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Pixel Detector For ATLAS Phase-2 Upgrade:
Tracking In Very Forward Rapidity Region
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Higgs Boson Discovery: Triumph Of LHC Run-1 Program

Main Run-1 results: discovery of Higgs boson; no signs of New Physics

ATLAS SUSY Searches* - 95% CL Lower Limits
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Physics Program For High Luminosity LHC

ATLAS Simulation Preliminary
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Tracking Is Crucial For Success Of HL-LHC Program

L L L B
[ ATLAS Simulation Preliminary  /s=14Tev
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Example of improvements "u
in pile-up jet rejection

e ATLAS tracking detector during HL-LHC run will have to provide efficient and
precise track reconstruction in a very challenging environment with ~200
pile-up interactions per bunch crossing

 New detector must cope with high radiation field (up to 7.7 MGy and

1.4x10*°n,, cm™?)

* Allsilicon tracking detector: pixel detector + strip detector

e Extension of the tracking coverage into the very forward region (up to |n|
<4) will significantly enhance the potential of the HL-LHC physics program

11/30/15
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Extensive R&D Program Is Well Underway

e Technical Design Report (TDR) for Strip detector is due in 2016
 TDR for Pixel detector is due in Q4 of 2017

— Pixel sensors (planar, 3D, CMOQOS,...)

— New FE chip (RD53)

— Module desigh, module electronics

— Services

— Local supports

— Off-detector electronics

— Global mechanics

— Layout optimization _ _
This seminar
— Software development

11/30/15 Seminar at Cornell 5




Two Concepts Of Pixel Detector For Phase-2 Upgrade

e Tracking in the forward region (|n|>2.7) will rely solely on Pixel detector

 Two concepts of the Pixel detector are under study
— Concept-1 (“Extended”) utilizes long clusters from extended inner barrel layers
— Concept-2 (“Inclined”) utilizes inclined modules in two inner barrel layers

* Two layouts under study have the same Pixel end-cap

* Both layouts are optimized to have at least 9 space points for all n

* Choose final layout based on the comparison of performance (March 2016)
e Further optimize the chosen layout to achieve most optimal performance
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ITk layout with non-inclined extended inner pixel barrel, |n| < 4.0
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Pixel Detector For Phase-2 Upgrade

Sensors
— Planar sensors n-in-p (for now, R&D is ongoing)
— Barrel Layer-0,1 and inner end-cap ring: 50pum x 50pum x 100um
* Also consider option of 25um x 100pum x 100pm
— Barrel Layer-2,3,4 & end-cap: 50um x 50pum x 150um
— Aim at operating with 600e threshold(s)
— Electronics noise hit occupancy: 10°
Modules: “quad” modules everywhere (except for Layer-0, “double”)
— About 10,000 modules
Barrel: 5 layers
— R=3.9,6.5, 16, 20,30 cm
— room for 6 layer, study of potential benefits are underway
End-cap: 4 layers of rings, number of rings vary depending in n and R
— R=15-19, 21-25, 27.5-31.5, 33.5-37.5cm

Total surface is ~14 m?
— depends on layout, roughly 50/50 between barrel and end-cap
— approximate cost is 38.5MCHF

12/1/15 Seminar at Cornell



Amount Of Material For Phase-2 ITK Detector

Preliminary estimates for the “Extended” layout

— This will change with more refined knowledge of services and after layout is
finalized
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End-cap Pixel Detector

* Highlights of design
— Highly flexible design: individual rings can be placed where they are needed
— Services can be routed in between rings: greatly simplifies the build
— Use 4-chip “quad” modules: common development with barrel staves
— Highly modular design: same elements everywhere, just scale is different

— Intergration into ITK can be “monolithic” (in one piece) or “modular” (in sections)
12/1/15 Seminar at Cornell 9



Ring Position Optimization For End-Cap

B I S I

1 hit coverage 2 hits
starting here coverage starting
at this n value

* For a given n range, each ring layer contributes a given number of hits
— Allowing for some overlap between consecutive modules
— Respecting a minimum distance of 8 cm between rings

 Asimilar principle is used for positioning the inclined barrel sensors

12/1/15 Seminar at Cornell 10




Ring Design For End-Cap

 Mechanical design is
quite mature

— Carbon fibre/foam
sandwich

— Embedded bus tape
and cooling pipe

F.Gannaway

— “Eos” card on surface
for power and DCS

P.Sutcliffe
— Currently assuming no

GBTx—twinax routed
directly from modules

* Eachring layeris
attached to a support
cylinder at the outer
edge

12/1/15 Seminar at Cornell 11




“Inclined” Layout For Pixel Barrel Detector

* Modules inclined at 34° with respect to vertical line

* Helps to reduce amount of material traversed by a track
— Reduces effect of multiple scattering and silicon area

* Provides (21 for given n) hits very close to interaction point
 Two technologies: “Alpine” and SLIM

11/30/15 Seminar at Cornell 12




“Extended” Layout For Pixel Barrel Detector
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| / / / .7 el -
I n =
! I / / - Z -
o | ! | / / - e - PPt
c ! | / / /7 - P P eta=2.0
| i / / ’ - -~ prad -
~— 7S 77 ~ P S B PS tan B
(V] : ! At 7 -t - I S -
[Te] T ” = ~=7] o S - -
[V _ —-1 t-—— 1 __-—- __ -+ __— ta = 3.0
© ;7'_4;44/_’4._/?»4 B et IO ol I [y R S S O S Sl B S
O LI 2 8 e ) i = i ) i SO s Bt B Sl S
e A A A A F Ao d=F A4 F-F-d-—Jd-—d-—F-—d---—ga-40
o e b e B S B o e B i i o s it
o _| iREEsssEsE=m—= ESS====
o
ITk layout with non-inclined extended inner pixel barrel, |n| < 4.0
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I-beams: low-mass carbon composite

support structure

$O11z;
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Long clusters = “tracklets”, providing
initial precise estimates of 8 and z,

— Seed pattern recognition
— Potential to reduce fake rate
— Potential to reduce CPU time

Simple and easy to build design
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R&D Program For “Extended” Pixel Barrel Detector

Institutions involved: LBNL, U. Louisville, U. Wisconsin

e Test beam to study clusters at very small incidence angles (this talk)
 Comparison of simulation with test beam results
 Development of pattern recognition based on cluster size (this talk)

* Tests of pattern recognition based on cluster size with simulation (this
talk)

e Optimization of the layout

e Study of tracking performance and benefits to physics program with
the optimized layout

e Test beam studies of the proto-type detector at very small incidence
angles
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SLAC ESA Test Beam

* Four un-irradiated Insertable B-Layer (IBL) modules
— Two double-chip planar modules; two single-chip 3D modules
— Most modules have FEI4B chips (one module with FEI4A chip)
— Planar sensors: 50pum x 250pum x 200pum
— 3D sensors: 50um x 250pum x 230um
— Modules tuned to 10 ToT at 16K electrons

* Beam: 10 GeV electrons, a few particles per bunch at 5 Hz
— Studies with beam in “short” (50 um) and “long” (250 um) directions
— 5incidence angles: ~2°, ~4°, ~6°, ~10°, ~15°
Module-1 Module-2
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CERN SPS Test Beam

* Single-chip 3D module with FEI4A chip
— 5incidence angles: ~2°, ~4°, ~6°, ~10°, ~15°
 Beam: charged pions (rt*) with 180 GeV
* Tracks measured with FEI4 telescope with 14pm and 8.5um resolution in Xand Y

FE-14 DC modules

5

A
g

BEAM
180 GeV 1"

\

AL

Figure credit:
JUDITH analysis software documentation
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Long Pixel Clusters Observed

row

Clusters
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ToT

1w o  Example of typical clusters at ~2.5°
?  (n™~3.8)

. ¢ Planar module biased at -180V and
6 with 1000e threshold

e Beamisin “short” (50um) direction

o * “On-peak” cluster size is 93 pixels
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N
N
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12/1/15 Seminar at Cornell 17




Pixel Hit Efficiency In Test Beam Data

Pixel hit efficiency

Efficiency for “long” direction is >99.5% for all modules at all angles, thresholds and
reverse bias voltages
Efficiency for “short” direction has strong dependence on threshold
— Efficiency in 3D modules also shows some dependence on incidence angle and reverse bias
voltage
No timing cut applied Example: € = 4/5 for this long cluster
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0.4— © ATLAS09 FBK12 © 22-08-25 * 94-01-04 _ "I CERN Test Beam, Module ATLAS09 FBK12, short pixel direction -
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Cluster Length And Measurements Of Incidence Angle

Incidence angle [deg.]

o(length) [pix.]

Cluster length provides precise measurement of

— Results are essentially independent of the threshold
Consistent results between “short” and “long”

Incidence angle [deg.]

o(length) [pix.]

~2% resolution is achieved for tan6 at 6~2° for “short”
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t
(Mo =3)x P
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Measurements Of Charge Sharing And Charge Collection

Measurements performed using CERN data for 3D module as a function of reversed

Charge collection is smaller closer to pixel edges, effect is more pronounced at

Charge sharing is larger at pixel edges and lower bias voltage
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Small Angle Test Beam: Summary

Long pixel clusters observed: confirmed the concept
Precise measurement of the incidence angle based on cluster length

— Essentially the same precision is achieved for 1000e and 2000e thresholds

Pixel hit efficiency for 50um pitch along the beam direction is >94%
— Observed dependence on incidence angle

— Efficiency strongly degrades with increasing threshold
* As low as 70% efficiency at 2° incidence angle and 2000e threshold

— Low thresholds are needed to ensure high pixel hit efficiency

Charge collection and charge sharing show dependence on reverse
bias voltage
Next steps
— Compare test beam results with simulation
— Understand dependence of pixel hit efficiency dependence on incidence angle
— Test beam studies with irradiated modules
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Extended Inner Barrel Layers In Simulation

Radius (m)

Simulated layout is used to prove the concept of forward tracking
based on the cluster size, to develop software tools and to gain
understanding of potential benefits and issues

— Pixel detector: 4 barrel layers and up to 12 disks on each side

— (Inner most) Layer-0 coverage up to |n|<4

— Pixel pitch: 50 X 50 x 150 um?3 (WidthxLengthxThickness)

— Electronics threshold at 700e

— Ttbar sample without pile-up (<p>=0) and with pile-up (<p>=50, 100, 200)
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Long Pixel Clusters In Simulation

row

Example of typical clusters at |n|~4

Almost every long cluster is broken into several fragments
— Pixel hit efficiency in simulation to be compared with test beam data
— Unlike test beam, charge is integrated inside 25ns time window
— Need clustering algorithm to merge broken clusters

Efficiency for long clusters is essentially 100%

I-.IJII-II-II-Il-lI-II -IILII -.r..- | -Il-Il‘.lr..‘.l-“I-l--Il‘-I:Lll

300

250

200

150

100

50

P —
Entries 836
Mean x 176§
Meany 143.4
RMSx 10455
RMSy 75.84
1.4
1.2
1
0.8 . .
) Potential signatures of 6-rays
0.
o (to be confirmed)
0.2
........ |

OO

50

! ! !
0
250 300 350 400 ninar at Cornell 23



Size Of Pixel Clusters From Prompt And Fake Tracks

Fraction of clusters

Pixel clusters from prompt tracks follow N__=thickness/(pitch*tan8) dependence
very well

— Tracks originating from pile-up and secondary interactions follow the same trend

Most pixel clusters from fake tracks tend to have clusters size incompatible with
=thickness/(pitch*tan8) dependence
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— Fake tracks are often made of random combination of pixel clusters
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Pattern Recognition At ATLAS

* Track seed= 3 space points

— Space point provides 3D measurement
e 1 pixel cluster = 1 space point
e 2 strip clusters = 1 space point

— All possible combinations of space points
are considered

— Multiple seeds per track are created

— Quality cuts applied to reduce number of
fake seeds

3 space point seed

— Large number of fake seeds at 200 pile-up
interactions

* Seeds provide initial estimates of track
parameters

e Search for additional hits along road
extrapolated from a seed

* Resolve combinatorial ambiguities due /
to large number of candidates per track o

e Seed creation is most CPU extensive
stage of track reconstruction
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Pattern Recognition Based On Cluster Size: Concept

* Strategy-1: reject seeds with pixel clusters whose size is incompatible with 6,4

— This strategy is currently used in pattern recognition studies
e Strategy-2: search for clusters in small cone determined by cluster size in inner
layers

— This strategy potentially offers more advantages (like speed and lower fake rate), but it
requires very good understanding and modeling of pixel cluster size

— To be implemented in the future

Charged particle

11/30/15 26




Pattern Recognition Based On Cluster Size: Performance

 About 70% of track seeds in ttbar events with 200 pile-up collisions are in the
forward region (|n|>2.7)

— Seed creation is responsible for ~55% of total CPU time per event

e Cluster size information helps to reduce the number of central (|n|<2.7) and
forward (|n|>2.7) seeds by ~30% and ~50%, respectively

— Reduction in the number of seeds will lead to reduction in CPU time per event

ATLAS ITK Simulation
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Efficiency For Prompt Tracks

* Large reduction in the number of seeds does not have a significant

(default)

t@cks
©
(6]

N,.cks(Cluster cuts)/N
o

mpact on the number of reconstructed prompt tracks
— Preliminary results; optimization studies are still in progress

N....(new): number of tracks reconstructed with pattern recognition exploiting
cluster size information

(default): number of tracks reconstructed with default pattern recognition
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Reduction In The Number Of Fake Tracks

(default)

tracks

N, cks(Cluster cuts)/N

Default pattern recognition: most of the reconstructed tracks in the
very forward region (| n|>3.5) are fakes

New pattern recognition: large reduction in the number of fake
tracks in the forward region with minimal impact on tracks from hard
scattering and pile-up interactions

— Preliminary results; optimization studies are still in progress
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Pattern Recognition With Long Clusters: Summary

Long clusters can be used to improve pattern recognition

Cluster size in simulation follows predicted pattern
— Cluster segments can be efficiently merged to restore the original cluster

Large difference between size of clusters attached to prompt and fake
tracks

Use of cluster size information in pattern recognition allows for
significant reduction in the number of seeds and will potentially lead
to significant reduction in CPU time

Reduction in the number of seeds is achieved at a minimal impact on
the reconstruction efficiency for prompt tracks

Use of cluster size information in pattern recognition allows for
significant reduction in the number of fake tracks
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Conclusions

ATLAS R&D program for Phase-2 all-silicon tracker upgrade is well
underway

— Strip TDR is due in 2016
— Pixel TDR is due in 2017

Extensive studies are in progress for the layout of the tracking
detector with coverage up to |n|<4

Two competing concepts for the Pixel detector layout
— “Extended” barrel layers

— “Inclined” barrel modules

"Extended” barrel layout utilizes cluster size information for
improvements in pattern recognition

— Concept is proven in test beam studies

— Simulation studies indicate significant benefits for track reconstruction
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End-Cap Pixel Detector

Support cylinder

28-quad ring shown
* active radial coverage 95mm-135mm Mounting tabs

.. ~3.5% of
* Modules closer together on this ring use o' space
than in the outer layers
* Not part of current Unity layouts but
illustrates the concept...

Data, C&C A
HV,LV "
DCsel QUL

Embedded bus tapes
Folded over to modules
One ring’s worth of services shown.
Services from lower-z rings are accumulated.
Assuming a packing density of % (conservative!), we

can fit up to 28 rings’ worth of services through this
space (14 if two data cables/quad are required)
Situation is very similar (slightly less restrictive) for
other ring types.

Type-l service space
9mm radial

Cooling pipe
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