Summary of the IR/Optics + operations, Reliability, Instrumentation, Injection Working Group

Yoshihiro Funakoshi (KEK)

- (1) What were done in the working group?
 - 1) Talks on specific topics -> U. Wienands
 - 2) Discussions or/and talks based on two working lists
- (2) Working list (1)
 - What are performance limiting issues at each machine?
 - Method of optics parameter measurement (beta function, x-y coupling, dispersion)
 - Method of correction
 - Dynamic aperture: Method of measurement
 - What limit dynamic aperture
 - Detector beam background situation
 - Minimum β_v^*
 - Other issues?

(3) Working list (2): Charge to WG's

- Review present designs and operational status of your working group topics
- How well have parameters measured up to expectations in existing machines?
- What are the problems and operational difficulties common to several machines?
- How much further can parameters be pushed to improve machine performance?
- What are the critical steps in doing this?

	Present Design and Operation Status	Prameter vs. Expectations	Problem and Operational
	(performance limiting issues)		Difficulties
CESR-B	Running (parasitic x-ing)	Expectations have been met.	Solenoid compensation reproducibility rf trip
KEKB	Running @ 1/2 of design Lum. (e- cloud, bunch spacing, beam-beam)	ε blowup larger ξy- smaller # of bunches smaller (Ib higher)	change of ring circumferen Luminosity instability abort (rf trip, Belle) x-y coupling @ IP lifetime decrease (need b cl
PEP II	Running @ 133% of design Lum. (beam current (heat,rf), beam-beam, e-cloud)	Vertical beam size bigger (Σ 8 vs.) ξy - smaller	machine drift, reproducibil feedback loops rf trips, rf loop, background injection, x-y coupling
DAΦNE	Running @below design Lum. Lum/bunch ~25% (beam-beam, background, ion trapping)	ξy smaller (1/2) τ smaller (<1/2) # of bunches smaller, Ib 15mA	injection after downtime background x-y coupling
Super KEKB	in design		
Super B-Factory	parameter search		

	How far can parameters be pushed?	Critical steps in doing so	Working point
CESR-B	βy* -> 1cm Lum>3*10^32 (design@1.9GeV)(CESR-C) E -> 1.5~2.5geV (CESR-C)	Wigglers (14)(CESR-C)	(.53, .58)
KEKB	βy* -> 0.5cm overcome e- cloud instability ξy> 0.05 Design beam current Lum> $2* 10^34$	e+ in HER, e- in LER (Linac upgrade) Installation of ante-chamber Crab cavityies	(.51, .58) (LER) (.53, .59) (HER)
PEP II	β* ->35cm, <1cm HER I -> 1.5A LER I -> 3.8A Lum -> <10^34	HER rf (2 sections) Replace Q2 chamber, Q1 Replace FB kickers may need wiggler on again	(.64,.57) (LER) (.57,.63) (HER)
DAФNE	βy* ->? ξ -> 0.04, Ib -> 25~30mA # of bunches Lum>10^32	Tune change Octupole, shim wiggler 3rd harmonic rf? (cavity prototype exists)	(.15, .21) (electron) (.12, .17) (positron)

	Performance limiting issues	beta measurement	x-y coupling measurement	Dispersion measurement
CESR-B	Parasitic crossing	phase advance from turn- by-turn BPM	Forced (betatron) oscillation. See the x-y coupling.	measurement
KEKB	e- cloud instability, bunch spacing problem beam-beam	Single kick of usual steering	Single kick of usual steering	RF frequency cl
PEP II	beam current (heat,rf) beam-beam e- cloud instability	phase advance from turn- by-turn BPM	Orbit coupling using gloal closed orbit wave	RF frequency cl
DAФNE	beam-beam wiggler nonlinearity Touschek beam background ion trapping			

	correction of optics errors	Dynamic aperture	Dynamic aperture	Other issues
		Method of measurement	Measurement, What limit?	
CESR-B			Transeverse: consistent with	
			physical aperture	
		Transverse: pulse kicker		Heating of IR
KEKB	Online using SAD	magnet	Transeverse: consistent with	components
		Longitudinal: RF phase		SVD chamber v
		kick	physical aperture (H)	bukcet sp.
				IR chabmer due
			poor data (V)	SR from IP
			Longitudinal: typically 1%	
			chromaticity correction	
		Transverse: Horizontal		Reproducibility
PEP II	Offline using Lego, MAD	pulse kicker	Transever: very few data	machine
				after periods wi
	Online using beta-function	No vertical pulse kicker	not significant issues	beam
		Londitudinal: Beam		
	mesurement	lifetime vs. rf	Longitudinal:	
		voltage & Touschek		
		analysis	in data analysis	
DAФNE		3		

Commonality

- In all of 4 machines, the x-y coupling correction is important.
- In both PEP II and KEKB, ξ_v^- is limited at 0.03 due to the electron cloud instability.
- In the relatively low energy machines (DAΦNE, CESR-C), wiggler magnets are required and their nonlinearity could be an issue (especially in the DAΦNE case).
- In the relatively low energy machines including PEP II LER and KEKB LER, the Touschek effect is important to some extent.

Difference

- In DAΦNE, no electron cloud instability is observed.
- Difference in the bunch length might be relevant.
- The bunch spacing problem at the KEKB seems very different from other machines cases (In DAΦNE has some similar problem).

Issues not so serious as was expected

- Dust trapping
- Fast ion instability

Issues not dealt with in this workshop

- General lattice design issues
- > Solenoid compensation
- Method of chromaticity correction
- Tunability of optics
- These issues should be discussed in the workshop on next generation factories if held.

Discussion on zero-current beam size

Question: Is the zero-current beam size important for the high luminosity? (By Dave Rice)

PEP II: The flip-flop effect may indicate similar issue. Balance of bunch lifetime avoids one beam getting weak.

CESR: Coupling correction first; i.e. Yes

DA Φ NE: Yes. Both beam using skew quad. (ϵ + < ϵ -, κ 0.3% vs. 0.5%)

KEKB: Need to enlarge HER beam size. LER beam size is determined by electron cloud instability. Zero-current beam size is not very important.

VEPP-2M: Reduce coupling but increase beam size with vertical dispersion,

Conclusion?:

When the beam-beam blowup is weak, definitely yes. When the beam-beam blowup is serious, an intentional enlargement of the beam size may help in some cases.

My personal conclusion (impression) on the workshop

- (1) CESR seems to be a well-understood and mature machine, although seems still developing. I hope that accelerator activity at Cornell will be preserved well or even developed.
- (2) PEP II and KEKB are still growing machines. Even now, there are a lot of challenging issues to be solved. Particularly the electron cloud instability seems to be very important not only their own purposes but also considering impacts to other future machines.
- (3) DAΦNE also seems a challenging machine. There are a lot of issues on which accelerator physicists and engineers can work. A lack of machine flexibility (for change of tune etc.) from its small size seems to make the situation even more challenging.
- (4) This workshop is quite small. However, we could have deep knowledge of other machines through many discussions. Maybe this is a true "workshop" rather than "talkshop".

I really appreciate Dave Rice for his continuous efforts for the workshop.