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Outline

e Review of PAMELA, Fermi and all that
o Dark Matter explanations (model indep’)
e Which models fit the data?
e Which models survive the v constraints?

o Conclusions
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Cosmic Rays Data - I
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. Proton rejection factor ® Presently no indep’ experiment to directly

fecded O (105) confirm it (FERMI will try to reproduce it, then

wait for AMS02)

Friday, March 12, 2010



Cosmic Rays Data - 11
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Cosmic Rays Data - 111
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o Flux consistent with a

power-law, but shallow  Dges not confirm the ATIC bump!

feature visible
(two experiments inconsistent with

each other, need to resolve who's right)
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Cosmic Rays Data - IV
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Cosmic Rays Data - IV

"

o The Air-Shower
Cherenkov Telescope
HESS measured also
the et+e- flux
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o Measurement at higher s
energies than FERMI |0 Kebayasii %
‘ ® HESS. 1
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H.E.S.S. - low-energy analysis

] Systematic error

e Break at 700-800 GeV: ‘ S Systamalc etar. owsnerqy aalysl
sionificant steepenin e
g p g | 10 10° Energy (GeV)
of the spectrum A ___@
observed HESS later extended their

measurement to lower energy to
probe the break — no ATIC peak...
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Cosmlc Ra,ys Propagatlon 101

D|FFu5|on Zone

o Cosmic Rays are diffused by magnetic field inhomogeneities

e CRs loose energy by interacting with the interstellar medium

(electrons: synchrotron radiation and Inverse Compton Scattering onto starlight, IR and
CMB photons)

e Electrons and protons are primary cosmic rays and are
originated by astrophysical sources (SN remnants)

RE oV (Eao)— 0. (FE 1)
_K(E7x)v2ne— (va) B 8% (b(Eax)ne— (E,ZE)) 7 Qe— (va)
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%Cosmic Rays Propagation 101

o Positrons (and antiprotons) are secondary cosmic rays and
originate in collisions of cosmic rays with interstellar gas:

_K(va)VZneJr (E,Q?) - 8% (b(Eax)neJr (E,ZIZ)) = Qe+ (E,CIZ’)

e = /de dbm, (D clng g ic)o . (8

K(E,x)xE® , 6>0 — diffusion softens spectra
K(E,x)<E® + energy loss — high E e* come from nearby
K(E,x) and Qe(E,x) sufficiently

~ omogeneous around us (few kpc) —— Standard
. — positrons are softer than electrons assumption!
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Cosmic Rays Propagation 101

L AHEAT 94+95
ECAPRICE 94

O®PAMELA 08

0.01 L L L i
10° 10 10? 10°

e E (GeV)
~ Baldini et al. 2009 e

o FERMI measurement — the denominator in the
positron fraction is under control

o PAMELA clearly observe a deviation from the

standard picture Why’)
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What can explain
the excess?

e It's just Cosmic Ray Propagation:

o Some of the assumptions about homogeneity of Ko, L, Qp e
(or energy indep’ of L) are not good approx” at these

energies (Katz, Waxman; Piran et al.)

o Positrons have also a primary component

e New source(s) are needed...
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What can explain
the excess?

o New Astrophysical sources:

Positrons are created and accelerated in surroundings ot
pulsars (Pulsar Winds Nebulae) or in secondary accel” of
Supernova Remnants

Some nearby Pulsar may explain PAMELA and FERMI
HESS explanation: spectrum expected to be E2exp(-E/E,)

Plausible but not clear how positrons can escape to the
Interstellar Medium
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What can explain
the excess?

o Indirect signal of Dark Matter:

o Dark Matter in the Galactic Halo may annihilate or decay
(on cosmological timescales)

e Positrons (and electron excess) are DM products

&~ Explore this possibility in the rest of the talk....
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(Model indep’) Analysis

e DM annihilations involving SM particles end up in
. electrons/ positrons, (anti-)protons, photons, neutrinos.

o Electron, positrons, (anti-)protons are constrained by
. PAMELA & FERMI & HESS

o Photons are always present

o Neutrinos may or may not be present

m Fit PAMELA+FERMI+HESS and then look at
gamma and neutrino observatories!
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Relevant v & v data

e HESS measurements:
o V's from Galactic Center: 9 <0.1°

o V’'s from Galactic “Ridge”: |b|<0.3°, 111<0.8°

e SuperKamiokande: v’s in cone up to 30° around Gal
Center

o WMAP*

o Fermi: all sky gamma ray data

— Strongest constraints!
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HESS: Galactic Center
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o HESS observes a region of dQ=2 10-> around the Galactic Center

o A powerful source of gamma rays with a spectrum well fitted by a power
law in the energy range of 200 GeV-30 TeV

o An astrophysical source — DM signal should be much smaller

o Powertul to constrain very cuspy DM profiles, but looking in a larger area
. may be better...
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HESS: Galactic Ridge
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Larger area and smaller flux

o Power-law spectrum extending to detected — gir onger constraints!
. 10 TeV — astrophysical
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SuperK upgoing muons

o Neutrinos coming from
the Galactic Center show

up as up-going muons in /x10 .
detectors in the northern L f Beomn L
hemisphere (SuperkK, K  Soutitmmle Lk
Antares, ...) :§0‘08 s —  SuperK Limits
= [ e

o Best bounds to date from E% L
SuperK 5o [ —o—

o Veryl ionals f 002 |-

y low signals from - —
annihilations in the Sun o = 0-1041 N ——
and Earth ln th ese N Cone Half Angle From Galactic Center (Degrees) p
models — IceCUBE less
interesting
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Fermi vy ray data

e Full dataset released (~16M events, covering all sky)
e Analysis software available
e Divide the Sky in different regions (exclude Gal plane)

o Extract the differential y flux in each region

A %
Stronger
constraints from
1 Inner
L 10°= bl =20
‘\‘ Galactic longitude ¢ in degrees /
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Fermi vy ray data

e Combine all the regions (and all energy bins) in one fit:

%

E 9 (B4 e) ) oM el
X _Z 5 D2 @((I)’L (I)z )—l_ Je2 )

de/e — energy scale uncert.

(Reduced dependence on the choice of the sky division/energy binning)

.o Require that DM contrib’ does not exceed the measured
. flux @30

e Do not try to subtract anything (be conservative)
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Fermi vy ray data

ke : M Ackermann Fermi Symposmm 2()09r
° ) (\"E
Fermi: extragalactic > 3F l ii‘*‘++
< 10 l -
[ ] [ ] [ ] [ ] ;
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: W
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s aaal a2 PO S Fe—— W
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% constr ain DM extr agall contr lb (MP, A.Strumia 2009; M.Cirelli et al. 2009)

(I)cosmo pCOSI’HO RCOSIHO
~ ~J 1

¢ galactic Po R@

relevant for decaying DM (and may probe models
with vy peaks beyond Fermi energy reach thru

redshift)
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Many photons to consider

. DM SM SM DM

DM SM DM SM D
Final State Rad”  Hard emission Higher order
. (soft+collinear) processes

:
. CMB,IR SL v e

-

(m”s)

Inverse Compton v’s from proton int” with ISM
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Many photons to consider

Final State Rad”  [{ard emission ~ Higher order

: (soft+collinear) processes
+ ¥’s from hadro decays

+ Y it K, ...
: CMB, IR SL v PN o

-

H,He, =
¢ o ‘

(m”s)

Inverse Compton v’s from proton int” with ISM
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Working out the signals
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What?

Propagation

=0 How?
;AII(IIl)lhlla’;lO; }fharm)els Wilono Cosmic Rays Propagation
article Physics : '
4 DM galactic profile (Astrophysics)

(Astrophysics)
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o What? (Particle Physics Module)

e Where? (Dark Matter Profile)

¢ How? (Cosmic Rays Propagation)




Particle Phys’ Module

2 Standard Model

/ particles

annihilate

/ 4 or more SM particles

DM can . !

thru intermediate new
\ (hidden) particles
decay

\ 3 SM particles (not

covered here)




Particle Phys’ Module

o Fit specified by Mpwm, <ov> and final states
o For 2-body final states — look at all SM final states

o For 4-body (or more) — a (hidden) light new particle ¢
. required:

e Generically ¢ can decay back to the SM via Higgs or
photon mixing (spin 0 or 1)

o Look at ¢ coupling to a single type of SM particle
(e.g. 2t) or ¢ coupling proportionally to electric
charge
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Particle Phys’ Module

EAH SM final states Leptons and pions
(motivated by PAMELA)

group)

And the same for decaying DM...

“Hidden” shower, softer spectra
(e.g. ¢ spin 1 in non-Abelian gauge
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e What? (Particle Physics Module)

e Where? (Dark Matter Profile)

¢ How? (Cosmic Rays Propagation)
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Dark Matter Profile

o Dark Matter Profile inferred from N-body simulations

o Current hi-res simulations have resolutions of O(0.1 kpc)

o Best fit is for Einasto profile: p(r) = po exp [_—2 ((1) - 1)]

« Ts
/ 200F T T T \
- Einasto, @=0.2
i o 0=0.12-0.2, here 0.17 T
5'05 NFW
- i ¥ g ' Einasto, @=0.1
: # INo baryonic components in z e
: ; ) g 2.0+
the simulations: may <
drastically change the results! | £ 05| o
: - Einasto, @=0.12
. o Study also a cored 02
IsoThermal as a shallower ooot oot or T Th e T
: | r [kpc] ;
profile o) Vi
(BBN?) Rothstein et al.
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e What? (Particle Physics Module)

e Where? (Dark Matter Profile)

o How? (Cosmic Rays Propagation)
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Cosmic Rays Propagation

o Galaxy is transparent to gamma rays and neutrinos:

b Q%VJAQ

i 1 dl p(fr) 2 (single power of
= AQ 9. : <o 0 density if
line—of —sight ' ©® ® decaying DM)

o Valid for prompt y produced in annihilation /decay

e No uncert’ from propagation, not too large
. uncertainties from DM Profile if not looking at the
Center of the Galaxy
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Inverse Compton

e Electrons and positrons can up-scatter ambient light
to gamma rays thru Compton scattering:

e /’;

\ E’,~(Ee/me)? E,

/ d//dnedu’ydE dEWf
dE dQ 9 2. | amar 19

///\

- : Interstellar Rad’
DM paue ditfusion B field Fielézir .

(factor ~ O(1) uncert’ on the result from each)
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Inverse Compton

Interstellar photons are from CMB, starlight and IR
5 emission from dust

0.8
0.6
¢
E 04
~ ,
02r CMB dust star
OO N [ NN [ R AN L [ T T : ”"Q <—,quagneticfield
10 10 102 107! 1 10 02 S
. 0 2 4 6 8 10
E, ineV
kpc f 0

Magnetic field can be relevant in the inner part of
the Galaxy (r < 1+2 kpc)

@ high latitudes CMB dominates
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Inverse Compton

In principle one should propagate e* first, but...

Simple formula if energy loss dominates over
diffusion (good up to factor of 2)

d®.,
dE,

64m(E;) \M

Ut ot

2
JiIC:/dQ/ ds (MT)) uyij
l.o.s. 7"@ p@

4B 4B, fic

o Z Gic(E,)Jic Ire{ov) (p®>2

Gic = m, //N

e) fri(E
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Results

(some highlights...)
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How Well ca,n DM fit%

/ DM annihilation DM decay
50 : [ I I I \“\ \\\ I ‘\ '\I ' I I [ I'\ I \\ “‘ ’l \: 50 : I I'
i 1! ' ' \ I i :
a5 3 Laesh a5 !
I i : ’ \\ bb i !
i ‘ » | \ / I
40 0 46\ \ / ] 40 - '
i | v/ !
\qq
. 35 ! ] . 35| !
I' /
I ' /
30 - ’ . 30 - '
i /' N K
i pulsar with o 1 i ‘4T
251 ® = EPe M i . 25+
20 [ ! ! Lo ! ! Lol L] 20 L ‘ L
300 1000 3000 10000 30000 1000 3000 10000
‘\ DM mass in GeV // \ DM mass in GeV

o 21, 4p, 4t produce very good fits
o 2e disfavored (too sharp peak: good fit of ATIC, bad fit of FERMI)

o Gauge bosons and quarks disfavored by the HESS electron meas’ (require
: 20 TeV mass)

o DM Mass in 1-5 TeV range
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(0.45,0.4,0.15)

2 (0.23,0.22,0.55) apy=0.1 1
 Voleten phyn, ) ——--No shower .
20! | | ]
1000 1500 2000 3000 5000 7000 10000
; DM mass in GeV
N P

o Hidden sector shower always improves the fit

o Combinations of e*,u*, " (hidden spin-1 intermediate
. particles that mixes with photon) provide good fits
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B eSt ﬁtS 4body ann’, Einasto

/ 0300 e o \\ / e +e” Flux \\
' 0.0200 T ——
0.200 '~ o

i e I,
0.150] 00150, ML L _ e
: 'i‘\'i! T
I _ R
0.100 - 9 f Lo Charge |
= 7 I |
& | 00100 - W 1
S 0.070 £ ,
;LT:‘ [ N
5 0050 > \
£ ©. 0.0070 ah
£ 3 | I
0.030) Z 1\
PAMELAOS e
R 0.0050 - A\
L \ 3
0.020. FERMI \\
0015" HESSO08 N
| S HESS09 S
0010 0.0030 Ry SREe —
10 50 100 500 1000 50 100 500 1000 5000
| Energy [GeV] 7 | Energy [GeV] ]
N\ | ST N £

. Charge = (0.23,0.22,0.55) in et, it it
o Xsec required — O(1000) larger than thermal freeze-out xsec

e Particle Physics explanation: Sommerfeld enhancement (ok with 4
. body final states)
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= o

5 1S VS Y OUIdS (annihilation)
: DM DM - 4u, isothermal profile DM DM - u*u, isothermal profile DM DM - 717, isothermal profile
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Robustness of the bounds?

o Bounds come from intermediate latitudes — smaller
DM profile uncertainties!

e Main uncertainties coming from:

o Magnetic field in the Inner Galaxy

(if factor of 2 larger may relax bounds up to factor of 1.5+2)

o Size of the diffusion halo: small effects except in
very unrealistic cases (L~1kpc terminating abruptly)

o Disk-like component for DM (Dark Disk): small
effect unless O(1) fraction of local DM is stored in
disk (effectively making profile shallower)
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Fermi v constraints

o Final states with too much hard radiation (%s in t’s) are now
. excluded both in annihilating and decay models

o No way to hide signals with the Annihilating vs. Decay (02 vs @
“trick” that worked for the Galactic Center)

o Other leptonic 4-body final states are in tension in annihilating
. models for cuspy profiles (~ factor of 2. Uncert’ larger)

e But...

Friday, March 12, 2010



Fermi v constraints

Final states with too much hard radiation (%’s in t’s) are now

excluded both in annihilating and decay models

o No way to hide signals with the Annihilating vs. Decay (02 vs @
“trick” that worked for the Galactic Center)

Other leptonic 4-body final states are in tension in annihilating

models for cuspy profiles (~ factor of 2. Uncert’ larger)

But...

o Less contaminated events will

strengthen the bounds

E? d®,/dE in GeV/cmzsec Sr

DM DM - utu~,M =13 TeV,ov=28x10"% cm?/s

1075 &

1076 &

1077 b

—-20<b<-10"
I 10<¢<20 ]
} isothermal |

; } } =[4kpe |
SRR $}} ]Ll ]
\\\\«/FSR—\

107! 1 10 10 10°
Photon energy in GeV
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Fermi v constraints

o Final states with too much hard radiation (%s in t’s) are now
. excluded both in annihilating and decay models

o No way to hide signals with the Annihilating vs. Decay (02 vs @
“trick” that worked for the Galactic Center)

o Other leptonic 4-body final states are in tension in annihilating
. models for cuspy profiles (~ factor of 2. Uncert’ larger)

T.Porter, Fermi Symposium 2009
(@) But P galdef ID 54_B7Xexph7S

= . 25b 17875 . 100.25=<l<350.T5
=18.75<b<-10.25 , 10.25<b=18.75

: ; ; Preliminary
o Less contaminated events will ;
5.1 0% 1 0°Slbl$20°

strengthen the bounds A

e Galactic emission models fit v

data reasonably well without ;
DM 5 A

. & DM should give O(1) fraction of y emission at high energy
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Making Progress

‘e AMS02: can tell whether positron fraction will

. continue to increase or not (necessary if DM is
heavy); will drastically reduce CR propagation
uncert’; will test some of the astro explanations

o FERMI: Better bounds from less contaminated vy
. events and/or higher energy. Possible detection of
DM subhalos — Crucial to test the DM hypothesis,

both for annihilating and for decay

ie Planck: very robust bounds from energy injection at
recombination time can close the window for

o
N

f (ov) [em3s™]

annihilating DM (Finkbeiner et al. 2009, Bertone et al. 2009)

o Xenon/Lux: DM direct detection may have the

1 0—25 L

chance to clarify the whole picture

1022 I

Ruled out by WMAPS5

Planck

forecast CVL

I 1 A B B!

®

1 XDM 'y 2500 GeV, BF =2300 |
2 w*w 1500 GeV, BF = 1100
3 XDM p*u 2500 GeV, BF = 1000 —|
4 XDM e*e 1000 GeV, BF = 300 =
5 XDM 4:4:1 1000 GeV, BF =420 ]
6 e*e” 700 GeV, BF = 220
7 w'w 1500 GeV, BF =560
8 XDM 1:1:2 1500 GeV, BF = 400
9 XDM p*w 400 GeV, BF = 110 =
10 p'w 250 GeV, BF = 81 3
11 W*W 200 GeV, BF = 66
12 XDM e*e” 150 GeV, BF = 16
13 e'e 100 GeV, BF =10

0 4

10 100
DM Mass [GeV]

1000
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Conclusions

e Present data does not exclude DM annihilations or
decays as an explanation for PAMELA & FERMI

results (but bounds are tight and DM should give O(1) fraction of y
emission at high energy)

o T’s final states are now excluded both for
annihilating and decaying

o Annihilations into many (e*), u*, ™ and high DM
mass (~2-5TeV) are required
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