Colored Resonances at Tevatron:

Phenomenology and Discovery Potential in Multi-jets

Takemichi Okui (Johns Hopkins U. & U. of Maryland)

ArXiv:0802.2568 with C. Kilic and R. Sundrum

Energy Frontier in Particle Physics

Tevatron currently running

Large Hadron Collider (LHC)

Coming Very Soon!

These are *hadron* colliders, while LEP (e^+-e^-) HERA (e-p)

• e^+ - e^- machines

Good for exploring electroweak physics

• *e*-*p* machines

Parton distributions Lepto-quarks • Hadron machines

Good for *producing* colored stuff,

but *not* good for *studying* colored stuff...

So, we usually hope for distinctive final *objects*:

Typical SUSY cascade

leptons, photons, missing $p_T \equiv \sqrt{p_x^2 + p_y^2}$ displaced vertices displaced tracks Secondary vertex Primary do vertex × prompt tracks

So, we usually hope for distinctive final *objects*:

Typical SUSY cascade

leptons, photons, missing $p_T \equiv \sqrt{p_x^2 + p_y^2}$ displaced vertices displaced tracks Secondary vertex Primary do vertex × prompt tracks

Is it hopeless w/o distinctive objects?

Not necessarily! Here's an alternative:

• *HUGE* production cross section! vs typical QCD pair-production cross section

Not necessarily! Here's an alternative:

• *HUGE* production cross section! vs typical QCD pair-production cross section

Maybe possible to pick out!

It takes no theorists' effort to have such a thing.

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\psi} i D \psi - \frac{1}{4} H_{\mu\nu} H^{\mu\nu}$ a new confining force *"hyper-color"*

It takes no theorists' effort to have such a thing.

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\psi} i D \psi - \frac{1}{\Lambda} H_{\mu\nu} H^{\mu\nu}$ a new confining force a new fermion "hyper-color" colored & hyper-colored "*hyper-quarks*"

That's it! Very simple! Can easily be a part of a bigger model. (e.g. KK gluon, top color, non-minimal technicolor, ...)

T. OKUI (JHU&UMD)

(Like Z'.)

Now, this must happen:

Now, this must happen:

Nature has already done this trick once:

What is the coloron mass scale?

Hyper-sector has { no connection to electroweak sector no connection to flavor physics

- \implies Not constrained by EW precision or flavor physics data!
- \implies Coloron can be light, within Tevatron reach!

What is the coloron mass scale?

Hyper-sector has { no connection to electroweak sector no connection to flavor physics

- \implies Not constrained by EW precision or flavor physics data!
- ⇒ Coloron can be light, *within Tevatron reach!*

- vs typical story:
 - New phys "tagged" by EW processes, heavy flavor, etc.

- \implies Constrained by EW precision, flavor phys.
- \implies New physics must be heavy or "well hidden"
- \implies Out of Tevatron reach. Wait for LHC...

Summary so far

* A coloron (spin-1 color-octets) can appear quite naturally in physics beyond the standard model

- * Colorons are resonantly produced at hadron colliders
- * Coloron can be very light, within the Tevatron reach

Summary so far

* A coloron (spin-1 color-octets) can appear quite naturally in physics beyond the standard model

- * Colorons are resonantly produced at hadron colliders
- * Coloron can be very light, within the Tevatron reach

Outline for the rest

- (1) A representative model of coloron
- (2) Constraints on the representative model
- (3) Discovery Potential at the Tevatron

A Representative Model

Microscopic Lagrangian:

with three hyper-colors

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\psi} i D \psi - \frac{1}{4} H_{\mu\nu} H^{\mu\nu}$$

A Representative Model

Microscopic Lagrangian:

with three hyper-colors

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\psi} i D \psi - \frac{1}{4} H_{\mu\nu} H^{\mu\nu}$$

Can use QCD as an "analog computer"!

QCD	Hyper-sector
$SU(3)_{ m col}$	$SU(3)_{ m hyp-col}$
quarks	hyper-quarks
$SU(3)_{\rm iso}$	$SU(3)_{ m iso}$

[Neglect (hyper-)quark masses & weak interactions]

Recall in QCD,

$$SU(3)_{iso} \supset 8$$
 charges acting on $\begin{pmatrix} u \\ d \\ s \end{pmatrix}$

One linear combination is electric charge:

$$Q = T^{3} + T^{8} / \sqrt{3} = \begin{pmatrix} 2/3 & 0 & 0\\ 0 & -1/3 & 0\\ 0 & 0 & -1/3 \end{pmatrix}$$

which couples to photon:

Recall in QCD,

$$SU(3)_{iso} \supset 8$$
 charges acting on $\begin{pmatrix} u \\ d \\ s \end{pmatrix}$

One linear combination is electric charge:

$$Q = T^{3} + T^{8} / \sqrt{3} = \begin{pmatrix} 2/3 & 0 & 0 \\ 0 & -1/3 & 0 \\ 0 & 0 & -1/3 \end{pmatrix}$$

which couples to photon:

In our scenario,

we couple *all* $SU(3)_{iso}$ currents to gluons.

So we have

QCD	Hyper-sector
$SU(3)_{ m col}$	$SU(3)_{ m hyp-col}$
quarks	hyper-quarks
$SU(3)_{ m iso}$	$SU(3)_{\rm iso}$
$QED \subset SU(3)_{iso}$	$QCD = SU(3)_{iso}$
photon	gluon
ρ meson	coloron $\tilde{\rho}$
$e^+e^- \rightarrow \rho$	$q\bar{q} \to \tilde{\rho}$

How does a coloron decay?

Therefore, this is the dominant process:

Let's analog-compute parameters!

First, change the overall scale

$$m_{\rho} \longrightarrow m_{\tilde{\rho}}$$

Then,

(a)
$$m_{\pi^{\pm}}^2 - m_{\pi^0}^2 \implies m_{\tilde{\pi}}^2$$

(b) $\Gamma_{\rho \to e^+ e^-} \implies \tilde{\rho} - q - \bar{q}$ coupling
(c) $\Gamma_{\rho \to \pi\pi} \implies \tilde{\rho} - \tilde{\pi} - \tilde{\pi}$ coupling
(d) $\Gamma_{\pi \to \gamma\gamma} \implies \tilde{\pi} - g - g$ coupling

(a) Recall in QCD,

(Nature's solution to "hierarchy problem"!)

T. OKUI (JHU&UMD)

Chiral perturbation theory $\implies m_{\tilde{\pi}} \simeq 0.3 m_{\tilde{o}}$

 $m_{\tilde{\pi}}^2 \sim \frac{3g_3^2}{16\pi^2} m_{\tilde{\rho}}^2$

So, in our model,

(Nature's solution to "hierarchy problem"!)

 $(\Lambda \sim m_o)$

 $m_{\pi^{\pm}}^2 - m_{\pi^0}^2 \sim \pi \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \pi \sim \frac{e^2}{16\pi^2} \Lambda^2$

(a) Recall in QCD,

(b) Recall in QCD,

where

(b) Recall in QCD,

where

$$\Gamma_{\rho \to e^+ e^-} \implies \varepsilon \simeq 0.06$$

This translates to

$$\tilde{\varepsilon} = \frac{g_3}{e} \varepsilon \simeq 0.2$$

Summary of the Representative Model

 $\widetilde{\rho} \qquad g \quad \widetilde{\rho} \cdots \text{spin-1, color-octet}$ $\widetilde{\pi} \cdots \text{spin-0, color-octet}$

- Simplest model of coloron!
- Can extrapolate relevant parameters from QCD.
- Only one parameter $m_{\tilde{\rho}}$ to vary.

Constraints on the Representative Model

- Resonance searches in di-jets
- Resonance searches in $t-\overline{t}$ pairs
- Pair production of $\tilde{\pi}$
- Multi-jet studies
- Electroweak precision, flavor constraints
- Long-lived gluino search

No Constraints on the Representative Model

This simplest model of coloron escapes all existing bounds!

- Resonance searches in di-jets
- Resonance searches in $t-\overline{t}$ pairs
- Pair production of $\tilde{\pi}$
- Multi-jet studies
- Electroweak precision, flavor constraints
- Long-lived gluino search

Resonance searches in di-jets

Potentially constrains

Tevatron Run-I

• Dominance of $\tilde{\rho} \to \tilde{\pi}\tilde{\pi}$ crucial!

• Our "scenario" robust!

Resonant $\tilde{\pi}$ production

Resonance searches in $t-\overline{t}$ **pairs**

Way below the bound!

Long-lived "hyper-baryons"

Accidental $U(1)_{hyp-B}$ at renormalizable level.

 \implies Lightest hyper-baryon naturally long-lived!

Long-lived gluino searches $\implies m_{\tilde{g}} \gtrsim 100 \text{ GeV}$

Discovery Potential at Tevatron

A resonance in 4j at $m_{\tilde{\rho}}$ A pair of 2j resonances at $m_{\tilde{\pi}}$

Background:

No features. No scales.

Case study for $m_{\tilde{\rho}} = 350 \text{ GeV}$ $m_{\tilde{\pi}} = 100 \text{ GeV}$

* For events to be written on tape,

 $Max\{p_{T1}, p_{T2}, p_{T3}, p_{T4}\} > 120 \text{ GeV}$

$$\left(p_T \equiv \sqrt{p_x^2 + p_y^2}\right)$$

(CDF single-jet trigger = 100 GeV)

Case study for $m_{\tilde{\rho}} = 350 \text{ GeV}$ $m_{\tilde{\pi}} = 100 \text{ GeV}$

* For events to be written on tape,

 $Max\{p_{T1}, p_{T2}, p_{T3}, p_{T4}\} > 120 \text{ GeV}$

$$\left(p_T \equiv \sqrt{p_x^2 + p_y^2}\right)$$

(CDF single-jet trigger = 100 GeV)

* p_{Ti} of background tend to be hierarchical, so $p_{Ti} > 40 \text{ GeV}$ for all jets Case study for $m_{\tilde{\rho}} = 350 \text{ GeV}$ $m_{\tilde{\pi}} = 100 \text{ GeV}$

* For events to be written on tape,

 $Max\{p_{T1}, p_{T2}, p_{T3}, p_{T4}\} > 120 \text{ GeV}$

$$\left(p_T \equiv \sqrt{p_x^2 + p_y^2}\right)$$

(CDF single-jet trigger = 100 GeV)

* p_{Ti} of background tend to be hierarchical, so $p_{Ti} > 40 \text{ GeV}$ for all jets

Observables to pick out signal features:

$$\begin{split} m_{4j}^2 &\equiv (p_1 + p_2 + p_3 + p_4)^2 \\ \langle m_{2j} \rangle &\equiv (m_{ij} + m_{k\ell})/2 \qquad \left| m_{ij} - m_{k\ell} \right| < 25 \text{ GeV} \\ &\qquad \left(m_{ij}^2 &\equiv (p_i + p_j)^2 \right) \end{split}$$

The Results

Signal : 2.7 pb passing cuts Background: 21 pb passing cuts

T. OKUI (JHU&UMD)

 $S/\sqrt{B} = 32!$

The Results

Conclusions

- * Colorons can easily appear beyond the SM
- * Colorons naturally decay to four jets via two intermediate scalars
- * The coloron can be as light as a few hundred GeV

* A simple set of cuts can reveal colorons with high signal significance at Tevatron, possibly in existing data!

* At the LHC, such light colorons are difficult to find due to much larger background and higher triggers