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Orbit and optics improvement by evaluating the nonlinear beam position monitor response
in the Cornell Electron Storage Ring
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We present an improved system for orbit and betatron phase measurement utilizing nonlinear models of
beam position monitor (BPM) pickup response. We first describe the calculation of the BPM pickup
signals as nonlinear functions of beam position using Greens reciprocity theorem with a two-dimensional
formalism. We then describe the incorporation of these calculations into our beam position measurements
by inverting the nonlinear functions, giving us beam position as a function of the pickup signals, and how
this is also used to improve our calculation of the betatron phase advance. Measurements are presented
comparing this system with the linearized pickup response used historically at CESR.
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L. INTRODUCTION

CESR measures beam position and betatron phase with
approximately 100 beam position monitors (BPMs) dis-
tributed around the storage ring. Each BPM consists of four
button-type electrodes mounted flush with, and electrically
isolated from, the surface of the beam pipe. A moving
particle bunch induces charge on the beam-pipe walls
and on the surface of each button, which one can describe
as image currents or as surface charge due to the transverse
component of the bunchs electric field [1].

The BPM buttons are connected to electronics that
process and record signals which are a function of the
distance between the button and the passing bunch. The
four signals from each BPM are used to determine the
beam position and betatron phase advance. At many ac-
celerators, the button signals nonlinear dependence on the
beam position is linearized for simplicity. Before the im-
provements described here, this approach was also used in
CESR.

Our efforts to improve the beam position measurements
by including the nonlinear BPM response is motivated by
CESRs pretzel orbits, where electron and positron beams
avoid parasitic collisions by following separate paths with
large displacements from the central axis of the beam pipe.
The linearized methods are not reliable for such large
amplitudes, and have made accurate beam position and
betatron phase measurements at CESR impossible under
colliding beam conditions. We will illustrate those short-
comings and present measurements demonstrating im-
provement by using the nonlinear models.

I1. BACKGROUND

Many accelerators, including CESR, have traditionally
assumed a linear relationship between the beam position
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and the BPM button signals. Given four signals S;(i =
1,...,4) from buttons arranged as in Fig. 1, the transverse
beam position is given approximately by

(Sy +84) — (S +53)

=k ,
A 3.5,

(D

— (83 +84) — (S +5,)
y_ y ElSl ki

where k,, are scale factors set by the geometry of each
BPM type. This evaluation of BPM signals is often called
the difference-over-sum method. Equations (1) and (2)
provide an estimation of the bunch position in relatively
few arithmetic operations.

Because analytical approaches to determining the fac-
tors k, , make drastic approximations to the BPM geome-
try, we have tried to measure the factors experimentally at
CESR through a variety of techniques summarized in
Table I. Those include translating a section of the beam
pipe containing the BPM with precision actuators, simu-
lating the beam using a test stand with a movable antenna,

@)

FIG. 1. Arrangement of buttons in CESR arc BPMs.
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TABLE I. Measured scale factors for CESR arc BPMs.
Method k, (mm) ky, (mm)

20 MHz antenna 25.58 £0.33 20.58 = 0.43
Dispersion (1990) 26.3
Dispersion (1991) 274 £ 0.6
Moving beam pipe (e*) 26.82 = 0.25 19.96 + 0.11
Moving beam pipe (e~ ) 27.14 £ 0.54 20.48 = 0.19
2D Poisson model 26.2 19.6

and using the known value of the dispersion while chang-
ing the beam energy in dispersive regions [2].

Precise knowledge of k,, is of limited benefit, since
Egs. (1) and (2) yield only the linear part of the signal
dependence for bunches near the center of the BPM. In the
next section, we describe our technique for accurately
calculating button signals, but let us first use those results
to illustrate the limitation of the linearized formulas.

The problem of nonlinearity is evident in Fig. 2, which
shows a regular grid of (x, y) points and the mapping of
those points under Eqs. (1) and (2). The characteristic
pincushion distortion increases with distance from the
origin. Because pretzel orbits in CESR are typically as
large as 1.5 cm, this is precisely what has hindered accurate
measurements under colliding beam conditions until the
improvements described in this paper were implemented.

In CESR, betatron phase measurements also rely on a
related assumption about the linearity of the button signals.
The betatron phase is measured by shaking the beam at a
sideband of the betatron frequency. For each detector, the
phase for each button is calculated by electronically com-
paring the ac signal on that button to the phase of the
shaking. From the individual horizontal (vertical) button
phases 6, ;(8,,), the horizontal and vertical betatron phase
is calculated by

Aheieh = eif)z,h + ei04,h — eiel,h — ei03,/1, (3)
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FIG. 2. Linearized map distortion in CESR arc BPM with
approximately elliptical cross section.

A, el = el + ¢l — gifhy — gifs, 4)

where A, , are real constants that are not used further [3].
Other than the minus signs which account for the assump-
tion that the beam is shaking between the pairs of buttons,
this is simply an averaging of button phases represented as
complex vectors.

When the horizontal orbit amplitude is large, the beam
begins to shake underneath the buttons, and the relation-
ship between the beam motion and the button signal be-
comes complicated. In such cases, some of the buttons may
report an inaccurate phase, and averaging them with the
rest corrupts the final answer. We will show how our non-
linear models can improve not only beam position mea-
surements, but these measurements as well.

ITII. AN IMPROVED SYSTEM FOR POSITION AND
PHASE MEASUREMENT

In order to overcome the limitations described, a new
system has been implemented with two major components:
realistic numerical models of the button response, and an
efficient algorithm for inverting the model to yield beam
position.

A. Numerical Calculation of BPM Response

For accurate beam position measurements, a function is
required that expresses the bunch location (x, y) as a non-
linear function of the button signals. Since the four button
signals lead to two coordinates (and a scale factor), the
problem is over constrained, and this function cannot be
obtained directly. The inverse (button signals from beam
position), however, is readily obtainable by standard nu-
merical techniques, and is often represented as power
series in x and y, or as an expansion in harmonic functions
[4].

In our experience, this method requires a very large
number of terms to achieve the desired accuracy at large
amplitude. The most direct alternative is to simulate the
bunch in a three-dimensional BPM, calculating the elec-
tromagnetic fields, and from them, the charge on the but-
tons. The simulation could be repeated for different beam
locations, and the fields recalculated until enough solutions
were accumulated to describe the behavior over the entire
BPM. However, this is very computationally intensive, and
can be avoided by the methods that follow.

1. Two-dimensional approximation

For ultrarelativistic bunches in a beam pipe with con-
stant cross section, the electromagnetic fields can be ap-
proximated using a two-dimensional formalism [5,6].
Assuming the bunch has negligible transverse extent, the
charge distribution of the bunch may be written, in the lab
frame, as
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p =3~ rO)Zpk cos[k(z — v1)], (5)
T

where the longitudinal dependence has been written as a
Fourier expansion in z. Transforming to the reference
frame of the bunch, the charge density and electric poten-
tial are written

p* = 48— ro)Z% cos(kz"/y), (6)
k

(I)(r)Z— cos(kz*/ 7). (7

We write Poissons equation V2®* = p* in the bunch frame
as

( , K _
v: - 7)<I><r>¢k = 5(r — ro)ps ®)

where Vi is the two-dimensional transverse Laplacian.
For bunches with length o, without appreciable longitudi-
nal substructure, p; is only relevant for k = (1/0;). The
characteristic distance over which ®(r) changes is the
diameter a of the beam-pipe so that the order of magnitude
estimate |V3 ®(r)| = (1/4?)|®| can be made. For suffi-
ciently long bunches and sufficiently large values of 7y, the
relevant values of k/y can be neglected, i.e., when % <

(o;/a)®> and the solution is described by the two-
dimensional, electrostatic case

Vid(r) = —=8(r —ry). ©))

k

Since we only need ®(r) up to a multiplicative factor, we
do not worry about the constant coefficients on the right-
hand side. This constant coefficient is independent of k, so
that (}l) k€ P

The Fourier coefficient of the density and thus of the
charge on the button changes with bunch length, so the
signal on the button changes with ;. However, since the
signal on each button changes by the same factor, the
calculated beam position is not affected in our method,
whether a broad or narrow-band detector is used.

2. Greens reciprocity theorem

Rather than perform a separate calculation of the button
signals for many beam positions, we use Greens reciproc-
ity theorem to calculate the button signals for all (x, y)
inside the BPM with a single numerical calculation. This
theorem states that the surface charge o on a button due to
a test charge at (x, y) is proportional to the potential at that
same position when the test charge is absent and the button
is excited by a potential V.

Suppose we have two scalar functions ¢; and ¢, in a
volume V bounded by a surface S. We form the vector field

A =¢, Vo, (10)

for which the divergence theorem guarantees

]V~Adv=?{A~ﬁda. (11
\%4 S

Manipulating the integrands gives

V- ($:1Vdy) = (Vo)) - (Vo) + ¢V, (12)

392 (13)

A R=¢ Ve A=
an

where 1 is a unit vector normal to the surface and pointing
out of the volume of integration, and d/dn indicates dif-
ferentiation with respect that direction. Equation (11)
yields

/ (V) (Vo) + ¢, V2, ]dV — fcm—da (14)

If we interchange ¢; and ¢, and subtract the result from
Eq. (14), we can eliminate the first term in the integrand of
the left-hand side. This gives

fv[¢1v2¢2 — V2 JaV
f[cm 0 _ ¢2a¢1} o (15

Taking the ¢; to be potentials for volume charge density
p; and surface charge density o; leads to Greens reciproc-
ity theorem:

] b1pdV + f ¢i0,da 2] brp1dV + f ¢p,0da
% s % s
(16)

where we have used V¢ = —p and d¢/dn = o (recall
that fi points info the conducting surface).

Connecting this result to the case of a BPM, imagine ¢,
corresponds to the potential when a single button is excited
with a potential 'V and all other surfaces are grounded. We
can calculate the potential ¢;(x, y) by numerical solution
of Laplaces equation. For the second potential ¢,, we
ground all surfaces and put a charge distribution p,(x, y)
inside the BPM.

We plug the two cases into Eq. (16) and observe that the
third integral vanishes because there is no volume charge
for the first case (p; = 0in V). The fourth integral vanishes
because we grounded the beam-pipe and the buttons (¢, =
0 on S). Since V can be pulled out of the second integral,
what remains is just the total charge on the button, labeled

qp, giving
fv (5, Y)pa(x, YAV = — Vg, (17)

If p, is a point charge g located at (x, yy), then the
integral in Eq. (17) picks out the value ¢ (xg, yo). We
arrive at the final relation
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= —m{’,’”’), (18)

remembering that ¢(x, y) and V refer to the two different
configurations.

Therefore, since the signal on a button is proportional to
the induced surface charge on that button g, ¢(xg, yo) is
the solution to the problem of calculating the button signal,
up to a multiplicative constant, as a function of the bunch
location.

We use Poisson to solve numerically the boundary value
problem for ¢ (x, y). For the two-dimensional boundary, we
take a slice at the longitudinal midplane of each BPM. The
first button is fixed at an arbitrary nonzero potential and all
other surfaces are grounded. Poisson generates a mesh
inside the boundary, computes the solution to Laplaces
equation on the mesh, and stores the result at regular grid
points in an output file.

CESR BPMs have multiple geometric symmetries, so
the signals ¢;(x,y) on the other three buttons are just
reflections or rotations of the coordinates for the excited
button in the first calculation of ¢,(x,y). To compute
@ i(x, y) between grid points, we use bicubic interpolating
polynomials, which are stored for quick subsequent
evaluation.

B. Real-time inversion

For beam position measurements, we start with button
signals S; and seek the location (x, y) of the beam. The
result ¢;(x, y) from the Poisson calculation must be in-
verted, and since we have four constraints (four buttons)
and three parameters [position (x, ¥), and a scale factor] we
proceed by firting the calculated button signals to the
measured signals in a manner similar to [7]. We minimize
the merit function

4 ‘ _ o
= Z[qqﬁ,(x, yz Si] ’ (19)

i=1 g;

where ¢;(x, y) is the signal on the ith button and the o; are
the uncertainties in the measured signals (which we take to
be the same for all four buttons). The factor ¢ is propor-
tional to the beam current and could be used for beam loss
studies.

Minimization is performed via the Levenberg-
Marquardt method provided in numerical recipes. This
requires an initial guess for the parameters, which we
find by scanning only the grid points of ¢(x, y) (without
evaluating the interpolating polynomials) for the values of
the parameters that minimize y?. Then we iteratively
minimize over the continuous functions, typically arriving
within less than 107® m of the minimum after six steps.

C. Phase measurements

We can improve our measurement of the betatron phase
advance between BPMs by incorporating our knowledge of

the nonlinear button response. In this measurement, the
beam is excited to small oscillations around its equilibrium
position (xo, yo). Let the phase and amplitude of the ac
signal on the ith button be represented by the complex
number C;, and let the phase and amplitude of the hori-
zontal and vertical components of the oscillatory beam
motion be represented by complex numbers A, and A,
respectively. To first order, their relationship is given by

Ci = riyxAx + ri,yAy, (20)
where the r; ) are given by
dei(x,y)
=g M| @D
X (x0,50)
dei(x, )
Tiy =4 : (22)
’ dy (x0,50)

The ¢; are the functions described in the previous section.
Their derivatives are easily calculated from the coefficients
of their interpolating polynomials.
Given the measured C;, we calculate A, and A, by
minimizing
1

=3 —

=171

r[’xAx + r,-’yAy - C[lz. (23)

Since the o; depend on the closed orbit deviation and the
values of A, , the minimization must also be performed
iteratively. The horizontal and vertical phase advance is
then given by the complex phase of A, and A . Whenever a
horizontal excitation creates a vertical amplitude, or vice
versa, this method is used in CESR to compute the cou-
pling coefficients also.

IV. RESULTS

Testing the new system presents a challenge in that we
can only produce controlled large amplitude orbits with the
electrostatic separators. Since the separators are calibrated
from BPM measurements, they do not provide an indepen-
dent check on our ability to measure large amplitudes
accurately. Our strategy, therefore, must be to use other
measurements to check the accuracy at small amplitudes,
and then confirm the expected linear relation between the
separator strength and the beam position at large
amplitudes.

To perform a two-dimensional approximation, we ar-
gued that the bunches are sufficiently long. To verify that
assumption, we have looked experimentally for a bunch
length dependence in large amplitude orbits. With the
pretzel at its nominal value of about 1.5 cm closed orbit
deviation, the bunch length was calculated from the mea-
sured synchrotron tune, which we adjust by changing the rf
accelerating voltage. As Fig. 3 illustrates, the beam posi-
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FIG. 3. Beam position at various detectors showing little or no
bunch length dependence.

tion shows little or no dependence over the range of bunch
lengths we expect in CESR.

Changing the rf frequency in CESR changes the beam
energy, and in dispersive regions, changes the beam posi-
tion by up to a few millimeters. Measuring the beam
position at many different energies allows us to measure
the dispersion, which we compare to the theoretical value
from the lattice in Fig. 4. This agreement verifies the small
amplitude, or linear part of our nonlinear models.

To observe the large amplitude accuracy of the new
system, we rely on the electrostatic separators to change
the orbit amplitude linearly. By increasing the horizontal
separator strength, we observe in Fig. 5 that the orbit
calculated with the nonlinear method does show the correct
behavior, while the orbit calculated with the linearized
formula shows the expected deviation.

To demonstrate improvement in two dimensions, the
voltages on individual horizontal and vertical separators
were scanned over a regular grid. The measured beam
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tive calibration coefficients.

positions should also lie on a regular grid, which is shown
in Fig. 6. Some sheering is evident in the plot, which may
be due to coupling of the vertical and horizontal motion
between the separator and the BPM, or to a rotation of the
BPM. The pincushion effect is notably reduced with the
new calculation.

We use betatron phase measurements to correct the
difference between the physical optics and the values in
our model lattice. Without the nonlinear correction, large
closed orbit distortions hindered this process since the data
we sought to fit did not correspond to the actual phase.
Figure 7 shows the drastically improved agreement we can
achieve between the model phase and the data when the
new BPM calibration is used.

V. BPM CALIBRATION

A principle cause of differences between the response
of a particular BPM and the computational model is varia-
tion in insertion depth of the individual buttons. This effect
is approximated as different gains for the signals from
different buttons.

We have measured the gain coefficients using external
capacitive coupling measurements [8,9], and using beam
signals [10]. Our results from the first technique are pre-
sented in [11], although we find the second technique is
superior. Figure 8 shows that the capacitive calibration
results in a position correction of approximately 300 pm.

VI. CONCLUSION

Two-dimensional, electrostatic models of BPM pickup
response have been used with great success at CESR to
measure beam position and betatron phase advance for
large closed orbit distortions.
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