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"The Landscape” (Picture from Scientific American)

SELF-REPRODUCING COSMOS appears as an extended branching of inflationary
bubbles. Changes in color represent “mutations” in the laws of physics from par-
ent universes. The properties of space in each bubble do not depend on the time
when the bubble formed. In this sense, the universe as a whole may be stationary,
even though the interior of each bubble is described by the big bang theory.
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Minimalism describes movements in various forms of art and design, especially visual art
and music, where the work is stripped down to its most fundamental features. As a specific
movement in the arts it is identified with developments in post-World War Il Western Art, most
strongly with American visual arts in the late 1960s and early 1970s. Prominent artists associated
with this movement include Donald Judd, Agnes Martin and Frank Stella. It is rooted in the reductive
aspects of Modernism, and is often interpreted as a reaction against Abstract Expressionism and a
bridge to Postmodern art practices.
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Metropolitan Museum of Art

Richard Pousette-Dart, Symphony No. 1, The Transcendental, oil on canvas,

1941-42,
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Barnett Newman, Anna’s light, 1968




Barnett Newman, Onement 1, 1948. Museum of Modern Art, New York. The first example
of Newman using the so-called “zip" to define the spatial structure of his paintings.
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We present a framework for de Sitter model building in type IIA string theory, illustrated
with specific examples. We find metastable dS minima of the potential for moduli obtained
from a compactification on a product of two Nil three-manifolds (which have negative
scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and
fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse
volume, and four dimensional string coupling become parametrically small, and the de
Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli,
KK, and winding mode masses. A subtle point in the construction is that although the
curvature remains consistently weak, the circle fibers of the nilmanifolds become very
small in this limit (though this is avoided in illustrative solutions at modest values of the
parameters). In the simplest version of the construction, the heaviest moduli masses are
parametrically of the same order as the lightest KK and winding masses. However, we
provide a method for separating these marginally overlapping scales, and more generally
the underlying supersymmetry of the model protects against large corrections to the low-

energy moduli potential.

December 2007
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Revisiting a No-go Theorem

Dimensional reduction of massive [|A SUGRA gives:

V = Vinetric + V5> + Y VI + Vo + Vs + Vivss + Vicks

p

Focus on 2D slices of the full moduli space:

p = (Vol)!/3 volume modulus
T = e ?(Vol)!/? dilaton
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Focus on 2D slices of the full moduli space:

p = (Vol)/3 volume modulus
T = e ?(Vol)!/? dilaton
For a vanilla subset of contributions to V:
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This simple relation has interesting consequences:

—p%—‘; — 37‘%—‘; =9V + Zpr > 9V Hertzberg, Kachru, Taylor, Tegmark

p

For inflation, we need V>0, but
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e> L ) - : >
2 0p ot

For vacua: Vv=-() pVp)/9 <0
p
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For vacua: Vv=-() pVp)/9 <0
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Restoring some of the omitted ingredients may
evade this “no-go” theorem.
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For vacua: Vv=-() pVp)/9 <0
p

Restoring some of the omitted ingredients may
evade this “no-go” theorem.

Question:What is the minimal set we need?



Finding dS vacua is as simple as “a,b,c™:

V =a(p, M)r=* —b(p, M)7> + c(p, M)7™"

Geometric flux, NS flux, NS 5-branes, KK 5-branes:

a(p, M) = Cy(M) | AKK5(M) | ANS5(M) | AHS(M)

p p > PP

Oé-planes and Dé6-branes:
b(p, M) = +noef(M) —npeg(M)

RR-flux (and by extension, fractional Wilson lines):
| Azlec(M) |

) - Ag(M
C(va):png_l_pAQ(M) | 0 | 610(3 )




A useful crutch of finding dS vacua is to consider:

dac

2
By analyzing the dilaton direction, can see dS vacua
exist only if:

~ ]

dac 9
1< — < é Maloney, Silverstein, Strominger

b2

Search for minima of §(p, M) =~ 0 in the p direction:

dac
2 = 1+ 0(p, M)

At the minima:

bo \ .
Vinin & (—O> codg small & positive
26()



The “no-go” theorem follows because:

4ac _ with only NSNS and RR
P
72— (const) Z p~" Ap(M) fluxes and O6/D6b

runaway as p — 09, with 4ac/b2 — 0

Allowing negative internal curvature:

4ac

72 (const) ZA C’fp P 4 Agsp P

runaway can be av0|ded if A, #0forp<?2



The “no-go” theorem follows because:

4ac _ with only NSNS and RR
P
72— (const) Z p~" Ap(M) fluxes and O6/D6b

runaway as p — 09, with 4ac/b2 — 0

Allowing negative internal curvature:

4ac

el (const) ZA C’fp2 P ApspP]

runaway can be av0|ded if A, #0forp<?2

4 )

The minimal additional ingredients for IIA dS vacua:
negative internal curvature and Romans’ parameter!

- J




Intuitively, we can understand why:

e ——
— — —

%
L
,.l.

Negative internal scalar curvature
acts as an uplifting term.



Model Building

The action for massive [|A SUGRA in string frame:

— 20
S = 2/3%0/ (*R+4*dq5/\d¢—%*H3/\H3)
—*FQ/\FQ —*F4/\F4-*7TLZ—|—CS
2 IONAY
where 23, = (2m)"(a) Some flux moduli gain masses
Hs = dB, by Stuckelberg couplings
due to m and (later) metric fluxes
F2 — dCl -+ m32
Fi = dC3—CiAHy——BAB
The CS term:

2

—dchdchBﬁ%BABABAng—%BABABABAB



Start with the string frame metric:

dsiy = g\)da"ds” + gpudy™dy"

= g\ datda” + o p d5g

Need to introduce O-planes to cancel tadpoles:

(21, 22, 23, 21, 22, Z3) —— (21, %2, 23, 21, 22, 23)  defines O6-plane
As a warmup, consider Mg = M3 x M3

Simplest choice: compact hyperbolic spaces

dH3(A) = § (dp?® + sinh*(p)dQ3) , R = —A

Set A =1 by

Only one modulus: breathing mode .
rescaling p



Compactify by discrete SO(3,1) identifications.

6204

‘76 = / €3 A\ gg —
(H, xHs)/Zo 2

where dimensionless volume of each hyperboloid:

~

Va(Hs) = e® > 1 « :topological data
discrete, bounded below
Only two moduli:

N 1/3
o' p = (VG/V(;) T=e ?p3/?

4D Planck mass depends on their stabilized values:

2 2
K10 R109s,0

S 7'20/3‘76 S ‘760/37'2 V@ 0
/d4az gfl>< RZ(L)Jr... Mg = 5 0 — ’



Scalar Potential

Dimensionally reduce to 4D Einstein frame:

2

S = /dm\/gj(MTngl — TPGz'jaCbiaﬁbj - V(Qb)) :

Simple for CHM: only two moduli and not so
many cycles to turn on fluxes

Curvature: Veury =~ 2p™
AJQTQ 2
_ ~p0_—43 JO
ko VR = o P 162
B A4272 T 10 £2
Fg =2Fkges N\ e€g e Vi = Z,OT_4P_3( 6)4af6
~ M?2+2 4h2
H3 — p€é4 — \/5(63 S 63) X VH — pTO ST 7_—2p—3h2




O-Planes and Tadpoles

The O6-plane source term in llA action (string frame):
z(zw)—ﬁlj/% \/@—2\@(%)—61;7/06 Cr

2 2
Since it wraps Egl Vog = _MPTO e~ 48773
87
. . . _ A
Bianchi identities: @f2 = moHs +27v21, 34
dF4 — _F2 /\ H3 :

Tadpole conditions: / moHB:_QW@S/ 54
i )

5
/ FQ/\HgZO.
>

* Only constraint:  foh = 2



Searching for dS Vacua

Collecting all contributions to the potential:

o () 1 N 32rt .
a\ p — o P 9
]\457'02 p e2fe
o V3
bp) = e 43,
gt = e "
o fBoa, GO
Mng clp) = ( 1672 Pt eda p ) '

The scalar potential is thus explicitly calculable in
terms of microphysical flux quanta!

4 b
g|minimum ~1+0 T = 20 | 0(5)




CHM is too simple:

o I B A trade-off between

gs = VPO T ——35 2 weak coupling and
Av2m o (VPo) large volume

An example:

VdS —5
fo=2, % ~103 —=~79x10
My
L fo =8, pas~90.614, 745~ 1.47 x 10°
My a~ 0
0.00025 y
0.00020¢ “Marginally perturbative’:
i 1
D001y Vs = 562%35 ~ 3.72 x 10°, g, ~ 0.56
0.00010}
| Caceres, Kaplunovsky, Mandelberg (96)
0.00005 Hebecker, Trapletti (04)

T
2000 4000 6000 8000 10000 12000 14000



Separation of Scales

Canonically normalized moduli:  + = v2M,nr

. 3
p = §Mp1np.

have masses of the same scale as the KK modes.

Similar to strongly warped flux compactifications

CHM reduction is a consistent truncation in the
SUGRA sense, like the Freund-Rubin vacua:

Minimizing 4D potential <=9
Solving 10D EOM by setting KK modes=0.



Twisted Tori

<) Negative curvature, flux backreaction included.

.@ More tunable parameters, possibly find vacua with
* parametrically small coupling & large volume.

%Q) Potentially find dS solutions as spontaneously
SUSY breaking vacua in gauged SUGRA.

%@) Monodromy in the CMB.
YY) Standard Model Building
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@ A lot more moduli



Twisted Tori

For twisted tori of the form: G35 x G4

3D Group manifolds classified by Bianchi:

n“ : Maurer-Cartan forms

—1
g dg =n"T,
I, : Generators of Lie Algebra
MC equations:  dn® = —f2n® An©
Bianchi type| Algebra | (q1,q2,¢s3)
I U(1)° (0,0,0)
II Heiss (0,0,Q1)

V1 ISO(1,1)| (0,—Q1,Q2)
Vil ISO(2) | (0,Q1,Q2)
VIII SO(2,1) [(Q1, —Q2,Q3)
X SO(3) | (Q1,Q2,Q3)




Twisted Tori
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3D Group manifolds classified by Bianchi:
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g_ldg — 77aTa
I, : Generators of Lie Algebra
MC equations:  dn® = —fin® Ay
Bianchi type| Algebra | (q1,q2,q3)
a _ ad I U(1)° (0,0,0)
Joe = €bedQ T1 Heiss (0,0, Q1)
0 Vi ISO(1,1)| (0, —Q1,Q2)
Q = ( g ) VI ISO(2) (0,Q1, Q2)
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Twisted Tori

For twisted tori of the form: G35 x G4

3D Group manifolds classified by Bianchi:

g_ldg = n"Ty

MC equations:

fz?c — ebchad

d1
Q = q2
q3

a
i
1, :
An® — — @ b N
N = bell 7]
Bianchi type| Algebra | (q1,q2,q3)
] U(1)° 0,0,0

(Qla _Q27 Q3)

(Qla Q27 Q3)
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Generators of Lie Algebra
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Negative curvature
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Compactify by discrete identification of G:
quantization of structure constants Q.

(Co)homology can be computed: a lot more moduli.

Discrete torsion cycles: fractional Wilson lines
but K-theory constraints

Metric flux contribution to 4D potential:

0/2 _
Vmetric — ( ) VOlgp_lT_ch(M) Mab — (

2
2K1g

&/—3 éf(M) — —(TI’[QMQ,])Z -+ QTT[QMgQMg}

Moduli dependence of a,b,c gives runaway directions
in field space: ¢; ~ p~® == need KK5-branes

Seems to have no such dangerous runaway for Nilé.



Comments

® Minimal ingredients to construct simple dS vacua.
Parametrically weak coupling/large volume solutions
require more “knobs”’.

® Minimal dS vacua can in principle be constructed as
spontaneously S)J§Y vacua of gauged SUGRA:

. \Vi H S mg /o
= | \
z \ AN
\ N
\ gl =
~
\Hh‘_‘ \/\
““““““ “‘ wo| 150 200 250 ©
KKLT

® Dark Energy + Inflation + standard Model









The Ubiquitous Throat

Gauge/gravity Inflation
correspondence

AdSs

IR IlJV
Moduli
RS/Technicolor/ stabilization/
SUSY mediation KKLT




Warped EFT

@ Understanding warped dynamics is essential for
drawing precise predictions in such string theory
models of particle physics & inflation.

@ Closed string sector: Many subtle issues with strong
warping such as compensators, gauge redundancies
and constraints, backreaction, separation of scales, ...

GS, Torroba, Underwood, Douglas (STUD)

@ Open string sector (Standard Model): wavefunctions
in warped backgrounds are prequisites for
extracting Kahler potential, Yukawa couplings and

flavor, SUSY mediation, technicolor model building, ...
Marchesano, McGuirk, GS



Warped EFT:
Closed String Sector

GS, Torroba, Underwood, Douglas



Warped Kahler Potential

® The warping corrected Kahler potential for the
complex moduli sector was conjectured to be:

K = - log (fe_4AQ/\ﬁ) = Gaﬁ = —ﬁf@“mxa A X3

suggested by the fact that
Veoy = [d%./g6 — Viv = [ d%y\/gee*4W)

* For the warped deformed conifold:

A3 sNa')?
Ggs = —0s05K = v |clog fif + ¢/ Ui



Warped Kahler Potential

Warping corrections change qualitatively the
moduli (and hierarchy) stabilization potential:

c.f.inflaton potential, Yukawa couplings, soft terms, etc.



Issues with Strong VWarping

D=10 String Theory

Low
Energy

D=10 SUGRA
with fluxes

KK
Dimensional
Reduction

D=4 N=|
SUGRA EFT

l

String vacua, inflation,
de-Sitter, MSSM....

Ex: GKP and KKLT
Type IIB String Theory in D=10

Low
Energy

IIB Supergravity in D=10

Gs|* 1, -
|21rj1|7 - 1|F5|2}+CS+1ocal

1
SIIB = —5 d'x |9| {Rm —

2
2K10

KK
Dimensional
Reduction

N=1 SUGRA in D=4

K =—3log(p+ p) — log(T + 7)
—10g(/]3) —1og(/Q/\Q)

W:/Gg/\Q—|—Wnp




Issues with Strong VWarping

D=10 String Theory

Low

L { Energy J Many subtleties with warped KK reduction:
D=10 SUGRA e General KK ansatz (compensators)

with fluxes * Mixing/sourcing of KK modes with moduli

L [ Dﬁ?%éﬁifl J * Backreaction of moduli on warp factor

* |0D Gauge redundancies

D=4 N=1 e |OD Constraint equations
SUGRA EFT

l In warped backgrounds these 1ssues

. . . are all highly coupled to each other!
String vacua, inflation,

de-Sitter, MSSM....



KK Scale in Warped Background

Moduli KK modes

2 1 2 1
Unwarped m, ~ " M ~ ==
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KK Scale in Warped Background

Moduli KK modes
2 1 9 1
Unwarped ms ~ ~ MK ~ 75

IR UV
Fields localize to region of strong warping.



KK Scale in Warped Background

Moduli KK modes
2 1 2 1
Unwarped m, ~ " MKK ™~ T3

Masses o oa, L ) 24, 1
redshifted - o o




KK Scale in Warped Background

Moduli KK modes
2 1 2 1
Unwarped m, ~ " MKK ™~ T3

IR UV
Fields localize to region of strong warping.
my~e = Mk ~ €
. o)

No mass hierarchy between moduli and KK
modes for integrating out heavy fields.



Warped Kahler Potential

Previous proposal:
K=- log(fe 4AQ/\Q)$GQ5———fe Xa/\XB
did not account for all these subtle issues with warping.

Ansatz for fluctuations:

ds® = eZAnMVd:L‘“da:V + e_ZA(

..does not solve 10D EOM!

Gmn + 0Gmn)dy"™ dy"

More general ansatz does, but extremely messy ...

ds3, — dsiy +20,0,5%** K, (y)dz"dz” + 2€** Boy (y)0,S*dxtdy™ .



Linearized Einstein Equations

- — ., 1= 1
SGH =6Huls; {e% {—ZVZA +4(VA)? - 53} } e 24 (00, u" — 610Ou’) (46, A — 5019)
+ (0"0u’ — 40" e*AVP(By, — 9,K/)

1 _
+ 6—2AfK5KG(V4)M -3 (6K95 _ 556K9§) 62Av2fK :

(A.14)

SGH = §RM :e_QAﬁl‘uI{Z@mé[A — 89 A8 A — %amafg + O AS1G

- 1~
- 2apA5I§mp + §vp51§mp

_ %@p {6414 (@p By, — @mBIp)} + 2(OmAB1, — 0y ABr,)VPel4

1 . N
+ §€8ABlmv26_4A — 64AR%BM} ,

(A.15)

5G™ =uls; {eZA [é;ﬂ +4(VA)2m — gvnAWA} } _ e Ayl gk g g,

1
+6Me 2 A0u! (—267 A + 5(sfg)

e -0 K1) }

— §mVP [ (B — apKI)}>

T { 1 24 [vm (e*40,£5) + ¥, (64Aame)} +omVP [ezAapr}}

1
2 2
1

S0 Ke=245 RW
(A.16)

6TH = —(554 ) {ujéf [67614(%)2} — 27 %! S}, 0™ — 2DuIKIe*6A(%)2} ,
1
(A.37)
STH = 2;1n8“u16_6‘4 [0 S1p — 0pStm + OmaBr, — dpaBr,] 8Pa | (A.38)
4 )
.
ST = — 2 yls, L e 54 |9, 000 — L5 (Va)?
n 262, " 2"
—6A

s : ) N 1 .
i {Sjnama + 0,aST" — 0, S0P + 2K {&La@ma — 55;”(Va)2] } )
(A.39)

2&10



Gauge Invariance & Compensators

Previous proposal:

K = —log (fe““‘ﬂ/\ﬁ) = GaB — —ﬁf@““‘xa /\XB

is not diffeomorphism invariant:
X — X + do

This turns out to be equivalent to the failure of the
metric ansatz in solving the EOM.

Need extra terms proportional to 9,,5¢

ds3y — dsiy + 20,0,5%** K, (y)dz"dz” + 2€** Boy (y)0,S*dxtdy™ .

\ / (Analogously, also

metric compensators flux compensators)



Compensators in E&M

Consider a U(l) gauge field:

1

S = —Z/dloil?\/gloFMNFMN

and a family of solutions to D™ Fy;ny =0
parametrized by moduli v": Ay, = (4, =0, 4;(y;u))
Promotingu’ — u’(z), the kinetic terms give:

6 19 v J
Grj = /d YV969 " 5 o

not gauge invariant under  0A; = 0;¢€



Compensators in E&M

The error is in assuming that: A, =0

still holds for time-dependent moduli.

This is incorrect because the 10D EOM:
DM Fyy =0= 0,0'A; = 0'0; A,
cannot be solved by: 9,4, #0, A, =0

Instead, the time-dependence forces a non-zero:

; i 04,
AM:Q[(?MUI ] 88252[:8 8u1

(}; : compensator field



Compensators in E&M

Effect of compensator on dimensionally reduced action:

OA; OA;
’ > Az — ’
oul J oul

0;Qr so that 0"(d74;) =0
Compensator puts 07 A4; back into harmonic gauge.

The field space metric is simply:

Grj = /dGQ\/LCTG g1 Aid A,

Natural mathematical definition (Singer): fluctuation
0rA; orthogonal to gauge transformation, w.rt Gy



Warped Compactifications
Time-dependence of moduli sources off-diagonal metric:
dsiy = AW g (z)dztdz” + Bl (y)o,u’ dztdy’ + gij(y; u)dy'dy’

Compensators put metric back into harmonic gauge.
Hard to generalize YM approach. Two strategies:
® |agrangian: gauge-fixed metric ( Bf = 0, compensator
gauge), dimensional reduction with 10D constraints.

® Hamiltonian: gauge invariant metric, compensators as
Lagrange multipliers enforcing 10D constraints.



Hamiltonian of GR

Split metric into: —

hymn  space-like piece :

NN tangential shift — n\’ _

X, hun(t)

.. 1 :
Extrinsic curvature: Kyn = 5(9“)1/2 (hMN — Vunn — VNnM>
i oL
Canonical momentum: muy = —2% =AY (Kyn — haun K)
Ohr N
Hamiltonian: #e=v=so (—R”’—” + B M Ny — ﬁh‘lﬁ) = 29N Vg (M)

nn = Lagrange multipliers enforcing the constraints:

VM (WMN) =0



Kinetic Terms

Here, time-dependence of hasn only implicit through  u’ ()
Computing the shift vectors: 7* = Biu’

Therefore, compensators = Lagrange multipliers of H¢!
The dynamical variables of H define the metric fluctuations:

. 0h
Kun ~ U érhyny =0 (%JYIN Vunn — VNNIu

TMN ”iLI5[EMN — fiLI (5IhMN — hMN5[h)

Only effect of compensators is to shift ~ Jrhpn — 0rhun

(“physical” variation) & enforce constraints: V" (6;hyn) =0



Applications:Warped Compactifications
Conformal Calabi-Yau background:
ds?y = 2AWy datde? + e 2AWW g (y;u)dy™ dy"

Constraint equations:

1
(1) §A = 207 +> Invariance of Viy = [ d°yy/oe**

. 1 )
(2) V"™ (6 Gmn — §§mn5§) = 490" Ad G,

< “Warped” Harmonic Gauge Condition

Warped moduli space metric:

GIJ(U) — m /de ge € 4A9 kg]l5lgij5jgkl



Warped Deformed Conifold

® Klebanov-Strassler solution:

‘5‘2/3

dsio =
"10 = (g, Na)

1(7) 2 datda” + (guNa!) I(r)1/? [

+ K (1) cosh? (%) ((6%)2 + (¢*)2) + K () sinh? (%

N——
/X
/N

[
N—
\}
/X
Q
\)
~—
(\V)
N——"
L 1

—4A(T) __ (gSNO/)2
where =44 — Ik (1)

® S only enters 4D redshift factor, not 6D metric:
059ij = —Vin; — V;n;

® Same qualitative feature as DG, differ by order |
coefficient: E (gaNa')2

55 = 3, s




Warped EFT:
Open String Sector

Marchesano, McGuirk, GS



Warped Extra Dimensions

— WwWoc Ks
(Surprisimj‘\/)

welf

Are there new features in string theory embedding?



Warped Extra Dimensions

bulk CY

ﬂ

D7-branes wrap
S4 C Xg

<C

warped throat

Type |IB warped background
dsm = A~ 1/277Wd:13“d:6 1 AL/2e? Omndy " dy”
Consistency requires:

F5 — (1—|—>|<10)F5int F5int = >/l\<6d (AGCD)



D-brane Action in Flux Background

The bosonic part: S = Spy' + Sp-

The fermionic part:

_ 1
Sfer — 7, / do¢ e—‘I’\/ det P[G]|©P"T <I‘O‘Da - 50) e

obtained from M2-brane action and T-dualities

D, :gravitino variation O :dilatino variation

L 1
|0D MW bISPanrS O = (g;) ; P:ll:)7 — 5 (]I T F(g) ®0’2)

K -symmetry: O — 0+ Pk



In Einstein frame: GZ%,y = e %/2G3

ds?y = Z7 12y, datda” + ZY 2 G dy™ dy” 7 = Ae®

ST = 1y / do¢ e‘b\/ det P[GF]|OPPT (rapf + %053) e
K -fixing: removes half of the fermionic d.o.f.

Convenient (6’) or  PPTE —
choices: 0

Consider first the simple case: Xg =T°
Sy = T4 C T6

Then generalize to (a) Calabi-Yau, (b) Varying dilaton,
(c) Other background fluxes, (d) Worldvolume fluxes



Warped Flat Space

. 1
With only 5-form fluxes and define: Pg* = I+ ®02)
O = 0
D, = V,+ %F;‘Tﬂiag = 9, — ifﬂﬁln Zp9o3
D,, = V, + %ﬂ;ﬂtffmiag = Oy + %&n InZ — iﬁln ZI’mPf?’

Pullback to the worldvolume:

1 X in in 1 1
D#D, + 1D+ 50 = f* + 4" + (4" n Z) <§_§P53)

K -fixing © = <9> gives the Dirac action:

If)e7r — TD76 / d4 / dVOlT4 QlD v
R1,3 T4
Po= A (B0 Z) (14 W)



Warped Flat Space

. 1
With only 5-form fluxes and define: Pg* = I+ ®02)
O = 0
D, = V,+ %F;‘Tﬂiag = 9, — ifﬂﬁln Zp9o3
D,, = V, + %ﬂ;ﬂtffmiag = Oy + %&n InZ — iﬁln ZI’mPf?’

Pullback to the worldvolume:

1 X in in 1 1
D#D, + 1D+ 50 = f* + 4" + (4" n Z) <§_§P53)

K -fixing © = <9> gives the Dirac action:

If)e7r — TD76 / d4 / dVOlT4 QlD v
Rl 3 T4
D= g4 g ( " In Z) (1 +OTgeira



Decompose the 10D MW spinor:
0 = x+B™X" X = 04p ® Osp

Fermion mass eigenstates:

1 «
Dty |fips = 5 (Bpa I 2) (14 2Tnina) | Ogp = 2"/ (Bobp)

4D zero modes:

6)(6)D — Z_1/877— for FExtra nN— — —7)— Wi|son|ino
Ogp = Z3/Bny for ID'extraf+ = N+ Gaugino, Modulino

Op = Z%



Decompose the 10D MW spinor:
0 = x+B™X" X = 04p ® Osp
Fermion mass eigenstates:

1 «
Dty |fips = 5 (Bpa I 2) (14 2Tnina) | Ogp = 2"/ (Bobp)

4D zero modes:

H(G)D — Z_1/877— for FExtra nN— — —7)— WiISOnIinO
N+  Gaugino, Modulino

0dp = Z3/%n, for TExtra 7t

Op = Z%

~N

S[f)e; — D7 e%/ d4x94DﬁR1,36’4D/ dvola nT_n_
R1,3 T4

Kinetic terms: )
D7 6(1)0 / d4$ (941)%1,3 6’4D / dVOlT4 Z77177_|_
R1,3 T4

fer
Sp7

J




Open String Bosons

Expand the DBI+CS action to quadratic order:
gauge bosons, wilson lines, moduli wavefunctions are flat.

4D Kinetic terms for bosons and fermions match:

_ 37.2\ 1 dvolr4 ~ . ~int 042
eg.  [for = (37 ey (Z\/gw +iCE )(a )

SIf)e; — TD7 GCI)O/ d4ZC §4DQR1,3(94D/ dVOlT4 an_n_|_
R1,3

T4

More generally, fields descend from the same multiplet:

/ 3 d*zp D¢ / dvoline Z97m wavefunction ~ Z?
R, int



Comparison to RS

RS D7
4D Field D q 4D Field D q
gauge boson 0 1/4 gauge boson/modulus 0 |
gaugino 3/8 gaugino/modulino 3/8
matter scalar (3 —2c)/8 (1-¢)/2 Wilson line 0 0
matter fermion (2 — c)/4 Wilsonino —1/8
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M5D bulk ~ CK

c>1/2 c<1/2 H

Yukawa
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IR brane
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Comparison to RS

RS D7
4D Field D q 4D Field D q
gauge boson 0 1/4 gauge boson/modulus 0 |
gaugino 3/8 gaugino/modulino 3/8
matter scalar (3—2¢)/8 (1- )2 Wilson line 0 0
—c

matter fermion (2 — c)/4 Wilsonino —1/8

M5D bulk ~ K

c>1/2 c<1/2 H

Yukawa

couplings

/!

IR brane

sk 5-form fluxes
sk 3-form fluxes



Comparison to RS

RS D7
4D Field D q 4D Field D q
gauge boson 0 1/4 gauge boson/modulus 0 |
gaugino 3/8 gaugino/modulino 3/8
matter scalar (3—2¢)/8 (1- )2 Wilson line 0 0
—c

matter fermion (2 —c¢)/4 Wilsonino —1/8

M5D bulk ~ K

c>1/2 c<1/2 H

Yukawa
couplings

il

IR brane

sk 5-form fluxes
Sk 3-form fluxes

3% D7-brane worldvolume flux



More Gauge Fixing

10D MWV spinors: O, ...q,,0 = 0 for n £ 3,7

Consider kinetic term: [turning off warping, fluxes]
D7 / d3¢ e®019,,0

A constant MWV spinor T'*d,n = 0 minimizes the action

so does S = Tpr / d°¢e® (f*ndn + fndfn)

Ambiguity in EOM: T“(0, —0aInf)0 =0

Analogous to static gauge, choose superspace
coordinates of D7 in non Grassmann-odd directions.

Bandos, Sorokin



More Gauge Fixing

After gauge fixing, the EOM becomes:
amTyE 1 E __
PD7<F Dy + 50 ) 0 =0
Warp factors cancel out in 4D SUSY variations:

5. Y' = el
’0.A, = ¢€l,0

Such gauge fixing should apply to non-SUSY setup.



Alternative K-Fixing

Another K-fixed choice: PP70 =0

o _z ' [ T- o Ny
Ogp = 7 ( in_ ) for I'extran— = —0_ Wilsonini

@8 D = Z;S ( T ) for TD'extrafs+ = 1+ gaugino + modulino
2\ N+

More transparent what the zero modes correspond:

_ —1/8—= . D3= _ D= 1
© A = with P‘|— = Pr'=_ 0 P:Il—_jg _ 5 (I[:I:F(4) @O'Q)

0=2z3%=,  with PP3E, = PP'E. =0

The killing bispinors preserved by D3 should go like:
e~ 7 1/8=

e



Generalizations

Calabi-Yau: V5 'S =0 g = (Ben=)*
T . . _ —1/8 77— * % 1/8 7/77_|_
Killing bispinor: ¢ = ¢ ®Z ( in°Y ) tBiap @ 2 ( )
. 73/8 Z'nCY 73/8
: O = 04p ® ~ | =B, ®
Gaugino 10 ® =7 ( e > 101p (m )

Wilsonlini & Modulini: spinors annihilated by I'*V; " :
mw = WD 0 and  n, = mepl? 1S
harmonic (1,0) and (2,0) forms on 5,
Ogp ~ Z /8 73/8 respectively

Also generalized to 3-form fluxes and varying dilaton.



Magnetized D/-branes

Introducing chirality, dual to intersecting branes

The Dirac action:

_ 1
Sker — ry; / ds¢ eq)\/ det M| OPP(F) (rupu + (M~ Hetr, (Db + ngO>> e

where M = P[G] + e ®2F M = P[G] + e */?Fos

1
PR = (1515 8 0) T =T

det M 2 8

det PG/ | (I[ — 149_(1)/2]1-(8) o3 + le_q)]fg)

In the gauge: PP7(F)o =0

M 1 1
p o [ s agyor, (v oz (- 102

det gs,



Magnetized D/-branes

Worldvolume flux rotates the bispinor: P2"(F)0 =0

_ 1\1/2
0 = ( A(=F) A(F)/2 ) © with PP'O@ =0

In general:  A(F) € Spin(4) = SU(2); x SU(2),
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_ 1\1/2
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In general:  A(F) € Spin(4) = SU(2); x SU(2),
()

U(2) holonomy group of Sy



Magnetized D/-branes

Worldvolume flux rotates the bispinor: P2"(F)0 =0

_ 1\1/2
0 = ( A(=F) A(F)/2 ) © with PP'O@ =0

In general:  A(F) € Spin(4) = SU(2); x SU(2),

f
BPS: A(F) e SU(2); U(2) holonomy group of Sy



Magnetized D/-branes

Worldvolume flux rotates the bispinor: P2"(F)0 =0

_ 1\1/2
@:(A( 7) O’ with PP’ = 0

o )

In general:  A(F) € Spin(4) = SU(2); x SU(2),

f
BPS: A(F) e SU(2); U(2) holonomy group of Sy

1 i 1 CcY ]
O3 __ __ 73/8 T D p* [/

03/ ' v\
PPt =0 (2,1) oz mshnan Bisipe s (M )~ it 20 ()
4 \/i Mw /|




Warped EFT

Transform to 4D Einstein frame: 7,,

Gauge kinetic function:

for = (3°8%) " [ S (2 /g, 40} (o)

Ss §S4

For Kahler potential, consider first the unwarped case.
D/7-moduli:

o(z,y) = (@) sa(y) +(M5a(y)  {sa}:Ss— S
have Einstein frame kinetic term:

o f54mA/\mB
AB_fX OCY A OCY
6

- D A ~B
ZTD7/ e L ogd(" N x4d(
R1:3 {mA} MM = LSAQCY



Warped EFT

With warping, the D/ moduli kinetic term:
B f54 Zma\mp
o fX@- 7 QCY A QCY

Now combine with the closed string results.

B A"
Lag— LYz

From STUD, the axio-dilaton has kinetic term:

_ / d*x Iz, 0"t 0,t  where Ky = ! . / d°y Z Yy
R1,3 8(Im7') Vw Jx6

unaffected by warping.

In the unwarped case: S =1t—kiTp7L,z

K> In[—i(S—8) — 2ik2rprLagC CP)



Warped EFT

The warped corrected Kahler potential for S:

Ko In[—i(SY — 8Y) — 2ikimpr LY 5¢H P SY =t — kimpr LY 5¢A (P

Wilson lines:

AodA® = wr () W (y) + T ()W (y)  {W'}:(1,0) forms

has kinetic term in the unwarped case:

CY _ . .a
21p7k 7 ST = 0w
0 Cl7v*dwr A *x4diw 7

R1,3

Y Céj:/ P[wa]/\WI/\Wj
Sy

With warping, we found the kinetic term is modified:

2mp7k 7
pp— / Clv*dwr A #4dw ;
VW R1,3




Warped EFT

In the single modulus case, without warping:
—3 IH(TA —+ TA — 6@%ZTD7kQC/{jw[wj)

This suggests to reproduce the warped kinetic terms:

Ty — Ty
VO
where TA?) —/Z JNITNJ = <CJ| VW>VCY Z(x) = Zy+ c(x)
CY

This is in agreement with closed string derivation:

—3In (—’i(/)—ﬁ) + 2 ]Z—VZ) where Im(p) = c(x)



Summary

@ Minimal Simple dS Solutions
@ Warped EFT for Cosed strings

@ Open String Wavefunctions & Warped EFT



THANKS




