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Outline

• The classical Cosmological Constant and its 
measurement.  (review FRW cosmology)

• What is the problem?  

• Is it really a problem?   I.e. is it properly 
defined?    Something IS real:  Casimir effect

• A principle that fixes the ambiguity in zero 
point energy.  

• Consistent back-reaction and consequences 
for cosmology.  
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I. INTRODUCTION

The Cosmological Constant Problem (CCP) is now regarded as a major crisis

of modern theoretical physics. For some reviews of the “old” CCP, see [1–4]. The

problem is that simple estimates of the zero point energy, or vacuum energy, of a

single bosonic quantum field yield a huge value (the standard calculation is reviewed

below). In the past, this led many theorists to suspect that it was zero, perhaps

due to a principle such as supersymmetry. The modern version of the crisis is that

astrophysical measurements reveal a very small positive value[5][6]:

ρΛ = 0.7× 10−29 g cm−3 = 2.8× 10−47 Gev4/�3c5. (1)

This value is smaller than the naive expectation by a factor of 10120. This embarrass-

ing discrepancy suggests a conceptual rather than computational error. The main

point of this paper is to question whether the CCP as it is currently stated is actually

properly formulated. As we will see, our line of reasoning leads to an estimate of

the cosmological constant which is much more reasonable, and of the correct order

of magnitude.

Let us begin by ignoring gravity and considering only quantum mechanics in

Minkowski space. Wheeler and Feynman once estimated that there is enough zero

point energy in a teacup to boil all the Earth’s oceans. This has led to the fantasy

of tapping this energy for useful purposes, however most physicists do not take such

proposals very seriously, and in light of the purported seriousness of the CCP, one

should wonder why. In fact, there is no principle in quantum mechanics that allows

a proper definition of the zero of energy: as in classical mechanics, one can only

measure changes in energy, i.e. all energies can be shifted by a constant with no

measurable consequences. Similarly, the rules of statistical mechanics tell us that

probabilities of configurations are ratios of (conditioned) partition functions, and
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View CC as source: move to right side

Einstein’s 
greatest 
blunder?
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specialize to expanding universe: 

Einstein’s 
equations:

Einstein equations (5) for the FLRW metric are then the Friedmann equations:

�
ȧ

a

�2

=
8πG

3
ρ, (6)

�
ȧ

a

�2

+ 2
ä

a
= −8πGp. (7)

Taking a time derivative of the first equation and using the second, one obtains

ρ̇ = −3

�
ȧ

a

�
(ρ+ p), (8)

which expresses the usual energy conservation. The above three equations are thus

not functionally independent, the reason being that Bianchi identities relate the two

Friedmann equations to the energy conservation equation (8). The total energy

density is usually assumed to consist of a mixture of three non-interacting fluids,

radiation, matter, and dark energy, ρ = ρrad+ρm+ρΛ, each of which satisfies eq. (8)

separately, with p = wρ for w = 1/3, 0 and −1 respectively. Then, eq.(8) consistently

implies ρ̇Λ = 0.

In this paper we will assume that dark energy comes entirely from vacuum energy,

ρΛ = ρvac. The vacuum energy ρvac is a quantum expectation value,

ρvac = �H� = �vac|H|vac�, (9)

where H a quantum operator corresponding to the energy density, which is usually

associated with T00.

Apart from the ambiguity of the zero point energy, several other points should be

emphasized. We will be studying the semi-classical Einstein equations, where on the

right hand side we include the contribution of vacuum energy �Tµν� = �vac|Tµν |vac�

for some choice of vacuum state |vac�. Given the very low energy scale of expansion in

the current universe, and the weakness of cosmological gravitational fields, it is very

reasonable to assume that there is no need to quantize the gravitational field itself in
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Friedmann eqn. 

energy conservation
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metric:

should be considered as possible sources of gravitation, including the vacuum energy.

However, if one accepts the above arguments that the zero of energy is not absolutely

definable in quantum mechanics, and that only the dependence of the vacuum en-

ergy on geometric moduli including the space-time metric is physically measurable,

it then remains unspecified how to incorporate vacuum energy as a source of gravity.

One needs an additional principle to fix the ambiguity.

The above observations on the Casimir energy were instrumental toward formu-

lating such a principle, as we now describe. The cosmological Friedmann-Lemâıtre-

Robertson-Walker (FLRW) metric has no modulus corresponding to a finite size

analogous to β, however it does have a time dependent scale factor a(t):

ds2 = gµνdx
µdxν = −dt2 + a(t)2dx · dx. (4)

(We assume the spatial curvature k = 0, as shown by recent astrophysical measure-

ments.) When a(t) is constant in time, the FLRW metric is just the Minkowski

spacetime metric. This leads us to propose that the dependence of the vacuum en-

ergy on the time variation of a(t) is all that is physically meaningful, in analogy with

the β dependence of ρcylvac. This idea is stated as a principle below, in terms of the

stability of empty Minkowski space, and is at the foundation of our conclusions.

Let us quickly review the standard cosmology. The Einstein equations are

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν (5)

where G is Newton’s constant. The stress energy tensor Tµν = diag(ρ, p, p, p) where

ρ is the energy density and p the pressure. The non-zero elements of the Ricci

tensor are R00 = −3 ä/a, Rij = (2ȧ2 + aä)δij, and the Ricci scalar is R = gµνRµν =

6 ((ȧ/a)2 + ä/a), where over-dots refer to time-derivatives. The temporal and spatial

5

time dependent scale factor
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4
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Composition of the universe:
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a(t0) = 0, ȧ/a = H0 = Hubble constant

H
2
0 =

8πG

3
ρc

ρc = total energy density = ρrad + ρm + ρΛ

radiation : prad = ρrad/3, =⇒ ρrad/ρc = Ωrad/a
4

non− relativistic matter : pm = 0, =⇒ ρm/ρc = Ωm/a
3

cosmological constant : since T
Λ
µν ∝ gµν , pΛ = −ρΛ =⇒ ρΛ/ρc = ΩΛ

1

H
2
0

�
ȧ
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Friedmann equ:



The current Universe 
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Radiation is  currently negligible to a very good 
approximation.

The solution to a(t) depends only on Ωm  and ΩΛ  
(which add up to 1):  
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At early times,  a ~ t2/3 ,   later times  a ~ etH 



Measuring the Cosmo.  Const. 

• Measure the apparent luminosity l  of  supernova 

with known absolute luminosity L.

• Infer the (luminosity) distance  d.    

• d depends on the detailed evolution a(t).   Best fit.

• Usually expressed in terms of redshift z  rather 
than t. 
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(small z Hubble law)

Best fit:    ΩΛ = 0.72 Only out to z < 2 ! 



What is the problem? 
• The cosmo. const.   Λ  could simply be a new 

fundamental constant of nature.  No problem.

• the Problem arises when ρΛ is identified with a 
zero point energy density in  Quantum 
Mechanics. I.e.  ρΛ = ρvac = <vac| H |vac>

• Could be the first experimental observation of 
an effect that involves both gravity and QM.   
This is important,  even though gravity does not 
need to be quantized here.   

• Next:  review zero point energy of harmonic 
oscillators.   QFT is just an infinite collection.    
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Zero point energy of harmonic oscillators
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Fermions:   action 1st order in derivatives (Dirac):
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Opposite 
sign!



• As in classical mechanics,  the hamiltonian 
can be shifted by an arbitrary constant with 
no measurable consequences. 

• Casimir effect?   Later.....

10

bosonic spectrum:       En  = ω (n + 1/2)

Question:   Can zero point energy E0 = ω/2  
be measured in QM?    (ignore gravity)  

No!



The standard field theory calculation:

• For kc = Planck scale = 1019 Gev,  this is 
larger than the measured ρΛ by 120 orders of 
magnitude. 

• Wrong sign!   Nb,f = numbers of bosons, 
fermions.   In standard model,   Nf > Nb 11

Second quantization:   annihilation operator  
ak for each wave-vector k with ωk = √(k2  + m2 ):TEX for keynote
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Scrutinizing.....

• At least 2 aspects are uncomfortable:

• Is this kc4 contribution real?   It’s a constant 
and we said energy was only fixed up to an 
arbitrary constant.  

• How does the calculation change in curved 
space,  like an expanding universe?  

• To address “Is it real?”, re-examine Casimir 
effect.  

12



Is it real?   

13

Feynman and Wheeler:  “There is enough vacuum energy in a teacup to 
boil all the Earth’s oceans.”  

Schwinger:  “....the vacuum is not only the state of minimum energy,  it 
is the state of zero energy,  zero momentum,  zero charge, zero 
whatever.”    

Would you invest money into developing vacuum 
energy into the ultimate sustainable resource?   



The Casimir effect is real.    But.....

14
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Force=

these are invariant if the partition functions are multiplied by a common factor as

induced by a global shift of the energies. Based on his understanding of quantum

electrodynamics and his own treatment of the Casimir effect, Schwinger once said

[7], “...the vacuum is not only the state of minimum energy, it is the state of zero

energy, zero momentum, zero angular momentum, zero charge, zero whatever.” A

quantum consequence of this for instance is the fact that photons do not scatter

off the vacuum energy. All of this strongly suggests that it is impossible to harness

vacuum energy in order to do work, which in turn calls into question whether it could

be a source of gravitation.

The Casimir effect is often correctly cited as proof of the reality of vacuum energy.

However it needs to be emphasized that what is actually measured is the change of

the vacuum energy as one varies a geometric modulus, i.e. how it depends on this

modulus, and this is unaffected by an arbitrary shift of the zero of energy. The classic

experiment is to measure the force between two plates as one changes their separation;

the modulus in question here is the distance � between the plates and the force

depends on how the vacuum energy varies with this separation. The Casimir force

F (�) is minus the derivative of the electrodynamic vacuum energy Evac(�) between

the two plates, F (�) = −dEvac(�)/d�. An arbitrary shift of the vacuum energy

by a constant that is independent of � does not affect the measurement. For the

electromagnetic field, with two polarizations, the well-known result is that the energy

density between the plates is ρcasvac = −π2/720�4. Note that this is an attractive force;

as we will see, in the cosmic context a repulsive force requires an over-abundance of

fermions.

Let us illustrate the above remark on the Casimir effect with another version of

it: the vacuum energy in the finite size geometry of a higher dimensional cylinder.

Namely, consider a massless quantum bosonic field on a Euclidean space-time geom-

etry of S1 ⊗ R3
where the circumference of the circle S1

is β. Viewing the compact

3
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energy, zero momentum, zero angular momentum, zero charge, zero whatever.” A
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fermions.
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Namely, consider a massless quantum bosonic field on a Euclidean space-time geom-

etry of S1 ⊗ R3
where the circumference of the circle S1

is β. Viewing the compact
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(derive  later)

Note: an arbitrary shift of the vacuum energy 
does not change the measured force!   All 
that matters is it’s l-dependence.   

¡Obviously an IR effect!



Cylindrical version of Casimir effect
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Just change boundary conditions:  join plates at edges to have periodic b.c. 

One compactified 
spatial dimension of 
circumference β

2 dim’l space + time

direction as spatial, the momenta in that direction are quantized and the vacuum

energy density is

ρcylvac =
1

2β
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k2 + (2πn/β)2 = −β−4π3/2Γ(−3/2)ζ(−3) + const. (2)

Due to the different boundary conditions in the periodic verses finite size directions,

ρcasvac(�) = 2ρcylvac(β = 2�), where the overall factor of 2 is because of the two photon

polarizations. The above integral is divergent, however if one is only interested in its

β-dependence, it can be regularized using the Riemann zeta function giving the above

expression. Note that the constant that has been discarded in the regularization is

actually at the origin of the CCP. What is measurable is the β dependence. One way

to convince oneself that this regularization is meaningful is to view the compactified

direction as Euclidean time, where now β = 1/T is an inverse temperature. The

quantity ρcylvac is now the free energy density of a single scalar field, and standard

quantum statistical mechanics gives the convergent expression:

ρcylvac =
1
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�
d3k

(2π)3
log

�
1− e−βk

�
= −β−4 ζ(4)

2π3/2Γ(3/2)
. (3)

The two above expressions (2, 3) are equal due to a non-trivial functional identity

satisfied by the ζ function: ξ(ν) = ξ(1 − ν) where ξ(ν) = π−ν/2Γ(ν/2)ζ(ν). (See

for instance the appendix in [8].) The comparison of eqns. (2,3) strongly manifests

the arbitrariness of the zero-point energy: whereas there is a divergent constant in

(2), from the point of view of quantum statistical mechanics, the expression (3) is

actually convergent. Either way of viewing the problem allows a shift of ρcylvac by

an arbitrary constant with no measurable consequences. For instance, such a shift

would not affect thermodynamic quantities like the entropy or density since they are

derivatives of the free energy; the only thing that is measurable is the β dependence.

We now include gravity in the above discussion. Before stating the basic hy-

potheses of our study, we begin with general motivating remarks. All forms of energy

4

divergent as UV cutoff
kc  → ∞.  
We used Riemann zeta 
function regularization. 
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Relation to Casimir:



Quantum Statistical Mechanics viewpoint. 

16

Passing to euclidean time  t = -i τ,   ρvac  is just the finite temperature free 
energy on the cylinder with circumference  β = 1/T.

Euclidean time τ 
with circumference 
β=1/T

3 dim’l space

Same as before due to a non-
trivial identify connected with 
the Riemann hypothesis:
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Aside:

Quantum Statistical. Mech. 
gives a very different

convergent expression.  
Problem seems to disappear.
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β-dependence, it can be regularized using the Riemann zeta function giving the above

expression. Note that the constant that has been discarded in the regularization is

actually at the origin of the CCP. What is measurable is the β dependence. One way

to convince oneself that this regularization is meaningful is to view the compactified

direction as Euclidean time, where now β = 1/T is an inverse temperature. The

quantity ρcylvac is now the free energy density of a single scalar field, and standard
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The two above expressions (2, 3) are equal due to a non-trivial functional identity

satisfied by the ζ function: ξ(ν) = ξ(1 − ν) where ξ(ν) = π−ν/2Γ(ν/2)ζ(ν). (See

for instance the appendix in [8].) The comparison of eqns. (2,3) strongly manifests

the arbitrariness of the zero-point energy: whereas there is a divergent constant in

(2), from the point of view of quantum statistical mechanics, the expression (3) is

actually convergent. Either way of viewing the problem allows a shift of ρcylvac by

an arbitrary constant with no measurable consequences. For instance, such a shift

would not affect thermodynamic quantities like the entropy or density since they are

derivatives of the free energy; the only thing that is measurable is the β dependence.

We now include gravity in the above discussion. Before stating the basic hy-

potheses of our study, we begin with general motivating remarks. All forms of energy
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black body

effect with another version of it: the vacuum energy in the finite size geometry of a

higher dimensional cylinder. Namely, consider a massless quantum bosonic field on

a Euclidean space-time geometry of S1⊗R3 where the circumference of the circle S1

is β. Viewing the compact direction as spatial, the momenta in that direction are

quantized and the vacuum energy density is

ρcylvac =
1

2β

∑
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k2 + (2πn/β)2 = −β−4π3/2Γ(−3/2)ζ(−3) + const. (2)

Due to the different boundary conditions in the periodic verses finite size directions,

ρcasvac(%) = 2ρcylvac(β = 2%), where the overall factor of 2 is because of the two photon

polarizations. The above integral is divergent, however if one is only interested in

its β-dependence, it can be regularized using the Riemann zeta function giving the

above expression. Note that the (infinite) constant that has been discarded in the

regularization is actually at the origin of the CCP. What is measurable is the β

dependence. One way to convince oneself that this regularization is meaningful is to

view the compactified direction as Euclidean time, where now β = 1/T is an inverse

temperature. The quantity ρcylvac is now the free energy density of a single scalar field,

and standard quantum statistical mechanics gives the convergent expression which

is just the standard black-body formula:
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The two above expressions (2, 3) are equal due to a non-trivial functional identity

satisfied by the ζ function: ξ(ν) = ξ(1 − ν) where ξ(ν) = π−ν/2Γ(ν/2)ζ(ν). (See

for instance the appendix in [8] in this context.) The comparison of eqns. (2,3)

strongly manifests the arbitrariness of the zero-point energy: whereas there is a

divergent constant in (2), from the point of view of quantum statistical mechanics,

the expression (3) is actually convergent. Either way of viewing the problem allows a

shift of ρcylvac by an arbitrary constant with no measurable consequences. For instance,

4



Some proposed solutions to the CCP

• Two kinds:  UV solutions: add structures that 
are not yet known to exist.   IR solutions  

• SUSY:   originally attractive idea when the 
CC was thought to be zero.   Now ruled out 
since SUSY scale at least > GeV.  (UV)

•  Anthropic reasoning*.  Still a possibility.   
Can only be ruled out by discovery of the 
correct explanation of the Cosmological 
Constant Problem. (UV).

• Our proposal:   an IR effect.  Analogy to 
Casimir effect.   Will need fermions to get 
repulsion.

17



Our hypotheses and consistency

18

*  chose |vac>  so there is no particle production.

*  Impose the stability of empty Minkowski space:   
zero-point energy is fixed by requiring  ρvac =0  
when a(t)  is constant in time. 

Einstein equations (5) for the FLRW metric are then the Friedmann equations:

�
ȧ

a

�2

=
8πG

3
ρ, (6)

�
ȧ

a

�2

+ 2
ä

a
= −8πGp. (7)

Taking a time derivative of the first equation and using the second, one obtains

ρ̇ = −3

�
ȧ

a

�
(ρ+ p), (8)

which expresses the usual energy conservation. The above three equations are thus

not functionally independent, the reason being that Bianchi identities relate the two

Friedmann equations to the energy conservation equation (8). The total energy

density is usually assumed to consist of a mixture of three non-interacting fluids,

radiation, matter, and dark energy, ρ = ρrad+ρm+ρΛ, each of which satisfies eq. (8)

separately, with p = wρ for w = 1/3, 0 and −1 respectively. Then, eq.(8) consistently

implies ρ̇Λ = 0.

In this paper we will assume that dark energy comes entirely from vacuum energy,

ρΛ = ρvac. The vacuum energy ρvac is a quantum expectation value,

ρvac = �H� = �vac|H|vac�, (9)

where H a quantum operator corresponding to the energy density, which is usually

associated with T00.

Apart from the ambiguity of the zero point energy, several other points should be

emphasized. We will be studying the semi-classical Einstein equations, where on the

right hand side we include the contribution of vacuum energy �Tµν� = �vac|Tµν |vac�

for some choice of vacuum state |vac�. Given the very low energy scale of expansion in

the current universe, and the weakness of cosmological gravitational fields, it is very

reasonable to assume that there is no need to quantize the gravitational field itself in

6

*                                  depends on choice of |vac>

*  calculate 
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where H is the quantum hamiltonian energy density operator. The calculation is

regularized with a sharp cut-off kc in momentum space in order to make contact

with the usual statement of the CCP.

[iii] We propose the following principle which prescribes how to define a physical

ρvac from ρvac,0: Minkowski space that is empty of matter and radiation should be

stable, that is, static. This requires that the physical ρvac equal zero when a(t) is

constant in time. This leads to a ρvac that depends on a(t) and its derivatives, and

also the cut-off[9].

[iv] Given this ρvac, we assume the components of the vacuum stress energy tensor

have the form of a cosmological constant:

�Tµν� = −ρvac gµν . (10)

We provide some support for this hypothesis in section III, where we compare our

calculation with manifestly covariant calculations performed in the past[22]. We are

going to check the consistency of this assumption in the next point [v].

[v] We include �Tµν� in Einstein’s equations and solve them self-consistently, as-

suming that vacuum energy and other forms of energy are separately conserved. In

other words we study the consistency of the back-reaction of the vacuum energy

on the geometry. The consistency condition is ρ̇vac = 0, which is equivalent to

Dµ�Tµν� = 0. There is no guarantee there is such a solution since ρvac depends on

a(t) and its derivatives.

Certainly one may question the validity of these assumptions. However in our

opinion, they are rather conservative in that they do not invoke symmetries, particles,

nor other, perhaps higher dimensional structures, that are not yet known to exist.

The purpose of this paper is to work out the logical consequences of these modest

hypotheses. Our main findings are the following:

• If there is a cut-off in momentum space kc, then by dimensional analysis the
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By dimensional analysis with kc = UV cut-off,  there is an ‘adiabatic’ expansion: 
vacuum energy density has symbolically the “adiabatic” expansion (up to constants):

ρvac,0 = k4
c + k2

c R̂ + R̂2 + · · · (11)

where R̂ is related to the curvature and is a linear combination of (ȧ/a)2 and ä/a,

depending on the choice of |vac〉. The principle of the stability of empty Minkowski

space [iii] leads us to discard the k4
c term, but not the other terms since they depend

on time derivatives of a(t). The vacuum energy is now viewed as a low energy phe-

nomenon, like the Casimir effect. Other regularization schemes, based for example

on point-splitting[22], insist on a finite ρvac and thus discard the first two terms. Ac-

cording to our principles, the second term must be kept since it depends dynamically

on the geometry. In the current universe R̂ it is approximately on the order of H2
0 ,

where H0 is the Hubble constant, and if the cut-off kc is on the order of the Planck

energy, then the resulting value of ρvac is the right order of magnitude in comparison

with the measured value (1), namely ρvac ≈ (kpH0)2 = 3.2×10−46Gev4, using for H0

the present value of the Hubble constant. The R̂2 is much too small to explain the

measured value. We emphasize that our ρvac is not simply proportional to H2, see

eqns. (24,35) below, and is in fact constant in time for the self-consistent solutions

that we find. There is nothing special about H0 here, since ρvac is constant in time;

we are simply evaluating it at the present time which involves H0. A practical point

of view is that astrophysical observations are telling us that the k4
c term should be

shifted away. More importantly, it remains to determine whether the term that we

do keep, k2
c R̂, has physical consequences in agreement with observations, which is

the main purpose of our study.

Is shifting away the k4
c term a fine-tuning? Let us address this in the context of

the ADM/AD framework[14, 15]. In the latter work it was shown that in classical

general relativity, once the value of the cosmological constant Λ is fixed, there is a

unique choice of energy that is conserved, i.e. there is no more freedom to shift it. For
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✠ UV term is just a constant which we will set to 
zero using the arbitrariness of zero-point of Energy.

✠ IR term is very,  very small in the current 
universe,  so we will neglect it. 

✠  According to our principles,  we must keep the dominant mixed term,  
which vanishes in Minkowski space.  It IS physically meaningful because it 
depends on time variation of the scale factor a(t),  by analogy to separation 
of plates in Casimir effect. 

Coleman (1990’s):   “....the cosmological 
constant is the mass of a box of empty space. 
You can always fine-tune it to zero.  And 
nobody wi$ say you can’t do it,  but nobody 
wi$ applaud you when you do it, either.”
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Scalar field in curved spacetime:

energy is thus identified as ω/2. For fermions, the zero point energy has the opposite

sign. Fermionic canonical quantization [20] yields to grassmanian operators b, b†,

with {b, b†} = 1, b2 = b†
2
= 0, and a hamiltonian H = ω

2

(
b†b− bb†

)
= ω(b†b − 1

2
).

The fermion zero-point energy is −ω/2.

In a free relativistic quantum field theory with particles of mass m in 3 spatial

dimensions, the above applies with ωk =
√
k2 +m2, where k is a 3-dimensional

wave-vector. Thus the zero-point vacuum energy density is

ρvac =
Nb −Nf

2

∫
d3k

(2π)3
√
k2 +m2, (12)

where Nb,f is the number of bosonic, fermionic particle species. Regularizing the

integral with an ultra-violet cut-off kc much larger than m, one finds ρvac ≈ (Nb −

Nf)k4
c/16π

2. If kc is taken to be the Planck energy kp, then k4
c/16π

2 = 1075 Gev4.

The modern version of the Cosmological Constant problem is the fact that this is too

large by a factor of 10122 in comparison with the measured value. One should also

note that in the above calculation, a positive value for ρvac requires more bosons than

fermions, contrary to the currently known particle content of the Standard Model.

As explained in the Introduction, we are interested in the vacuum energy of a

free quantum field in the non-static FLRW background spacetime geometry. For

simplicity we consider a single scalar field, with action [25]

S =

∫
dt d3x

√
|g|

(
−
1

2
gµν∂µΦ∂νΦ−

m2

2
Φ2

)
. (13)

In order to simplify the explicit time dependence of the action, and thereby simplify

the quantization procedure, define a new field χ as Φ = χ/a3/2. Then the action

(13), after an integration by parts, becomes:

S =

∫
dt d3x

1

2

(
∂tχ∂tχ−

1

a2
&∇χ · &∇χ−m2χ2 +A(t)χ2

)
, (14)

where

A ≡
3

4

((
ȧ

a

)2

+ 2
ä

a

)

. (15)
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Expand field in modes: 

The advantage of quantizing χ rather than Φ is that most of the time dependence is

now in A, so that there is no spurious time dependence in the canonical momenta,

etc. The field can be expanded in modes:

χ =

∫
d3k

(2π)3/2

(
ak uk e

ik·x + a†
k
u∗
k e

−ik·x
)
, (16)

where the ak’s satisfy canonical commutation relations [ak, a
†
k′] = δ(k − k′). The

function uk is time dependent and required to satisfy

(∂2
t + ω2

k)uk = 0, ω2
k ≡ (k/a)2 +m2 −A. (17)

The solution is the formal expression

uk =
1√
2W

exp

(
i

∫ t

W (s)ds

)
, (18)

where W satisfies the differential equation:

W 2 = ω2
k +

3

4
(Ẇ/W )2 −

1

2
Ẅ/W (19)

Let us assume that the time dependence is slowly varying, i.e. we make an adiabatic

expansion. The above equation can be solved iteratively, where to lowest approxi-

mation, W is the above expression with W replaced by ωk on the right hand side of

the differential equation. In other words, the “adiabatic condition” is ω̇k/ωk $ ωk.

As we now explain, it appears one has to distinguish between massive verses

massless particles. Consider for instance the term proportional to (ω̇k/ωk)2 =

(ȧ/a)2 (k2/(k2 +m2a2))2. When m = 0 this gives a term which modifies A, as

does the ω̈/ω term. The adiabatic condition is simply ȧ/a $ k. The result is that

the additional two terms on the right hand side of eq. (19) (with W = ωk), give

W 2 = (k/a)2−R/6, i.e. A is converted to R/6. This dependence on the Ricci scalar

R can be derived more directly using conformal time, as in the next section. In this

section we will only be considering cosmological matter plus vacuum energy. When
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Solution:
(WKB)
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A(t) is like a time-
dependent  mass2
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This is the correct order of magnitude:

has one. For 3 flavor generations, this gives Nf = 90. Each massless gauge boson

has two polarizations, 8 for QCD, and 4 for the electro-weak theory, which leads to

Nf −Nb = 62 including the 4 Higgs fields before spontaneous electro-weak symmetry

breaking. The measured value of the vacuum energy can be accounted for with a

cut-off about an order of magnitude below the Planck energy [21], kc ≈ 3×1018 Gev.

We have ignored interactions which modify the value of ρvac, however we expect that

they do not drastically change our results. One should also bear in mind that the

sharp cutoff kc is meant to represent a cross-over from the effective theory valid at

energy scale well below kc to that (including gravity) valid above kc.

B. Consistent backreaction

Let us suppose that the only form of vacuum energy is ρvac of the last section

eq. (24), and that a(t) is varying slowly enough in time that the A2 term can be

neglected. Define the dimensionless constant:

g =
3∆N

8π
Gk2

c (25)

such that

ρvac =
g

6πG
A. (26)

Including ρvac in the total ρ, the first Friedmann equation can be written as

(
1−

g

3

)(
ȧ
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(ρm + ρrad) (27)

We emphasize that we have not modified the Friedman equation; the extra terms on

the left-hand side come from ρvac which were originally on the right-hand side of the

first Friedmann equation.

As we now argue, there is only a consistent solution when g = 1. First consider

the case where there is no radiation nor matter. Then eq. (27) implies ä/a =

16
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For massive particles in adiabatic approximation:   W = ωk  

This gives: 

m != 0, the additional terms do not simply convert A to R/6. In order to implement

an adiabatic expansion in this case, we consider the opposite limit of m large. One

way to perhaps justify this is as follows. We will ultimately be interested in this

vacuum energy in the presence of a non-zero density of real matter. In cosmology,

“matter” refers to non-relativistic particles, and formally, the non-relativistic limit

corresponds to m → ∞, e.g.
√
k2 +m2 ≈ m2 + k2/2m. More importantly, mat-

ter is defined as having zero pressure. For a relativistic fluid, the contribution of

each mode k to the pressure is p = nkk
2/3ωk where nk is the density. One then

sees that zero pressure corresponds to m → ∞. Here the adiabatic condition is

ȧ/a & (k2 + m2)3/2/k2 which is automatically satisfied in this limit. In the limit

m → ∞, the additional terms on the right hand side of eq. (19) actually vanish.

Thus, to lowest order we simply take W = ωk, and to this order u̇k = iωkuk. As we

will show in the next sub-section, for a pressure-less fluid this has a self-consistent

back-reaction. With this choice of uk, and to lowest order in the adiabatic expansion,

the hamiltonian takes the standard form:

H =
1

2

∫
d3x

(
χ̇2 +

1

a2
(#∇χ)2 + (m2 −A)χ2

)
=

1

2

∫
d3k ωk

(
a†
k
ak + aka

†
k

)
. (20)

Importantly, there are no a†
k
a†−k

terms, which implies the vacuum |vac〉 defined by

ak|vac〉 = 0 is an eigenstate of H for all times, i.e. there is no particle production,

again to lowest order in the adiabatic expansion. By the translational invariance of

the vacuum, for the bare vacuum energy we finally have:

ρvac,0 =
1

V
〈H〉 =

1

2

∫
d3k

(2π)3
√
k2 +m2 −A, (21)

where V is the volume and we have used δk(0) = V/(2π)3. In obtaining the above

expression we have properly scaled by redshift factors: V → a3V , the cut-off was

scaled to kc/a, and we made the change of variables k → ak. Comparing the above

equation with eq. (2), the analogy with the Casimir effect is clear.
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Consistent Back-reaction

22

Since ρvac  depends on time derivatives of a(t),   it leads to a back-reaction 
on the geometry.   This must be solved self-consistently. 

Including ρvac in the Friedmann eqn:  

has one. For 3 flavor generations, this gives Nf = 90. Each massless gauge boson

has two polarizations, 8 for QCD, and 4 for the electro-weak theory, which leads to

Nf −Nb = 62 including the 4 Higgs fields before spontaneous electro-weak symmetry

breaking. The measured value of the vacuum energy can be accounted for with a

cut-off about an order of magnitude below the Planck energy [21], kc ≈ 3×1018 Gev.

We have ignored interactions which modify the value of ρvac, however we expect that

they do not drastically change our results. One should also bear in mind that the

sharp cutoff kc is meant to represent a cross-over from the effective theory valid at

energy scale well below kc to that (including gravity) valid above kc.

B. Consistent backreaction

Let us suppose that the only form of vacuum energy is ρvac of the last section

eq. (24), and that a(t) is varying slowly enough in time that the A2 term can be

neglected. Define the dimensionless constant:

g =
3∆N

8π
Gk2

c (25)

such that

ρvac =
g

6πG
A. (26)

Including ρvac in the total ρ, the first Friedmann equation can be written as

(
1−

g

3

)(
ȧ

a

)2

−
2g

3

ä

a
=

8πG

3
(ρm + ρrad) (27)

We emphasize that we have not modified the Friedman equation; the extra terms on

the left-hand side come from ρvac which were originally on the right-hand side of the

first Friedmann equation.

As we now argue, there is only a consistent solution when g = 1. First consider

the case where there is no radiation nor matter. Then eq. (27) implies ä/a =

16
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ȧ

a

)2

−
2g

3

ä
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Using Einstein’s equations,  one can infer the pressure of the vacuum energy:(3− g)(ȧ/a)2/2g. The pressure can then be found from eq. (7)

pvac = −
1

g
ρvac. (28)

Thus, the equation of state parameter w = −1/g when there is only ρvac. However

energy conservation requires ρ̇vac = 0, which requires pvac = −ρvac, i.e. g = 1. The

solution is a(t) ∝ eHt for an arbitrary constant H , and ρvac is independent of time,

as a cosmological constant must.

What is not immediately obvious is that a consistent solution can also be found

when matter is included, again when g = 1. At the current time t0, as usual define

the critical density ρc = 3H2
0/8πG where H0 is the Hubble constant. The matter and

radiation densities scale as ρm/ρc = Ωm/a3 and ρrad/ρc = Ωrad/a4, where Ωm,Ωrad

are the current fractions of the critical density at time t = t0 where a(t0) = 1. The

first Friedman equation becomes, when g = 1,

2

3H2
0

[(
ȧ

a

)2

−
ä

a

]
=

Ωm

a3
+

Ωrad

a4
. (29)

When Ωrad = 0, the general solution, up to a time translation, is

a(t) =

(
Ωm

µ

)1/3 [
sinh(3

√
µH0t/2)

]2/3
. (30)

The constant µ is fixed by a(t0) = 1. One can check that ρvac is indeed constant in

time:
ρvac
ρc

= µ. (31)

which implies that µ+Ωm = 1, i.e. µ is just Ωvac However, when Ωrad $= 0, ρvac is no

longer constant in time. This can be proven directly from the Friedmann equations,

or if one wishes, numerically.

Thus, there is a choice of vacuum with a back-reaction that is entirely consistent

with the current era. At early times, a(t) ∝ t2/3, i.e. matter dominated, and at later

17

This is only consistent with energy conservation if g=1.

 This implies ρvac is constant in time.
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ä

a

]
=

Ωm

a3
+

Ωrad

a4
. (29)

When Ωrad = 0, the general solution, up to a time translation, is

a(t) =

(
Ωm

µ

)1/3 [
sinh(3

√
µH0t/2)

]2/3
. (30)

The constant µ is fixed by a(t0) = 1. One can check that ρvac is indeed constant in

time:
ρvac
ρc

= µ. (31)

which implies that µ+Ωm = 1, i.e. µ is just Ωvac However, when Ωrad $= 0, ρvac is no

longer constant in time. This can be proven directly from the Friedmann equations,

or if one wishes, numerically.

Thus, there is a choice of vacuum with a back-reaction that is entirely consistent

with the current era. At early times, a(t) ∝ t2/3, i.e. matter dominated, and at later

17

 Dividing by 
critical density:

In the current universe,  Ωrad is nearly zero. 

The solution with no radiation is:
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➣ Our vacuum energy mimics a cosmological constant! 

➣ The above solution a(t) is indistinguishable from the ΛCDM model of the current 
universe.

➣ When radiation is present our vacuum energy becomes time-dependent,  and thus 
differs from a simple cosmological constant.   This doesn’t occur unless there is 
appreciable radiation,  i.e. fairly large redshift z.    

➣ Our model agrees with observations at least up to z=100.   



Testing the model....

24

Comparison of our model with standard cosmology,
i.e.  matter + radiation +  cosmological constant.
  Expansion rate H as a function of redshift z.

times grows exponentially, a(t) ∝ exp(
√
µH0t), i.e. is dominated by vacuum energy.

Given Ωm, then the equation a(t0) = 1 determines tH ≡ H0t0 and thus the age of

the universe. Observations indicate Ωm = 0.266, and eq. (30) gives tH = 0.997.

The reason this is so close to the measured value of tH = 0.996 is that radiation is

nearly negligible. It is interesting to compare our model with the standard model

of cosmology. In Figure 1 we compare the expansion rate H = ȧ/a as a function of

redshift z. One sees that for redshifts z up to at least 2000, there is only a small

discrepancy between our model and the standard model of cosmology.

500 1000 1500 2000 2500 3000

5000

10000

15000

20000

25000

30000

z

ȧ/aH0

FIG. 1: The Hubble constant as a function of redshift z for the solution to our model eq.

(29) including radiation, verses the Friedman equation eq. (6) with radiation, matter and a

standard cosmological constant with Ωm = 0.266,Ωrad = 8.24× 10−5,ΩΛ = 1−Ωm−Ωrad.

The condition g = 1 relates Newton’s constant G to the cut-off kc. There are a

number of possible interpretations of this curious result. Recall the Planck scale kp is

simply the scale one can define from G, but it is not a priori a physicallly meaningful

energy scale; rather it is just the scale that one expects some form of quantization

of the gravitational field to become important. Here, the relation g = 1 is a specific

relation between the cut-off, Newton’s constant G, and the number of particle species,

and is unrelated to the quantization of gravity itself. One interpretation is that the

18

CMB

Mimics a cosmological constant!



Massless particles.  Inflation?

25

➣ Another choice of vacuum is consistent with a radiation dominated universe. 

➣ Mathematically,  there are corrections from the “WKB” formula when 
particles are massless:  

Recall:

The advantage of quantizing χ rather than Φ is that most of the time dependence is

now in A, so that there is no spurious time dependence in the canonical momenta,

etc. The field can be expanded in modes:

χ =

∫
d3k

(2π)3/2

(
ak uk e

ik·x + a†
k
u∗
k e

−ik·x
)
, (16)

where the ak’s satisfy canonical commutation relations [ak, a
†
k′] = δ(k − k′). The

function uk is time dependent and required to satisfy

(∂2
t + ω2

k)uk = 0, ω2
k ≡ (k/a)2 +m2 −A. (17)

The solution is the formal expression

uk =
1√
2W

exp

(
i

∫ t

W (s)ds

)
, (18)

where W satisfies the differential equation:

W 2 = ω2
k +

3

4
(Ẇ/W )2 −

1

2
Ẅ/W (19)

Let us assume that the time dependence is slowly varying, i.e. we make an adiabatic

expansion. The above equation can be solved iteratively, where to lowest approxi-

mation, W is the above expression with W replaced by ωk on the right hand side of

the differential equation. In other words, the “adiabatic condition” is ω̇k/ωk $ ωk.

As we now explain, it appears one has to distinguish between massive verses

massless particles. Consider for instance the term proportional to (ω̇k/ωk)2 =

(ȧ/a)2 (k2/(k2 +m2a2))2. When m = 0 this gives a term which modifies A, as

does the ω̈/ω term. The adiabatic condition is simply ȧ/a $ k. The result is that

the additional two terms on the right hand side of eq. (19) (with W = ωk), give

W 2 = (k/a)2−R/6, i.e. A is converted to R/6. This dependence on the Ricci scalar

R can be derived more directly using conformal time, as in the next section. In this

section we will only be considering cosmological matter plus vacuum energy. When
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Modifies  ωk 
where the ak’s satisfy canonical commutation relations as before. The function vk is

now required to satisfy

(∂2
τ + ω̂2

k)vk = 0, ω̂2
k ≡ k2 −Ra2/6. (34)

The analysis of the last section applies with A replaced by R/6, which leads to:

ρv̂ac ≈ ∆N

[
k2
c

96π2
R−

1

4608π2
R2

]
. (35)

It is clear that |vac〉 %= |v̂ac〉 since the vk %= uk.

It is instructive to compare the above result with the detailed point-splitting

calculation performed in [22] for de Sitter space. The regularization utilized there

insists on a finite answer and thus discards the k4
c and k2

c term:

〈Tµν〉ren = −gµν

(
1

128π2
(ξ − 1/6)2R2 −

1

138240π2
R2

)
(36)

where ξ is an additional coupling to RΦ in the original action. In our calculation

ξ = 0, and one sees that our simple calculation reproduces the first R2 term. When

ξ = 1/6 the theory is conformally invariant and the additional term is the conformal

anomaly[26], which our simple calculation has missed. This is not surprising, since

the anomaly depends on the spin of the field, and not simply of opposite sign for

bosons verses fermions. In any case, in our approximation we are dropping the

R2 terms. What this indicates is that the assumption [iv] in the Introduction is

essentially correct if one carefully constructs the full stress tensor in a covariant

manner, such as by point-splitting.

B. Consistent backreaction

In this case define the dimensionless constant:

ĝ =
∆N

3π
Gk2

c (37)
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ωk  ➾

should be considered as possible sources of gravitation, including the vacuum energy.

However, if one accepts the above arguments that the zero of energy is not absolutely

definable in quantum mechanics, and that only the dependence of the vacuum en-

ergy on geometric moduli including the space-time metric is physically measurable,

it then remains unspecified how to incorporate vacuum energy as a source of gravity.

One needs an additional principle to fix the ambiguity.

The above observations on the Casimir energy were instrumental toward formu-

lating such a principle, as we now describe. The cosmological Friedmann-Lemâıtre-

Robertson-Walker (FLRW) metric has no modulus corresponding to a finite size

analogous to β, however it does have a time dependent scale factor a(t):

ds2 = gµνdx
µdxν = −dt2 + a(t)2dx · dx. (4)

(We assume the spatial curvature k = 0, as shown by recent astrophysical measure-

ments.) When a(t) is constant in time, the FLRW metric is just the Minkowski

spacetime metric. This leads us to propose that the dependence of the vacuum en-

ergy on the time variation of a(t) is all that is physically meaningful, in analogy with

the β dependence of ρcylvac. This idea is stated as a principle below, in terms of the

stability of empty Minkowski space, and is at the foundation of our conclusions.

Let us quickly review the standard cosmology. The Einstein equations are

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν (5)

where G is Newton’s constant. The stress energy tensor Tµν = diag(ρ, p, p, p) where

ρ is the energy density and p the pressure. The non-zero elements of the Ricci

tensor are R00 = −3 ä/a, Rij = (2ȧ2 + aä)δij, and the Ricci scalar is R = gµνRµν =

6 ((ȧ/a)2 + ä/a), where over-dots refer to time-derivatives. The temporal and spatial
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=   Ricci scalar (curvature)
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where ξ is an additional coupling to RΦ in the original action. In our calculation

ξ = 0, and one sees that our simple calculation reproduces the first R2 term. When

ξ = 1/6 the theory is conformally invariant and the additional term is the conformal

anomaly[26], which our simple calculation has missed. This is not surprising, since

the anomaly depends on the spin of the field, and not simply of opposite sign for

bosons verses fermions. In any case, in our approximation we are dropping the

R2 terms. What this indicates is that the assumption [iv] in the Introduction is
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 ➢   new vacuum energy is constant in time when only 
radiation is present.   

 ➢   In the very early universe,  there was only radiation.

➢    It’s vacuum energy behaves like a cosmological constant.

➢    INFLATION is essentially explained by a cosmological 
constant,  but much larger than the presently measured one.

➢    When H = ∂ta/a is large,  must keep the R2 term in ρvac 

➢    The Friedmann equation is an algebraic equation that 
fixes  H ~ kc  in constantly expanding (de Sitter) space.   
About the right magnitude.  

Roughly,  Friedmann implies

       H2  =   ( kc2  R  - R2  )/kc2

            R ~ H    ⇒  H ~ kc     

such that

ρv̂ac =
ĝ

32πG
R. (38)

Including ρv̂ac in ρ, the first Friedmann equation then becomes

(
1−

ĝ

2

)(
ȧ

a

)2

−
ĝ

2

ä

a
=

8πG

3
(ρm + ρrad) . (39)

Similarly to what was found in the last section, a consistent solution only exists

when ĝ = 1, but this time with no matter, ρm = 0. First consider the case where

there is no radiation nor matter. Then eq. (39) implies ä/a = (2− ĝ)(ȧ/a)2/ĝ. Using

this, the pressure can again be found from eq. (7)

pv̂ac = −
(4− ĝ)

3ĝ
ρv̂ac. (40)

Consistency requires the equation of state parameter w = −1, i.e. ĝ = 1. The

solution is a(t) ∝ eHt for some constant H , and ρv̂ac is independent of time.

Now, let us include radiation. At a fixed time ti define ρi = 3H2/8πG where H

is a constant equal to ȧ/a at the time ti. Now we have to solve (when ĝ = 1):

1

2H2

[(
ȧ

a

)2

−
ä

a

]

=
Ωrad

a4
(41)

where Ωrad = ρrad/ρi at the time ti where a(ti) = 1. The general solution, up to a

time shift, is

a(t) =

(
Ωrad

ν

)1/4 √
sinh(2H

√
ν t), (42)

where ν is a free parameter. Surprisingly, again ρv̂ac is still a constant,

ρv̂ac
ρi

= ν. (43)

However this is spoiled if there is matter present (see below). At early times,

radiation dominates, a(t) ∝ t1/2, and at later times vacuum energy dominates,

a(t) ∝ exp(
√
νHt).
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ĝ

2

)(
ȧ
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ä

a
=

8πG

3
(ρm + ρrad) . (39)

Similarly to what was found in the last section, a consistent solution only exists
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ȧ

a

)2

−
ä
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vacuum energy density has symbolically the “adiabatic” expansion (up to constants):

ρvac,0 = k4
c + k2

c R̂ + R̂2 + · · · (11)

where R̂ is related to the curvature and is a linear combination of (ȧ/a)2 and ä/a,

depending on the choice of |vac〉. The principle of the stability of empty Minkowski

space [iii] leads us to discard the k4
c term, but not the other terms since they depend

on time derivatives of a(t). The vacuum energy is now viewed as a low energy phe-

nomenon, like the Casimir effect. Other regularization schemes, based for example

on point-splitting[22], insist on a finite ρvac and thus discard the first two terms. Ac-

cording to our principles, the second term must be kept since it depends dynamically

on the geometry. In the current universe R̂ it is approximately on the order of H2
0 ,

where H0 is the Hubble constant, and if the cut-off kc is on the order of the Planck

energy, then the resulting value of ρvac is the right order of magnitude in comparison

with the measured value (1), namely ρvac ≈ (kpH0)2 = 3.2×10−46Gev4, using for H0

the present value of the Hubble constant. The R̂2 is much too small to explain the

measured value. We emphasize that our ρvac is not simply proportional to H2, see

eqns. (24,35) below, and is in fact constant in time for the self-consistent solutions

that we find. There is nothing special about H0 here, since ρvac is constant in time;

we are simply evaluating it at the present time which involves H0. A practical point

of view is that astrophysical observations are telling us that the k4
c term should be

shifted away. More importantly, it remains to determine whether the term that we

do keep, k2
c R̂, has physical consequences in agreement with observations, which is

the main purpose of our study.

Is shifting away the k4
c term a fine-tuning? Let us address this in the context of

the ADM/AD framework[14, 15]. In the latter work it was shown that in classical

general relativity, once the value of the cosmological constant Λ is fixed, there is a

unique choice of energy that is conserved, i.e. there is no more freedom to shift it. For

9

solution if a specific relation between kc and the Newton constant G is satisfied. By

“consistent”, we mean ρ̇vac = 0. Our solution for a(t) is consistent with present day

astrophysical observations if one ignores the very small radiation component. To

our knowledge this choice for |vac〉 has not been considered before. Below, we also

remark on the cosmic coincidence problem in light of our result.

• For a universe consisting of only radiation and vacuum energy, there is another

different choice of vacuum, |v̂ac〉, that also has a consistent solution, again only for

a certain relation between kc and G. This vacuum has been studied before and is

referred to as the conformal vacuum in the literature. We suggest that this solution

possibly describes inflation, without invoking an inflaton field, and speculate on a

scenario to resolve the “graceful exit” problem. We also argue that when H = ȧ/a

is large, the first Friedmann equation sets the scale H ∼ kc, which is the right order

of magnitude if kc is the Planck scale.

The next two sections simply describe these two choices of vacua and analyze

the self-consistency of the back-reaction. Our analysis is done using an adiabatic

expansion. In the Conclusion, we further discuss our results.

II. VACUUM ENERGY PLUS MATTER

A. Choice of vacuum and its energy density

We first review the standard version of the Cosmological Constant Problem. Since

a free quantum field is an infinite collection of harmonic oscillators for each wave-

vector k, we first review simple quantum mechanical versions in order to point out the

difference between bosons and fermions. Canonical quantization of a bosonic mode

[19] of frequency ω yields to a pair of creation and annihilation operators, a, a†, with

[a, a†] = 1, and a hamiltonian H = ω
2
(aa†+ a†a) = ω(a†a+ 1

2
). The boson zero-point

11
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Interpretation of g=1?   Recall: 

breaking and the two graviton polarizations. Incidentally, for one generation Nf =

Nb = 30, so in order for the cosmological constant to be positive, one needs at least 2

generations. The measured value of the vacuum energy can be accounted for with a

cut-off about an order of magnitude below the Planck energy [26], kc ≈ 3×1018 Gev.

We have ignored interactions which modify the value of ρvac, however we expect that

they do not drastically change our results. One should also bear in mind that the

sharp cutoff kc is meant to represent a cross-over from the effective theory valid at

energy scale well below kc to that (including gravity) valid above kc.

B. Consistent backreaction

Let us suppose that the only form of vacuum energy is ρvac of the last section

eq. (24), and that a(t) is varying slowly enough in time that the A2 term can be

neglected. Define the dimensionless constant:

g =
3∆N

8π
Gk2

c (25)

such that

ρvac =
g

6πG
A. (26)

Including ρvac in the total ρ, the first Friedmann equation can be written as

�
1− g

3

��
ȧ

a

�2

− 2g

3

ä

a
=

8πG

3
(ρm + ρrad) (27)

We emphasize that we have not modified the Friedman equation; the extra terms on

the left-hand side come from ρvac which were originally on the right-hand side of the

first Friedmann equation.

As we now argue, there is only a consistent solution when g = 1. First consider

the case where there is no radiation nor matter. Then eq. (27) implies ä/a =

17

Using energy conservation, 
can derive 1st Friedmann! 

tensor are R00 = −3 ä/a, Rij = (2ȧ2 + aä)δij, and the Ricci scalar is R = gµνRµν =

6 ((ȧ/a)2 + ä/a), where over-dots refer to time-derivatives. The temporal and spatial

Einstein equations (5) for the FLRW metric are then the Friedmann equations:

�
ȧ

a

�2

=
8πG

3
ρ, (6)

�
ȧ

a

�2

+ 2
ä

a
= −8πGp. (7)

Taking a time derivative of the first equation and using the second, one obtains

ρ̇ = −3

�
ȧ

a

�
(ρ+ p), (8)

which expresses the usual energy conservation. The above three equations are thus

not functionally independent, the reason being that Bianchi identities relate the two

Friedmann equations to the energy conservation equation (8). The total energy

density is usually assumed to consist of a mixture of three non-interacting fluids,

radiation, matter, and dark energy, ρ = ρrad+ρm+ρΛ, each of which satisfies eq. (8)

separately, with p = wρ for w = 1/3, 0 and −1 respectively. Then, eq.(8) consistently

implies ρ̇Λ = 0. The energy density is related to the classical cosmological constant

as Λ = 8πGρΛ.

In this paper we will assume that dark energy comes entirely from vacuum energy,

ρΛ = ρvac. The vacuum energy ρvac is a quantum expectation value,

ρvac = �H� = �vac|H|vac�, (9)

where H a quantum operator corresponding to the energy density, which is usually

associated with T00.

Apart from the ambiguity of the zero point energy, several other points should be

emphasized. We will be studying the semi-classical Einstein equations, where on the

right hand side we include the contribution of vacuum energy �Tµν� = �vac|Tµν |vac�

6

where    

energy scale; rather it is just the scale that one naively expects some form of quan-

tization of the gravitational field to become important. Here, the relation g = 1 is a

specific relation between the cut-off, Newton’s constant G, and the number of parti-

cle species, and is unrelated to the quantization of gravity itself. One interpretation

is simply that the cut-off kc is the fundamental scale and that G is not fundamental,

but rather is fixed by the cut-off from g = 1.

Allow us to speculate further: the relation g = 1 suggests that gravity itself

originates from quantum vacuum fluctuations. Let us now argue how gravity can be

heuristically “derived” from quantum mechanics. Since ρvac involves time derivatives

and is dynamical, let us view it as a kinetic energy K. Let ρ denote energy density

of real matter or radiation, and view it as a potential energy U . Since field theory

is a collection of harmonic oscillators, let us apply the virial theorem 2�K� = n�U�

with n = 2. This implies ρvac = ρ. Now, let us further assume that ȧ/a is constant.

Then A = 9
4

�
ȧ
a

�2
. The equation ρvac = ρ now reads

�
ȧ
a

�2
= 8πG

3 ρ, with G = 8π
3∆Nk2c

,

which is nothing other than the Friedmann equation! From this point of view, the

fundamental constants are �, c and kc, and Newton’s constant G is emergent. It is

well-known that the Friedmann equation can be derived from non-relativistic New-

tonian gravity, so the above argument indirectly implies Newton’s law of gravitation.

The Planck scale has lost any real physical meaning here, and gravity is very weak

because the cut-off kc is large. If there is any truth to this idea, it renders the goal

of quantizing gravity obsolete since it is already a quantum effect!

Finally we wish to make some observations on the so-called cosmic coincidence

problem. Simply stated, the problem is that at the present time t0 the densities

of matter and vacuum energy are comparable, and since they evolved at different

rates, their ratio would apparently have had to be fine-tuned to differ by many

orders of magnitude in the very far past. From the point of view of the second

order differential eq. (29), µ = Ωvac is just one of its arbitrary integration constants
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is emergent

Should we  abandon trying to quantize 
gravity, since it’s already a quantum effect?

* First Law of Thermo:     dE =  dQ - p dV 

*  dQ =0 in closed universe (adiabatic)

*  Identify  internal energy  dE = ρvac dV

*   First Law reads becomes the spatial Friedmann eq!

A “derivation” of gravity from quantum mechanics:
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