 1)/S U(2) × U(1) sigma-

model coupled to N = 2 supergravity starts with one vector multiplet (for the

graviphoton) and three hypermultiplets. However, with these states only, elim-

inating auxiliary fields and imposing Poincaré gauge conditions would lead to

the S p(4, 2) / S p(4) × S p(2) theory. We need an additional non-propagating vec-

tor multiplet with gauge field Wµ to eliminate four more scalars and to reduce

the theory to S U(2, 1)/S U(2)×U(1). The vector field will be used to gauge a U(1)

or S O(1, 1) subgroup of S p(4, 2) with generator T . This is very much similar to

what we do in section 11.2 where we obtain the universal hypermultiplet from

conformal N = 2 supergravity.

The basic difference here is that in order to reduce to a Taub-NUT metric, we

need to start with a different signature for η:

η = diag(−1, 1, 1) (D.1)
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The first steps of writing down the supergravity scalar Lagrangian and impos-

ing the proper constraints is exactly the same as in subsec. 11.2.5 until eq. (11.62)

where the the different choice of signature appears explicitly:

1A∗+ · 1A+ + 1A∗− · 1A− = −
1
κ2
, 1A∗ · 1A = 1A†η1A = −|A1|2 + |A2|2 + |A3|2. (D.2)

From that point on, in order to obtain the Taub-NUT metric we proceed as fol-

lows. We first define

qa =
1
κ

QaQ−1
1 , (D.3)

and q1 =
1
κ I2 will not be used herebelow. Defining the new coordinates qa left

invariant by the superconformal S U(2) is equivalent to identify the supercon-

formal S U(2) with S U(2)1 and choose a gauge for Q1. Explicitly,

qa =




q+a q−a

−q∗−a q∗+a



=

1
κ det Q1




A+aA∗+1 + A−aA∗−1 −A+aA−1 + A−aA+1

−A∗−aA∗+1 + A∗+aA∗−1 A∗−aA−1 + A∗+aA+1



.

Similarly,

Qa = κ




q+aA+1 − q−aA∗−1 q+aA−1 + q−aA∗+1

−q∗−aA+1 − q∗+aA∗−1 −q∗−aA−1 + q∗+aA∗+1



.

The second condition (D.2) is now written as

− det Q1 + det Q2 + det Q3 = −
1
κ2
, det Q1 =

1
κ2(1 − κ2 det q2 − κ2 det q3)

. (D.4)

Both Qa and qa have dimension (mass)1 and they verify det Qa ≤ κ−2, det qa ≤ κ−2.

We will use the S U(2) symmetry to choose

A+1 =
√

det Q1 = A∗+1, A−1 = 0, qa =
1

κ
√

det Q1
Qa (a = 2, 3). (D.5)
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Notice that with this choice A+1 and qa are respectively of order κ−1 and κ0. Actu-

ally, in the global supersymmetry limit κ → 0, the constraint reduces to A+1 = κ−1.

The S U(2) gauge fields and their contributions to the Lagrangian are of order

κ2.

With the above choices, the sigma-model Lagrangian for the scalar fields

becomes
Lscalar = 2κ2A2

+1

[
(∂µq+2)(∂µq∗+2) + (∂µq−2)(∂µq∗−2)

+(∂µq+3)(∂µq∗+3) + (∂µq−3)(∂µq∗−3)
]

+1
2κ

6A4
+1[∂µ(det q2 + det q3)]2

−g2

κ2
Vµ i

jVµ j
i

+g′2 WµWµ dαβ T γαT βδAi
γAδi

= L0 +LA+1 +LS U(2) +LO(1,1),

(D.6)

with A+1 as in the first eq. (D.5). Notice that the term in the third line is

LA+1 =
2
κ2
∂µ ln(κA+1) ∂µ ln(κA+1).

It vanishes in the limit κ → 0. The S U(2) gauge fields do not depend on deriva-

tives of A+1:

LS U(2) = −g2

κ2
Vµ i

jVµ j
i = −1

4κ
6A4
+1 Tr

[
q†2
↔
∂µ q2 + q†3

↔
∂µ q3

]2

= −1
2κ

6A4
+1

[
(q∗+a

↔
∂µ q+a − q∗−a

↔
∂µ q−a)2 + 4(q∗+a

↔
∂µ q−a)(q∗−a

↔
∂µ q+a)

]
,

(D.7)

where a is summed over values a = 2, 3 only. This contribution also cancels in

the limit κ → 0 where Lscalar, κ→0 = L0 +LS O(1,1), with κA+1 = 1.

With g′ = 0 and without the constraint (11.55), one obtains the sigma-model

HP2 = S p(4, 2)/S p(4) × S p(2). Expressed in terms of the quaternion (2 × 2) ma-
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trices q2 and q3, it reads:

LHP2 = κ2A2
+1 Tr[(∂µq2)†(∂µq2) + (∂µq3)†(∂µq3)]

+κ6A4
+1 Tr[(q†2∂µq2 + q†3∂µq3)(∂µq†2 q2 + ∂µq†3 q3)].

(D.8)

In the limit κ → 0, κA+1 → 1 and the sigma-model metric is trivial.

If we choose the U(1) generator T as in eq. (11.50):

T =




T̂ 0

0 T̂ ∗



, T̂ † = −ηT̂η, (D.9)

then constraint (D.2) leads to three (real) equations:

1A†+ iηT̂ 1A+ = 1A†− iηT̂ 1A−,

1A†− iηT̂ 1A+ = 0
(D.10)

([iηT̂ ]† = iηT̂ ). With the S O(1, 1) generator

T̂ =




0 λ 0

λ 0 0

0 0 i




(D.11)

(λ real) the three constraints are:

λ(A∗+2A+1 − A∗+1A+2) + iA∗+3A+3 = λ(A∗−2A−1 − A∗−1A−2) + iA∗−3A−3,

λ(A∗−2A+1 − A∗−1A+2) + iA∗−3A+3 = 0.
(D.12)

These conditions survive in the global supersymmetry limit κ → 0, where also

det Q1 → κ−2, if λA+1 has a finite limit. Since κA+1 → 1, we then assume that1

16 has dimension (mass)1.
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λ = 6κ. In terms of the coordinates qa, the conditions are:

6
[
(|A+1|2 − |A−1|2)(q∗+2 − q+2) − 2A+1A−1q∗−2 + 2A∗+1A∗−1q−2

]

= i
[
(|A−1|2 − |A+1|2)(|q+3|2 − |q−3|2)) + 2A+1A−1q+3q∗−3 + 2A∗+1A∗−1q−3q∗+3

]
,

6
[
A+1A∗−1(q∗+2 − q+2) + A+1A+1q∗−2 + A∗−1A∗−1q−2

]

= i
[
A+1A∗−1(|q−3|2 − |q+3|2) − A+1A+1q+3q∗−3 + A∗−1A∗−1q∗+3q−3

]
.

Using S U(2) symmetry to choose as earlier A−1 = 0, we obtain

i6 (q∗+2 − q+2) = |q+3|2 − |q−3|2 ,

6 q−2 = i q∗+3q−3,

(D.13)

independent of κ. In the limiting case 6 = 0, q3 = 0 and the resulting constraint

(D.4) leads to the four-dimensional S p(2, 2)/S p(2) × S p(2). As a S O(1, 1) gauge

choice, we may take Re q+2 = 0, which leads to

q+2 =
i

26 (|q+3|2 − |q−3|2) ,

q−2 =
i
6 q∗+3q−3 ,

det q2 = |q+2|2 + |q−2|2 = 1
462 (det q3)2.

(D.14)

With A−1 = 0 and A+1 real, the unconstrained fields are q±3, with q±2 given by

eqs. (D.14) and with relations

q3 =
1

κ
√

det Q1




A+3 A−3

−A∗−3 A∗+3



,

A+1 =
√

det Q1 =
1
κ

[
1 − κ2 det q3 − κ2

462 (det q3)2
]−1/2
.

(D.15)

In terms of quaternion matrices, conditions (D.14) correspond to

q2 =
i

26
q†3 J q3, J =




1 0

0 −1



. (D.16)
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With the gauge choices A−1 = Re q+2 = 0 and A+1 real, the S O(1, 1) gauge field

reads

Wµ =
i

2g
q∗+3

↔
∂µ q+3 + q∗−3

↔
∂µ q−3

62 + det q3 − κ24 (det q3)2
(D.17)

in terms of q±3. Its contribution to the scalar Lagrangian is

LS O(1,1) =
1
2
κ2A2

+1
(q∗+3

↔
∂µ q+3 + q∗−3

↔
∂µ q−3)2

62 + det q3 − κ24 (det q3)2
. (D.18)

To calculate the various contributions to the scalar Lagrangian (D.6), we in-

troduce new (real) coordinates (r, θ, φ, τ):

q+3 = r cos
θ

2
ei(φ+τ)/2, q−3 = r sin

θ

2
e−i(φ−τ)/2. (D.19)

With these variables,

det q3 = r2,

|dq+3|2 + |dq−3|2 = dr2 + r2

4 (dθ2 + sin2 θ dφ2) + r2

4 (dτ + cos θ dφ)2,

q+2 =
ir2

26 cos θ, q−2 =
ir2

26 sin θ e−iφ,

|dq+2|2 + |dq−2|2 = r2

62

[
dr2 + r2

4 (dθ2 + sin2 θ dφ2)
]
,

κA+1 = [1 − κ2r2 − κ2

462 r4]−1/2.

The basic scalar kinetic terms become

L0 = 2κ2A2
+1

[
|∂µq+2|2 + |∂µq−2|2 + |∂µq+3|2 + |∂µq−3|2

]

= 2κ2A2
+1

[(
1 + r2

62

) [
(∂µr)2 + r2

4 {(∂µθ)2 + sin2 θ (∂µφ)2}
]

+ r2

4 (∂µτ + cos θ ∂µφ)2
]
.

(D.20)

The contribution of the S O(1, 1) gauge field is

LS O(1,1) = −
r4

2
κ2A2

+1
(∂µτ + cos θ ∂µφ)2

62 + r2 − κ24 r4
. (D.21)
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The constribution of the S U(2) gauge fields is

LS U(2) =
1
2
κ6A4

+1 r4
[
(∂µτ + cos θ ∂µφ)2 +

(
1 +

r2

262
)2{

(∂µθ)2 + sin2 θ(∂µφ)2
}]
. (D.22)

Finally

LA+1 = 2κ6A4
+1

(
1 +

r2

262

)2
r2(∂µr)(∂µr). (D.23)

Both LS U(2) and LA+1 vanish (like κ2) in the limit κ → 0. Then, summing the four

contributions leads to the scalar Lagrangian

L = 1
262 κ

4A4
+1

(
1 + 6

2

r2 − κ
2r2

4

) [
4r2(∂µr)2 + r4{(∂µθ)2 + sin2 θ (∂µφ)2}

]

+ 1
262 κ

4A4
+1

(62+ κ
2r4
4 )2

1+ 62
r2 − κ

2r2
4

(∂µτ + cos θ ∂µφ)2.

(D.24)

If we define a new variable R = r2/6, choosing a positive 6, the theory becomes

L = 1
2κ

4A4
+1

(
1 + 6R − κ

26R
4

) [
(∂µR)2 + R2{(∂µθ)2 + sin2 θ (∂µφ)2}

]

+1
2κ

4A4
+1

(1+ κ
2R2
4 )2

1+ 6R− κ
26R
4

62 (∂µτ + cos θ ∂µφ)2,

(D.25)

where2

κ4A4
+1 =

[
1 − κ26R − κ

2R2

4

]−2

. (D.26)

The parameter 6 defines the energy scale of the field R while the length κ defines

the curvature of the quaternionic manifold. The metric defined by these kinetic

terms is Einstein with

Rab = −6κ2 gab , (D.27)

as expected for a single hypermultiplet quaternionic space [14].

The limit κ → 0 leads to

Lκ→0 =
1
2

[(
1 + 6R

) [
(∂µR)2 + R2{(∂µθ)2 + sin2 θ (∂µφ)2}

]

+ 6
2

1+ 6R
(∂µτ + cos θ ∂µφ)2

]
.

(D.28)

2Positivity implies R ≤ 2
κ (
√

1 + κ262 − κ6).
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We will see later [eq. (D.35)] that the metric of this scalar Lagrangian is the Taub-

NUT metric with 2M = 6.

There are four isometries acting on θ, φ and τ. Three are the spherical sym-

metries of (∂µθ)2 + sin2 θ (∂µφ)2, the fourth isometry is the shift of τ. Explicitly, the

metric is invariant under

δθ = sin φ c2 + cos φ c3,

δφ = c1 + cotg θ(cos φ c2 − sin φ c3),

δτ = c4 − 1
sin θ (cos φ c2 − sin φ c3).

(D.29)

where CI , I = 1, 2, 3, 4 are the real parameters of the isometries. The S U(2) alge-

bra is verified by transformations with parameters c1, c2 and c3.

We introduce cartesian coordinates xi, i = 1, 2, 3 instead of the polar coordi-

nates R, θ, φ:

x1 = R sin θ cos φ, x2 = R sin θ sin φ, x3 = R cos θ.

Using

x1dx2 − x2dx1

x2
1 + x2

2
= dφ,

x3

R
= cos θ, R =

√
x2

1 + x2
2 + x2

3,

We can rewrite our Lagrangian in the following form:

L = F(R) (∂µxi)(∂µxi) +G(R)(∂µτ + ωi∂µxi)2. (D.30)

We find

F(R) =
1
2
κ4A4

+1

[
1 +
6

R
− κ

26R
4

]
,

G(R) =
1
2
κ4A4

+1
(1 + κ

2R2

4 )2

1 + 6R − κ
26R
4

62,

ω1 = −
x2x3

R(x2
1 + x2

2)
, ω2 =

x1x3

R(x2
1 + x2

2)
, ω3 = 0.

(D.31)
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In the limit κ → 0, F(R)G(R) = 62/4.

Notice that
d

dR

[
1 +
6

R
− κ

26R
4

]
= − 6

R2

[
1 +
κ2R2

4

]

In a set of Kahler coordinates zi = (T,Φ), one can in general write

ds2 = KTT

(
dT +

KΦT

KTT
dΦ
) (

dT +
KTΦ

KTT
dΦ
)
+

det Ki j

KTT
dΦdΦ.

For an Einstein space with Ri j = ∂i∂ j ln det Kkl = ∆Ki j,

ds2 = KTT

(
dT +

KΦT

KTT
dΦ
) (

dT +
KTΦ

KTT
dΦ
)
+

Ae∆K

KTT
dΦdΦ,

where A is an arbitrary positive constant.3 Defining K = −n ln Y , the line element

is

ds2 = KTT

(
dT +

KΦT

KTT
dΦ
) (

dT +
KTΦ

KTT
dΦ
)
+

AY−n∆

KTT
dΦdΦ.

If we further assume that the Kähler potential K is a function of T + T , Φ and Φ,

since T is dual to a linear superfield,

dKT = KTT d(T + T ) + KΦT dΦ + KTΦdΦ,

and the line element becomes

ds2 = KTT

(
d Re T + KΦT

2KTT
dΦ + KTΦ

2KTT
dΦ
)2

+KTT

(
d Im T + KΦT

2iKTT
dΦ − KTΦ

2iKTT
dΦ
)2
+ AY−n∆

KTT
dΦdΦ

= 1
4KTT

(dKT )2 + KTT

(
d Im T + KΦT

2iKTT
dΦ − KTΦ

2iKTT
dΦ
)2
+ AY−n∆

KTT
dΦdΦ.

3A could be in principle a harmonic function f (T,Φ) + f (T ,Φ) but this case is irrelevant for
us.
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D.2 Taub-NUT

The Taub-NUT (Taub-Newman-Unti-Tamburino) metric [107] describes a four-

dimensional euclidean space with self-dual curvature. It is then Ricci-flat and a

solution of the vacuum Einstein equations. Hence, it is also hyper-Kähler and

appropriate to describe the scalar sector of a globally N = 2 hypermultiplet

theory.

The Taub-NUT metric is commonly expressed in coordinates where

ds2
T N =

r + M
r − M

dr2 + (r2 − M2) (σ2
1 + σ

2
2) + 4M2 r − M

r + M
σ2

3. (D.32)

The one-forms
σ1 = cos τ dθ + sin τ sin θ dϕ,

σ2 = − sin τ dθ + cos τ sin θ dϕ,

σ3 = cos θ dϕ + dτ

(D.33)

verify

dσx = −εxyz σy ∧ σz (x, y, z = 1, 2, 3). (D.34)

The coordinates τ, θ and ϕ are angular variables (0 ≤ θ ≤ π, 0 ≤ τ ≤ 4π, 0 ≤ ϕ ≤

2π), r > M and M is a (real) parameter. A more convenient form is obtained by

shifting the singularity from r = M to R = 0 with the redefinition R = r − M. The

metric becomes [100]

ds2
T N = V[dR2 + R2 dΩ] +

4M2

V
[dτ + cos θ dϕ]2, V = 1 +

2M
R
, (D.35)

where

dΩ = σ2
1 + σ

2
2 = dθ2 + sin2 θ dϕ2. (D.36)

This form is reminiscent of a (euclidean) Schwarzschild metric. Since

1
4M2 ds2

T N =
ρ + 1
ρ

[dρ2 + ρ2 dΩ] +
ρ

ρ + 1
[dτ + cos θ dϕ]2, ρ =

R
2M
, (D.37)
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the constant 2M sets the scale of the radial coordinate R. Notice that the deter-

minant of the metric is

det gab = 4M2V2R4 sin2 θ = 4M2R2 sin2 θ(R + 2M)2. (D.38)

It would be constant in Kähler coordinates.

In cartesian coordinates qa = (τ, xi), with dxidxi = dR2 + R2dΩ, the metric is

ds2
T N = 2M

(
V

2M
dxi dxi +

2M
V

[dτ − ωi dxi]2
)
, (D.39)

with

ω1 = − x2x3

R(x12 + x22)
, ω2 =

x1x3

R(x12 + x22)
, ω3 = 0. (D.40)

The relation [100]

1∇ V
2M
= 1∇ ∧ 1ω, (D.41)

which is required for four-dimensional hyperkähler manifold, is verified.

The Taub-NUT metric (D.35) is invariant under S U(2) × U(1) isometries

δθ = sin φ c2 + cos φ c3,

δφ = c1 + cotg θ(cos φ c2 − sin φ c3),

δτ = c4 − 1
sin θ (cos φ c2 − sin φ c3),

(D.42)

where cI , I = 1, 2, 3, 4 are constant real parameters. The S U(2) algebra is gener-

ated by transformations with parameters c1, c2 and c3. On cartesian coordinates

xi, the action of the S U(2) isometries is

δx1 = −c1x2 + c3x3, δx2 = c1x1 + c2x3, δx3 = −c3x1 − c2x2. (D.43)

On the Kähler coordinate Φ = (x1 + ix2)/
√

2,

δΦ = ic1Φ +
1√
2

(c3 + ic2)U , δU = − 1√
2

(c3 − ic2)Φ − 1√
2

(c3 + ic2)Φ , (D.44)
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where U = x3, leaving U2 + 2ΦΦ invariant.4

The single-tensor N = 2 theory leading to the Taub-NUT scalar manifold in

the hypermultiplet formulation is defined by the function

H(L,Φ,Φ) = −1
2

[
L2 − ΦΦ

]
+ 2M

[ √
L2 + 2ΦΦ − L ln

(
L +
√

L2 + 2ΦΦ
)]
, (D.45)

obtained by integrating eqs. (C.24). The real superfield L2 + 2ΦΦ is R2. Since the

action of isometries does not respect in general the chiral or linear nature of a

superfield, we do not expectH to be invariant, but the line element (the kinetic

terms) should be invariant.

In the hypermultiplet formulation, the line element reads

ds2
T N =

1
2
V dΦ dΦ +V−1

∣∣∣∣∣m dT + MU dΦ
Φ

∣∣∣∣∣
2

, (D.46)

where

V = 1 +
2M

√
U2 + 2ΦΦ

, U = 1 − U
√

U2 + 2ΦΦ
(D.47)

and U is defined (as a function of T +T andΦΦ) by the Legendre transformation

(C.13):

U + 2M ln
(
U +

√
U2 + 2ΦΦ

)
= −m(T + T ). (D.48)

This equation cannot be analytically inverted. The determinant of the Kähler

metric is constant, as in eq. (C.17), and the second eq. (D.44) indicates that the

S U(2) isometries act on T + T according to

δ(T + T ) =
1√
2m

(
1 +

2M
U + R

) [
(c3 − ic2)Φ + (c3 + ic2)Φ

]
. (D.49)

To compare eqs. (D.46) and (D.39), we need to rewrite ds2
T N in coordinates

(τ, xi) with xi = (
√

2 ReΦ,
√

2 ImΦ,U) and R2 = xixi = U2 + 2ΦΦ. Hence,

V = 1 +
2M
R
= V(R), U = 1 − U

R
4The phase rotation of Φ has parameter c1.
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and, according to eq. (D.48),

2m d Re T = −dU − 2M
dU + dR

U + R
= −V dU − 2M

R(U + R)
d(ΦΦ).

We first obtain

ds2
T N = V−1

[
m d Re T + MU

2ΦΦ
d(ΦΦ)

]2
+ V

2 dΦdΦ

+V−1
[
m d Im T + MU

ΦΦ
(ReΦ d ImΦ − ImΦ d ReΦ)

]2
.

Since MU
2ΦΦ
= M

R(U+R) , we have

ds2
T N = 1

4 V
[
(dU)2 + 2 dΦdΦ

]

+V−1
[
m d Im T + 2M

R(U+R) (ReΦ d ImΦ − ImΦ d ReΦ)
]2

= 1
4

(
V dxidxi + 4m2V−1

[
d Im T + M

mR(U+R) (x1dx2 − x2dx1)
]2)
.

(D.50)

Finally, we set m = M and use

1
R(U+R) (x1dx2 − x2dx1) = − U

R(R2−U2) (x1dx2 − x2dx1) + i
2 d ln(Φ/Φ)

= −ωi dxi + i
2 d ln(Φ/Φ),

with ωi as in eq. (D.40). Finally,

ds2
T N =

1
4

(
V dxidxi + 4M2V−1

[
d Im T +

i
2

d ln(Φ/Φ) − ωi dxi
]2)
. (D.51)

Comparison with expression (D.39) indicates that the fourth coordinate is

τ = Im T +
i
2

ln(Φ/Φ). (D.52)

The action of S U(2) × U(1) isometries on τ is

δτ = c4 −
R

2
√

2
c2 − ic3

Φ
− R

2
√

2
c2 + ic3

Φ
. (D.53)

Hence,

δ Im T = c4 − c1 − 1√
2

1
R−U [(c2 + ic3)Φ + (c2 − ic3)Φ]

δT = i(c4 − c1) + 1√
2

[
R
ΦΦ
+ 1

2M

]
(c3 − ic2)Φ − 1√

2

[
U
ΦΦ
− 1

2M

]
(c3 + ic2)Φ

(D.54)
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To summarize, Kähler coordinates T and Φ of the Taub-NUT metric are re-

lated to standard variables by (τ, xi) = (τ,
√

2 ReΦ,
√

2 ImΦ,U). Eq. (D.52) defines

Im T while the Legendre transformation (D.48) gives implicitly Re T .
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