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Abstract

In this paper we determine the need for improved bias sensitive
methods in particle physics and apply a technique that uses higher
order derivatives of the likelihood, L, to improve efficiency in a narrow
resonance fit scenario. The technique used is that described by G.
Bonvicini in [1].

1 Introduction

Since bias is present to some extent in every analysis, methods to detect
and potentially correct for bias are necessary. The χ2 (when available) is
the sole parameter used to characterize the goodness of fit, but, as we show,
there are practical cases in particle physics that could benefit substantially
from improvements. We find in the 2006 Particle Physics Data Book, PDB,
that summary table quotes of mass and width quantities for sets of mesons
display significant bias in their reduced χ2 values, χ2/dof , where dof is the
number of experiments minus the number of free parameters (in this case,
one). We also show that this bias cannot be explained by a change in the
confidence interval production, i.e., through the L versus Feldman & Cousins,
because differences between the two methods are of order 1/N , N being the
number of events considered. Having given cases for improvement we proceed
to simulate experiments and apply the technique of [1]. In this paper, the
case of a narrow resonance amidst background is analyzed. Biased fits are
produced through a two signal convolution, then derivatives of L are used to
improve bias detection and efficiency.



2 An Example.

For the purpose of illustration, we select a subsample of results from the
Particle Data Book that, while being reasonably sound experimentally, can
be expected to suffer from substantial theoretical biases.

The sample consists of the masses and widths of unflavored light mesons
(S = B = C = 0). Their dynamics are usually modeled with QCD models
that are not exact solutions of the QCD Lagrangian. Their large widths
(after the cuts mentioned below) induce large interference effects.

We consider only measurements of particles known to exist (they are
listed in the Summary Tables), where at least 5 experimental measurements
are reported, for the purpose of extracting a good χ2 from the data. To
enhance the possibility of having large interference effects, we consider only
particles with a measured width exceeding 10 MeV. We arrive at a sample
of 28 widths and 28 masses.

To compute the reduced χ2 values, which is sometimes also quoted in the
PDB, we use the following equation

χ2/dof =
1

Ne − 1

Ne∑

i

(yi − y∗
i )

2

σ2
i

(1)

in which yi are the experiments, y∗
i the 2006 PDB summary table values, and

σ2
i the quoted variance of y∗

i .
The resulting histograms can be expected, if the data were truly unbiased,

to have approximately equal populations above and below the reduced χ2

expectation value of 1. Instead, Figs. 1 and 2, only one of the 56 quantities
is below, all others being above.

The most obvious explanation is that the bias is of the order of the quoted
experimental errors, and therefore significant. Of note is the fact that these
data are usually obtained through multi-parameter fits. The data samples
had populations N ranging from 103 to 106, so that the bias was of the order
0.03 to 0.001 depending on the sample.

2.1 Confidence Interval Comparison

There may be a question of whether these discrepancies could be due to a
choice in the fitting method (the standard likelihood). The bulk of the data
considered in Figs. 1 and 2 was obtained in the 1970s and 1980s, whereas
nowadays the Feldman & Cousins is used.

For the purpose of disproving this notion, we compare the confidence
intervals constructed with the two methods, in the case of varying Poissonian
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Figure 1: Reduced χ2 plot for 2006 PDB summary table masses.

signal, Np, with no background.
Fig. 3 shows that the difference between the two methods tends to a

constant as Np increases. Thus, the difference in the obtained upper and
lower limits goes like 1/N . The same result, not shown, was obtained for the
90% CI.

3 Simulation

To give an example of how the technique may work, we simulate an ex-
periment, with statistics similar to current CLEO experiments. A narrow
resonance with Ns = 7000 events is considered. The part of the spectrum
considered for fitting extends 7 standard deviations above and below the res-
onance, with 50 bins in the histogram. The resonance is situated on top of a
flat background of 3000 events per bin. When fitted in an unbiased way, the
correct signal is recovered with an error of about 2.4%.

The bias is inserted by hypothesizing that the “true” resonance has two
Gaussian resolution contributions, a main one contributing 90% of the statis-
tics and a smaller one contributing 10% of the statistics, with width twice as
large as the 90% contribution. Many a narrow peak are fitted with a single
Gaussian when in fact the experimental resolution is the convolution of many
Gaussians, due to the dependence of the spectrometer resolution on multiple
scattering and track angle amongst other things. However, the fitting routine
is written so that only one gaussian width is given as a free parameter to fit
the data.
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Figure 2: Reduced χ2 plot for 2006 PDB summary table widths.

Therefore we have a signal parameter (the outcome of our experiment),
and two nuisance parameters (the background, and the width of the peak).
The bias enters only through the mis-representation of the functional form
of the peak. Errors are considered to be Gaussian.

From Fig. 4, one can see that for the signal the outcome of many such
biased fits is consistently biased down by about 3% (1.25 times the quoted
signal error). From Fig. 4, one can also see that the χ2 test does not allow
good separation between biased (dashed) and unbiased (solid) fits. However,
most quantities in the covariance matrix also show some separation (Fig.
5) between biased and unbiased fits which can be used to reject the biased
fits. In Fig. 6, we also show the expectation probability for the correlation
coefficients, based on the equation

µ(α, β) = E

[
∂ log L
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in which α, β are fit parameters for the function fi = f(xi; α, β), uniform
event errors σ, and N number of events.
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Figure 3: Difference between L and Feldman & Cousins (FC) methods.

3.1 Improvements

Here we address how this information is used to improve efficiency. First, in
Table I we show the efficiency for unbiased fits when different cuts are applied
on the χ2 (first line) as well as the six members of the covariance matrix.
For the χ2, E[χ2] = 47 with

√
D[χ2] = 9.75, so the 2.0 cut corresponds to a

47 + 2 ∗ 9.75 = 66.5 cut. For all other variables, the distribution is so close
to Gaussian that the cut is applied symmetrically. If a fit is more than 2
standard deviations above or below E[ρ] (as given by Eq. 2), for example, it
will fail the 2.0 cut.

In Table II, we give the same table for the biased fits. One can see that,
for example, a χ2 cut that eliminates 3.4% of the unbiased fits (column 2,
Table I) will eliminate 12.9% of the biased fits. A mixed cut, using the sixth
column for the χ2 and the fifth column for the covij (the selection of columns
to obtain approximately equal ineficiency for all cuts) gives 3.2% inefficiency
for unbiased fits but 27.0% rejection for biased fits. Already the rejection
power has more than doubled.

In fact, one may argue that, because the result of the experiment is only
the signal, the other two parameters being nuisance, one should construct the
goodness of fit for that parameter alone. It does not matter what the biasing
information is about the nuisance parameter, since they are there only to
steer a line through the data. If we do that (using only the first, second, and
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Figure 4: Above: Effect of bias on the signal fit (µ is the integral of the
signal). Below: Effect of bias on χ2.

fifth row, fourth column) we obtain a 3.9% inefficiency for unbiased data and
a 35.5% rejection for biased data. The rejection power has almost tripled
compared to the χ2 cut alone, for about the same inefficiency.

4 Outlook and Ongoing Work

As we can see from the narrow signal case, the derivatives contain useful
information. An alternative method that uses this information can be under-
stood as one that maximizes not L, but the residual population. Through this
method one can gain more information about the residual population from
higher order derivatives, and, as was demonstrated, the first order derivatives
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Figure 5: Covariance elements for biased (solid line) and unbiased (dashed
line) fits [1-signal, 2-background, 3-width of peak]

cut 1.80 2.00 2.20 2.40 2.60 2.80 3.00
χ2 0.95246 0.96602 0.97592 0.98364 0.98926 0.99310 0.99544

cov11 0.92946 0.95626 0.97328 0.98450 0.99106 0.99516 0.99746
cov22 0.92698 0.95338 0.97218 0.98282 0.99030 0.99434 0.99694
cov33 0.92878 0.95466 0.97214 0.98354 0.99054 0.99464 0.99700
cov12 0.93234 0.95806 0.97448 0.98506 0.99164 0.99546 0.99782
cov13 0.92774 0.95522 0.97250 0.98386 0.99080 0.99496 0.99728
cov23 0.93098 0.95584 0.97316 0.98428 0.99098 0.99512 0.99754

Table 1: Unbiased efficiencies

alone yield improvements over χ2. In general, the technique presented here
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Figure 6: Correlation elements for biased (solid line) and unbiased (dashed
line) [1-signal, 2-background, 3-width of peak]

cut 1.80 2.00 2.20 2.40 2.60 2.80 3.00
χ2 0.83410 0.87087 0.90017 0.92425 0.94370 0.95887 0.97061

cov11 0.94627 0.97772 0.99177 0.99709 0.99940 0.99983 1.00000
cov22 0.99957 0.99991 1.00000 1.00000 1.00000 1.00000 1.00000
cov33 0.79374 0.86358 0.91585 0.95150 0.97258 0.98586 0.99332
cov12 0.44953 0.54422 0.63299 0.71320 0.78886 0.85476 0.90197
cov13 0.96590 0.98646 0.99503 0.99846 0.99966 0.99991 1.00000
cov23 0.85244 0.89477 0.92682 0.95321 0.97078 0.98235 0.99023

Table 2: Biased efficiencies

entails a new goodness of fit, as described in [1].
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