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99 years of superconductivity

A century of history, six Nobel
prizes, uncountable technological
applications and still a lot to
discover

1911, H. K. Onnes (Nobel ’13) discovers SC in Hg at 4.2K

1933, W. Meissner, expulsion of magnetic field

1950, Landau-Ginzburg (Nobel ’62 & ’03) phenomenological theory

1957, Bardeen Cooper and Schrieffer (Nobel ’72) microscopic
theory

1962, B.D. Josephson (Nobel ’73) effect

1986, Bednorz & Müller (Nobel ’87) discover high-Tc in LBCO
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High Tc superconductors

Tc above liquid N and above the Tc allowed by BCS.

The biggest family are the cuprates. Highest Tc is 135K.

Other recently discovered families are iron-based and organic SC.

Probably the most studied materials after the semiconductors.
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Doping a Mott insulator

Cuprates are doped Mott
insulators. Insulation is due to the
strong Coulomb repulsion between
electrons.

insulator

e. doped

hole doped
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Ingredients of high Tc SC

There are many peculiarities of the phase diagram of cuprates:
pseudogap, strange metal, glassy phase . . .

We do not know which are crucial for high Tc and which are
accidental.

I will give a biased review of physical properties characterizing the
cuprates.

I will stress three ingredients

Strong coupling

Quantum criticality

Inhomogeneity

The goal is to construct and study a simple computable model that
accounts for these ingredients.
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Strong coupling

High Tc SC are not described by the weakly coupled BCS theory.

The Hubbard model is believed to capture the physics of the
cuprates

H = −
∑
i,j,α

tijc
†
iαcjα +

∑
i

Uic
†
i↑ci↑c

†
i↓ci↓ − µ

∑
i.,α

c†iαciα

Small doping: insulating and antiferromagnetic. The potential U
wins over the kinetic term t.

Large doping: Fermi liquid. The kinetic term t wins over the
potential U .

SC takes place in between, so no perturbation theory is possible.
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Quantum criticality

A quantum phase transition is a phase transition at T = 0.

Competition between potential and quantum fluctuations.

The quantum critical point (QCP) has a scaling symmetry.

Is there a QCP beneath the SC dome leading to the strange metal
phase?
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Inhomogeneity

Vast subject, I will present
I theoretical
I experimental
I intuitive

evidence that inhomogeneity plays an important role in the
cuprates.

I focus on stripes (smectic order), but also other types of order
exist (e.g. nematic).

Charge density wave (CDW)

〈ρ(r, t)〉 ≡ ρ̄+ Re
[
eiQrφCDW (r, t)

]
(1)

Analogously SDW for spin modulations.
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Experimental evidence I

Neutron scattering with varying
momentum on the CuO plane
[Kivelson et al] .

The peaks indicate charge stripes.

Neutron scattering on
LaNdSrCuO at 11K.
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Experimental evidence II

Atomic-resolution
tunneling-asymmetry imaging
on CaNaCuOCl and
BiSrDyCaCuO [Kohsaka et al]

Local density of states in
BiSrCaCuO at 8K via
scanning tunneling
spectroscopy [Howal et al ’03]
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Hubbard model

Large number of numerical studies of Hubbard or t-J model.

Stripes emerge [e.g. White & Scalapino] . Oscillating electron density.
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Optimal inhomogeneity [Martin, Podolsky & Kivelson ’05; . . . ]

Weakly coupled BCS analysis of inhomogeneous Hubbard model

H = −
∑
i,j,α

tijc
†
iαcjα +

∑
i

Uic
†
i↑ci↑c

†
i↓ci↓ − µ

∑
i.,α

c†iαciα

with Ui = Ū + UQ cos(Qri).

Can one check this in a
strongly coupled model?
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The correspondence

The AdS/CFT correspondence
[Maldacena 97] relates certain
strongly coupled CFT’s to
gravitational theories in one higher
dimension on a weakly curved
asymptotically AdS background
(and vice versa).

The CFT lives on the boundary while gravity is in the bulk.

The RG flow is geometrised by the bulk eom. Conformal
symmetry is realized geometrically.
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The AdS/CFT dictionary

Z[φ0] = 〈e−
∫
φ0O〉CFT = ZAdS ∼ e−SAdS

∣∣
b.c.φ=φ0

CFT Gravity

Local operator O∆ field φ
dimension ∆ mass of φ

Source δL =
∫
O∆φ0 non-normalizable profile φ0 6= 0

vev 〈O∆〉 normalizable profile φ1 6= 0

Solving the classical bulk eom one finds the relation between
perturbation φ0 and response φ1

φ(z → 0) ' zd−∆φ0 + z∆φ1 + . . .
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Ingredients of a holographic superconductor [Hartnoll et al 08]

Why CFT Gravity

QCP Scaling AdS

Temperature Temperature Black hole

Transport properties Current Jµ Gauge field Aµ
Phase transition Order parameter Charged scalar field Ψ

Cuprates 2+1 3+1
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Einstein-Maxwell-scalar theory in 3+1

S =

∫
d4x
√
−g
[

1

16πGN

(
R+

6

L2

)
−1

4
F abFab − gab(DaΨ)∗DbΨ− V (|Ψ|)

]
,

A simple concrete choice

V (|Ψ|) = − 2

L2
|Ψ|2 ,

above BF bound.

Three symmetries by rescaling with weights

xa L q Aadx
a Ψ ds2 GN

α1 1 0 0 0 0 0 0

α2 0 1 -1 1 0 2 0

α3 0 0 -1 1 1 0 -2
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Probe limit and Schwarzschild AdS

Einstein equations are

Gab −
3

L2
gab =

GN
q2

Tab (qA, qΨ) .

The backreaction can be neglected in the probe limit

GN
q2
→ 0 with qA, qΨ constant

EE are solved by

ds2 =
L2

z2

[
−h(z)dt2 +

dz2

h(z)
+ dx2 + dy2

]
with h(z) = 1− z3

z3
0

,

with temperature T = 3/(4πz0).
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Homogeneous ansatz

Homogeneous and static ⇒ Ax,y,z = 0 and Ψ = ψz/
√

2 ∈ R.

Can use three symmetries to fix e.g. L = z0 = q = 1.

Only two d.o.f. A ≡ At and ψ:

hAzz − ψ2A = 0 ,

−h2ψzz + 3z2hψz +
(
hz −A2

)
ψ = 0 .

AdS boundary z = 0 Black hole horizon z = z0

chemical potential: A(0) = µ regular: A(z0) = 0
normalizable: ψ(0) = 0 regular: ψ′(z0) = −ψ(z0)/3

µ 6= 0 breaks conformal invariance. The solution determines

∂zA(0) = 〈J0〉 ≡ ρ charge density

∂zψ(0) = 〈O2〉 order parameter
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Normal state and instability

For high T , a simple stable solution is ψ = 0. The eom linearizes

∂2
zA = 0⇒ A(z) = µ (1− z) .

For low temperatures ψ = 0 is
unstable [Gubser 08] .

There is another solution
ψ 6= 0, which is
thermodynamically favored.

The system is non-linear, we
have mostly numerical
solutions.
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Conductivity

Perturb with a small electric field

h∂z (h∂zAy) +
(
ω2 − ψ2h

)
Ay = 0 ,

and read the linear response. The optical conductivity

σy(ω) ≡ Jy(ω)

Ey(ω)
= −i A

(1)
y

ωA
(0)
y

,
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Inhomogeneous ansatz

Homogeneous only in y and static ⇒ Ax,y,z = 0 and
Ψ = ψz/

√
2 ∈ R.

Again only two d.o.f. A(z, x) and ψ(z, x), but with x−dependence:

hAzz − ψ2A+Axx = 0 ,

−h2ψzz + 3z2hψz−hψxx +
(
hz −A2

)
ψ = 0 ,

Same boundary conditions as before: regularity at the horizon and
normalizable ψ.

Except we impose a modulated chemical potential

This directly sources a charge density wave (CDW).

We study superconductivity in the presence of a CDW. In
principle one could generate the inhomogeneity spontaneously.
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Modulated chemical potential

Μ(1-∆)

Μ∆

Π/Q

x

A

A(0, x) = µ [(1− δ) + δ cos(Qx)]

µ is the maximum chemical potential.

δ controls the amplitude of the modulation.

Q is the wavevector of the modulation.
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Normal state CDW and instabilities

Again a simple solution at high T is ψ = 0. This gives a normal state
with a CDW

ρ(x) = µ [(1− δ) + δQ coth(Q) cos(Qx)] .

As T decreases (equivalently µ increases) there are various instabilities
toward ψ 6= 0.

Antiperiodic boundary conditions
ψ(z, 0) = −ψ(2π/Q) ⇒ pair density
wave PDW, i.e. the order parameter
averages to zero.

PDW has been argued to explain
LBCO and to be relevant for other
cuprates [Berg et al 09]

PDW

CDW

Π

2
Π
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Superconducting instability

Let us focus on periodic boundary
conditions

ψ(z, 0) = ψ(z, 2π/Q)

CDW

SC

Π

2
Π

The instability can be studied analytically in the limits Q→ 0 and
Q→∞
Or numerically by Fourier expanding

ψ(x, z) =

∞∑
n=0

ψn(z) cos(nQx)

and truncating for large n.
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Tc of Q

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Q

q Μ

T
c

q
Μ

∆=0.8

∆=0.6

∆=0.4

∆=0.2

Tc(0) is the same as a homogeneous system with µh = µ because
derivatives do not cost energy, so different x’s decouple.

Tc(0) is the same as a homogeneous system with µh = µ(1− δ)
because the oscillation is too fast.
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A comparison with weakly coupled BCS

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Q

q Μ

T
c

q
Μ

∆=0.8

∆=0.6

∆=0.4

∆=0.2

Same qualitative behavior: asymptotics, inflection point.

Quantitative different behavior for q →∞

BCS : Tc(Q)− Tc(∞) ∼ 1

logQ

holography : Tc(Q)− Tc(∞) ∼ e−Q

What happens with phase fluctuation?
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Superconductivity in the presence of a CDW

We study numerically the full non-linear system

hAzz − ψ2A+Axx = 0 ,

−h2ψzz + 3z2hψz − hψxx +
(
hz −A2

)
ψ = 0 ,

by Fourier expanding

ψ(x, z) =

∞∑
n=0

ψn(z) cos(nQx) ,

A(x, z) =

∞∑
n=0

An(z) cos(nQx) ,

and truncating at some n.
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Bulk condensation with a CDW

The stripes are more
pronounced for Q < 1.

For Q < 1 between the
stripes ψ has not
condensed yet.

For Q > 1 the phase
transition takes place
almost everywhere at
the same T .
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Superconductivity with a CDW

Read off the boundary order parameter:

Superconducting stripes have emerged!

Modulations persist for Q > 1 but the stripes are smoothed out.
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Gran canonical potential

By the AdS/CFT dictionary: Ω = −TSon−shell
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Superconducting stripes have lower Ω than the normal state.

Striped superconductivity is thermodynamically favored. The
more so for smaller δ.
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Striped superconductivity is thermodynamically favored. The
more so for smaller δ.
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Conductivity

Perturb the system with a small electric field Ex,y and read off the
linear response.

Due to the x-inhomogeneity, Ex excites almost all modes. σx,
condutivity perpendicular to the stripe, is hard to compute.

σx would tell us about proximity effects.

Since ∂y = 0, there is nothing to contract Ey with. σy,
conductivity along the stripe, is easy to compute.

h∂z (h∂zAy) + h∂2
xAy +

(
ω2 − ψ2h

)
Ay = 0 ,

σy(ω, x) ≡ Jy(ω, x)

Ey(ω, x)
= −i A

(1)
y (x)

ωA
(0)
y (x)

,
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y-conductivity for Q < 1

On stripe conductivity
x = 0 + n2π/Q is like
homogeneous
conductivity. A gap
opens up as T is
decreased.

In between stripes
conductivity
x = π + n2π/Q is like
normal state, i.e.
constant.
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y-conductivity for Q > 1

Very different from the
homogenous
conductivity!

A gap opens up
everywhere at the same
T .

A interesting resonant
pattern arises.

Enrico Pajer (Cornell) A Striped Holographic Superconductor Cornell Nov 2010 37 / 40



Outline

1 Motivations

2 Holographic superconductor from AdS/CFT

3 A striped holographic superconductor

4 Conclusions

Enrico Pajer (Cornell) A Striped Holographic Superconductor Cornell Nov 2010 38 / 40



Conclusions

Inhomogeneity is ubiquitous in high Tc superconductors.

The role of inhomogeneity at strong coupling can be studied via
the AdS/CFT correspondence.

The striped holographic superconductor comes a step closer to real
systems.

Tc(Q) is qualitatively similar but quantitatively different from the
weakly coupled BCS case.

Superconducting stripes are thermodynamically favored.

We presented results for the conductivity along the stripes.
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Future directions

It would be very interesting to:

Understand the physics of the large Q conductivity. Where do the
resonant patterns come from?

Compute the conductivity perpendicular to the stripes. Proximity
effects?

Can we account for phase fluctuations? What is the optimal
inhomogeneity?

Realize the inhomogeneity spontaneously. What changes?

Study the holographic PDW [In progress] . Can one stabilize it?
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