Physics at a Super B-Factory

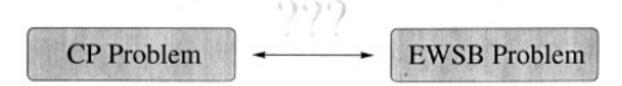
Matthias Neubert - Cornell University

(neubert@mail.lns.cornell.edu)

- I. Introductory Remarks
- II. Precision CKM Physics
- III. Rare and Forbidden B Decays
- IV. τ and Charm Physics
- V. Conclusions

23rd Advanced ICFA Beam Dynamics Workshop on High Luminosity e^+e^- Colliders (Cornell University, Ithaca, New York, 15–19 October 2001)

I. Introductory Remarks


- * assessment of the physics potential of a super-high luminosity e^+e^- B-factory $(\mathcal{L}\sim 10^{36}\,\mathrm{cm^{-2}\,s^{-1}})$ must make assumptions about many unknowns:
 - fate of high-energy physics over next 5–10 years
 - ullet findings and potential of current e^+e^- factories (PEP-II and KEK-B) and future hadronic B-factories (LHC-b and BTeV)
 - developments in theory (QCD)
 - political realities
- will ignore political realities and assume that theory progresses at current paste, but without revolutionary developments (physics case should not rely on "revolution in lattice gauge theory")

- * will assume that upgrades of present B-factories and operation of future, hadronic B experiments proceed as advertised, and use the projections for Super-BaBar as reported in Physics at a 10³⁶ Asymmetric B Factory (SLAC-PUB-8970, August 2001) [thanks to D. Hitlin]
 - \bullet for PEP-II and KEK-B, use benchmark integrated luminosities of 30 fb⁻¹ (now) and 500 fb⁻¹ (2006) per experiment
 - ullet for Super B-factories, assume benchmark integrated luminosity of $10{,}000\,{\rm fb^{-1}}=10\,{\rm ab^{-1}}$, corresponding to $2\times10^{10}~B$ mesons, per Snowmass year (note: Super-KEK-B assumes a factor 10 less than Super-BaBar)
 - LHC-b and BTeV performance as described in their proposals
- with these assumptions, numbers of reconstructed events in many channels are comparable between hadronic factories and super B-factories

- * however, super B-factories profit from cleanliness of e^+e^- environment:
 - \bullet advantages in reconstruction of neutrals: π^0 , γ , ν
 - ullet huge data samples of tagged B decays: 40 million clean tags (200 million less clean tags) in $10\,\mathrm{ab^{-1}}$
- * this offers some advantages in precision CKM physics, and especially in rare decay searches!

Future Scenarios of High-Energy Physics

- * I wish I knew!
- past has shown that precision low-energy physics is complementarity to searches for New Physics at the energy frontier
 - ⇒ this is most likely to remain true!
- good arguments for incompleteness of the Standard Model exist, which suggest that New Physics should occur close to the TeV scale
- * virtually any extension of Standard Model contains new flavor-changing couplings and many new sources of CP violation (MSSM → 43 new CP-violating phases!)
- absence of hints for new flavor physics in present experiments most likely linked to decoupling of New Physics in the electroweak sector

New (s)particles/interactions found at LHC:

- they will almost certainly have flavor dynamics (flavor-changing couplings) and contribute new sources of CP violation
- these couplings can only be measured with precision physics (recall that top couplings V_{td} and V_{ts} are measured in kaon and B physics)
- advantage that mass scales are known

Only a Higgs found at LHC:

ullet high-precision flavor physics only window to higher energy scales (e.g., even 10–50 TeV squarks could have an impact on $K-\bar{K}$ mixing, rare K and B decays)

Nothing found at LHC:

even more burden put on high-sensitivity flavor physics

Future Scenarios of Flavor Physics

- * when the Standard Model collapses, flavor physics will not!
- * at some level New Physics will show up

Flavor physics totally different from CKM:

⇒ already excluded

Flavor physics \approx CKM + some O(1) effects:

⇒ still possible

 $Flavor\ physics = CKM + some\ small\ corrections:$

- ⇒ perhaps most likely scenario
- Q: Can BaBar, Belle, LHC-b and BTeV (+ rare kaon decay experiments) exhaust the discovery potential in flavor physics?

II. Precision CKM Physics

- * discovery of CP violation in the B-meson system was a triumph for theory
- * pattern of CP-violating effects in mixing and weak decays of kaons, charm and B mesons is correctly predicted by Kobayashi–Maskawa (KM) mechanism:
 - CP violation small in K- \bar{K} mixing (ϵ_K) and $K \to \pi\pi$ decay (ϵ'/ϵ)
 - CP violation large in $B \to J/\psi K \ (\sin 2\beta)$ but small in $B-\bar{B}$ mixing (ϵ_B)
 - small CP violation in charm decays, below present experimental sensitivity
- now a lot of evidence that KM mechanism is responsible for leading CP violation effects observed in low-energy weak interactions of hadrons
- * significance of $\sin 2\beta$ measurement: CP-violating phase is large!

CP is not an approximate symmetry of Nature

⇒ pattern of CP violation effects reflects hierarchy of CKM matrix

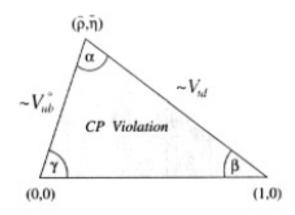
- besides describing CP violation, CKM mechanism explains a vast variety of flavor-changing processes
 - semileptonic decays, e.g.:

$$B \to D^* l \, \nu \, (\sim |V_{cb}|) \qquad D \to K \, l \, \nu \, (\sim |V_{cs}|) \qquad K \to \pi \, l \, \nu \, (\sim |V_{us}|)$$

$$B \to \pi \, l \, \nu \, (\sim |V_{ub}|) \qquad D \to \pi \, l \, \nu \, (\sim |V_{cd}|) \qquad n \to p \, l \, \nu \, (\sim |V_{ud}|)$$

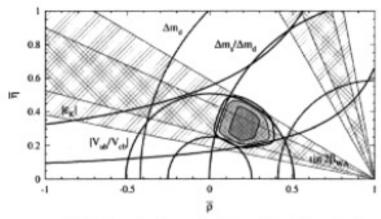
- leptonic and nonleptonic decays
- rare decays, e.g.: $B \to X_s \gamma$, $B \to X_s l^+ l^-$ (?), $K \to \pi \nu \bar{\nu}$ (?), ...
- mixing: $K \bar{K}$, $B_d \bar{B}_d$, $B_s \bar{B}_s$ (?), $D \bar{D}$ (?)

CKM Matrix and the Magic Triangle:

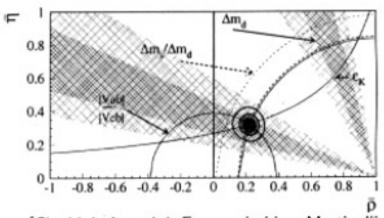

* $V_{\rm CKM} = 3 \times 3$ unitary matrix connecting mass eigenstates of down-type quarks with interaction eigenstates (contains 4 physical parameters):

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- * accurately known: $|V_{us}|$ and $|V_{cb}|$ ($\lambda=0.224\pm0.003$ and $A=0.82\pm0.04$)
- * more uncertain: $|V_{ub}|$ and $|V_{td}|$ ($\bar{\rho}$ and $\bar{\eta}$)
- * with standard phase conventions, complex phases appear in smallest matrix elements (requires ≥ 3 generations)


Unitarity triangle:

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$



* combining measurements of $|V_{ub}|$ in semileptonic decays, $|V_{td}|$ in $B-\bar{B}$ mixing, and ${\rm Im}(V_{td}^2)$ in $K-\bar{K}$ mixing, the parameters of the unitarity triangle were determined already with great accuracy before summer 2001:

11

[Höcker, Lacker, Laplace, Le Diberder]

[Ciuchini, Agostini, Franco, Lubicz, Martinelli, ...]

- * has established existence of a complex phase in the top sector $(\text{Im}(V_{td}) \neq 0)$
- * ranges at 95% CL (without $\sin 2\beta$): [Höcker et al.]

$$\bar{\rho} = 0.21 \pm 0.17$$
 $\bar{\eta} = 0.35 \pm 0.14$

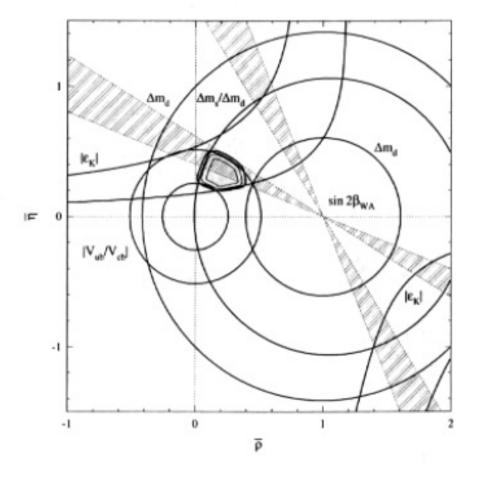
$$\sin 2\beta = 0.68 \pm 0.21$$
 $\sin 2\alpha = -0.23 \pm 0.73$

$$\gamma = 58^{\circ} \pm 24^{\circ}$$
 ($\gamma < 90^{\circ}$ due to $\Delta m_s/\Delta m_d$ constraint!)

Recent measurements of $\sin 2\beta$:

BaBar:
$$0.59 \pm 0.14 \pm 0.05$$

Belle:
$$0.99 \pm 0.14 \pm 0.06$$

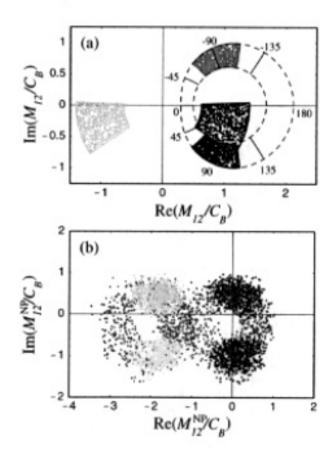

* ranges at 95% CL (including $\sin 2eta$): [Höcker et al.]

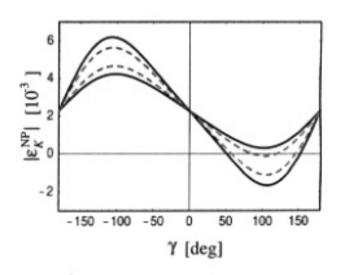
$$\bar{\rho} = 0.22 \pm 0.15$$
 $\bar{\eta} = 0.37 \pm 0.12$

$$\sin 2\beta = 0.73 \pm 0.14$$
 $\sin 2\alpha = -0.19 \pm 0.70$

$$\gamma = 58^{\circ} \pm 22^{\circ}$$

* current picture is all too consistent:




* but nothing is known about CP violation in the bottom sector $(\gamma = \operatorname{arg}(V_{ub}^*))$

- st much could have happened to the B_d - $ar{B}_d$ mixing phase, but didn't ...
- * some possibilities for potentially large effects:
 - models with iso-singlet down-type quarks and tree-level FCNCs
 - left-right symmetric models with spontaneous CP violation (now excluded!)
 - SUSY with extended minimal flavor violation
- * on the contrary, only small modifications are allowed in models with minimal flavor violation:
 - \Rightarrow model-independent bound $\sin 2\beta > 0.42$; estimate $0.52 < \sin 2\beta < 0.78$

* still plenty of room for New Physics in both mixing and weak decays

* e.g., possible New Physics contributions to $B - \bar{B}$ and $K - \bar{K}$ mixing amplitudes: [Kagan, M.N.]

Success and Embarrassment

- * much like the stunning success of Standard Model in explaining electroweak precision data, the lack of deviations from KM mechanism gives rise to theoretical puzzles:
 - KM does not explain the baryon asymmetry in Universe
 - \bullet KM does not explain why $\theta_{\rm QCD}=0$
 - basically all extensions of Standard Model contain many new CP-violating parameters
 - surprising that these effects have not yet been seen

"CP Problem"

⇒ need to keep searching for (probably small) deviations from KM with precision measurements

Magnitudes of CKM Elements

* already limited by theoretical uncertainties (mainly lattice QCD):

	Experimental	σ	σ	σ	Theoretical	σ	σ	σ
V_{ij}	Measurement	2001	2006	2011	Quantity	2001	2-5 years	4-10 years
		stat/sys	stat/sys	stat/sys		quenched	unquenched	unquenched
V_{ub}	$B(B \rightarrow \rho l \nu)$	4.3%/8%	8.6%/2.4%	1.4%/2.4%	$f_{+}(E_{\pi})$	18%	15%	5%
	$B(B \rightarrow u l \nu)$	3.4%/16%	4.0%/2.4%	2.8%/2.4%	f _B †	10-15%	10%	2%
	$B(B \rightarrow \tau \nu)$		24%	5%	$\overline{\Lambda}$, λ_1 , $\lambda_2'^*$	see note	see note	see note
V_{cb} $(\mathcal{F}(1))$	$B(B \rightarrow Dl\nu)$	3.1%/4%	0.4%/2%	0.10%/1%	F(1) ‡	2-4%	2-4%	1%
V_{cb}	$B(B \rightarrow cl\nu)$	2.5%/2%	0.3%/1%	0.07/0.5%%	$\overline{\Lambda}$, λ_1 , ${\lambda_2'}^*$	25%	15%	5%
V_{us}	$B(K \rightarrow \pi l \nu)$	0.8%	0.8%	0.8%	$f_{+}(q^{2})$	15%	15%	2-5%
V_{cd}	$B(D \rightarrow \pi l \nu)$	7.1%	1%		$f_{+}(E_{\pi})$	15%	15%	2-5%
	$B(D \rightarrow l\nu)$		2%		f _D †	10-15%	10%	2%
V_{cs}	$B(D \rightarrow Kl\nu)$		0.4%		$f_+(E_K)$	15%	15%	2-5%
	$B(D_s \rightarrow l\nu)$		1%		fp, †	10-15%	10%	2%
V_{td}	Δm_d	1%/1%	0.2%/0.5%	0.05%/0.2%	$f_{B_d}\sqrt{B_{B_d}}$ \$	~20%	15%	5%
V_{ts}	Δm_s				$f_{B_*}\sqrt{B_{B_*}}$	~20%	15%	5%

[Eigen, Kronfeld, Mackenzie]

Improvements on $|V_{ub}|$

- * all determinations of $|V_{ub}|$ are difficult and have significant theoretical uncertainties
- * inclusive $B \to X l \nu$ decays (OPE $\Rightarrow 1/m_b$ expansion)
 - lepton-energy spectrum (10–20%)
 - hadronic invariant mass spectrum (10–20%)
 - leptonic invariant mass spectrum (10%)
 - optimized combined cuts (5-10%)
- * exclusive decays $B o \pi \, l \, \nu$ and $B o \rho \, l \, \nu$
 - theoretical precision limited by lattice gauge theory
 - conservative (?) projection gives 5% on time scale of 4–10 years [Kronfeld],
 but optimists envision 1% precision [Lepage]

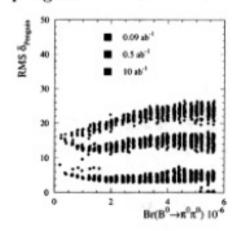
* some projections:

method	$\int \mathcal{L} \text{ fb}^{-1}$	S	В	$\delta V_{ m ub}$ (%)		
				stat.	sys.	tot.
$m_{ m had}$	100	335	127	3.2	2.2	3.9
	500	1675	635	1.5	1.5	2.1
	1000	3350	1270	1.0	1.5	1.8
q^2	100	127	7	4.6	3.0	5.5
	500	635	36	2.0	1.2	2.3
	1000	1270	72	1.4	1.2	1.8
exclusive	1000	590	59	4.3	1.2	4.5
	10000	5900	590	0.7	1.2	1.4

[Super-BaBar Proposal]

st only under very optimistic assumptions about theory would a data sample of $10\,{
m ab}^{-1}$ help to reduce the error on $|V_{ub}|$

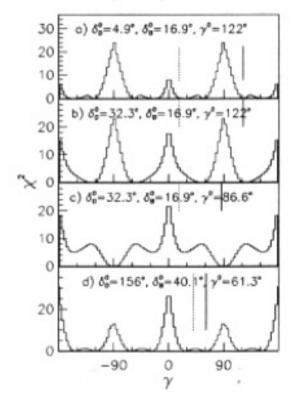
Angles of the Unitarity Triangle


* still terra incognita, much room for improvements

Measurement of $\sin 2\beta$:

- * estimated precision is $\sigma_{\sin 2\beta}=0.037$ for 500 fb $^{-1}$, and $\sigma_{\sin 2\beta}=0.008$ for $10\,{\rm ab}^{-1}$
 - \Rightarrow comparable or better than hadronic B-factories
- * at super B-factories, a competitive measurement of $\sin 2\beta$ can be made in the penguin-dominated decay mode $B \to \phi K_S$, with $\sigma_{\sin 2\beta} = 0.056$ for $10\,\mathrm{ab^{-1}}$ (cf. $\sigma_{\sin 2\beta} = 0.25$ for $500\,\mathrm{fb^{-1}}$)
 - ⇒ very hard (impossible?) at hadronic machines
 - ⇒ important for New Physics searches!

Measurement of $\sin 2\alpha$:


- * time-dependent CP asymmetry in $B \to \pi^+\pi^-$ determines "effective" parameter $S_{\pi\pi} = \sin 2\alpha_{\rm eff}$, which differs from "true" $\sin 2\alpha$ due to penguin contamination
- * estimated precision is $\sigma_{S_{\pi\pi}}=0.14$ for 500 fb $^{-1}$, and $\sigma_{S_{\pi\pi}}=0.032$ for 10 ab $^{-1}$ \Rightarrow comparable or better than hadronic B-factories
- * at super B-factories the penguin contamination can be eliminated using isospin analysis and a precision measurement of $B^0, \bar{B}^0 \to \pi^0 \pi^0$, which determines $\delta_{\rm penguin} = \alpha_{\rm eff} \alpha$ with an error of less than 5° :

- ⇒ unique measurement!
- \Rightarrow "clean" determination of α with precision of about 5°

Measurements of γ :

- * clean determination of γ using $B \to D\,K$ decays, with interference of the tree topologies $b \to c\bar{u}s$ and $b \to u\bar{c}s$
- * method is marginal at present e^+e^- B-factories due to discrete ambiguities, despite the fact that $\sigma_\gamma\sim 5^\circ$ – 10° [Soffer]

- * expected precision with $10\,{\rm ab^{-1}}$ is $\sigma_{\gamma}\sim 1^{\circ}$ –2.5°, which is comparable or better than what can be achieved at hadronic B-factories
- * in addition, $\sin(2\beta+\gamma)$ can be determined using interference of $b\to c\bar u d$ and $\bar b\to \bar u c\bar d$ in decays such as $B\to D^{*\pm}\pi^\mp$
- * exploratory study gives $\sigma_{\sin(2\beta+\gamma)}\sim 0.15$ with 500 fb⁻¹, and $\sigma_{\sin(2\beta+\gamma)}\sim 0.03$ with 10 ab⁻¹
 - ⇒ clean measurement, which would help to resolve discrete ambiguities
- * additional strategies using B_s mesons would require extensive running on the $\Upsilon(5S)$, but would not be competitive with hadronic B-factories

Summary on Unitarity Triangle Angles

CKM Angle	BaBar (0.5 ab^{-1})	Super-BaBar (10 ab^{-1})	BTeV	LHC-b	Atlas/CMS	
$\sin 2\beta \ (B \to J/\psi K_S)$	0.037	0.008	0.011	0.014	0.021/0.025	
$\sin 2\beta \ (B \rightarrow \phi K_S)$	0.25	0.056				
$\sin 2\alpha_{\text{eff}} (B \to \pi^+\pi^-)$	0.14	0.032	0.05	0.056	0.10/0.17	
$\alpha_{\text{eff}} - \alpha \ (B \rightarrow \pi^0 \pi^0)$	< 18°	< 7°	-	- "	-	
$\sin(2\beta + \gamma) (B \to D^*\pi)$	0.15	0.03				
$\gamma (B \rightarrow D K)$	_	< 2.5°	2°	< 19°		
$\gamma (B_s \rightarrow D_s K)$	-	< 15°	7°	< 13°		

[Super-BaBar Proposal]

* super B-factories offer advantages in the determination of γ (from $B \to D^*\pi$ decays) and α (unique $B \to \pi^0\pi^0$ measurement), and allow for a precise measurement of $\sin 2\beta$ in $B \to \phi K_S$ decays (test for New Physics!)

- * however, important to realize that there are only two independent angles $(\alpha = \pi \beta \gamma \text{ even with New Physics!})$, and without having a precision determination of the sides $(|V_{ub}| \text{ and } |V_{td}|)$ one cannot over-constrain the unitarity triangle!
- * after BaBar, Belle, LHC-b and BTeV running, we will probably know the angles of the unitarity triangle with a precision $\sigma_{\sin 2\beta} \sim 0.02$, $\sigma_{\gamma} \sim 5^{\circ}$, and $\sigma_{\chi} \sim 1^{\circ}$ (B_s mixing phase, only at hadron machines), which is better than the precision $\sim 5\%$ on the length of the sides
- * if deviations from the CKM mechanism have not appeared at this point, there will be little more to be gained from precision CKM physics
- * case for super B-factories must be made based on other measurements:

comprehensive exploration of rare B decays

III. Rare and Forbidden B Decays

- * systematic study of rare B decays is much richer than unitarity triangle physics
 - many clean tests for New Physics can be performed
 - processes that are strongly suppressed or forbidden in Standard Model offer a farther reach than the relatively abundant processes used for the unitarity triangle analyses
 - lots of room for surprises
- st cleanliness of e^+e^- environment, advantages in neutrino and photon reconstruction, and possibility for obtaining huge samples of tagged B decays make this the super B-factory's playground

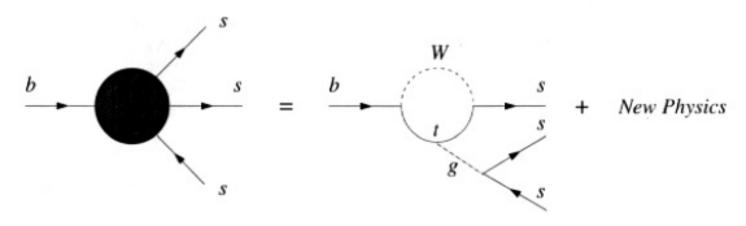
Theoretical Framework

* effective weak Hamiltonians provide a model-independent parameterization of rare decay amplitudes in terms of hadronic matrix elements of local operators multiplied by calculable, complex running coupling constants:

$$\langle \mathcal{H}_{\text{eff}} \rangle = \sum_{i} C_{i}(M_{\text{heavy}}) \langle O_{i} \rangle$$

- in Standard Model about 20 operators appear, whose couplings are functions of $x_t = (m_t/m_W)^2$ and CKM parameters: $C_i \sim (g_W^2/m_W^2) \times [\text{CKM elements}]$
- with New Physics many more operators can be present, whose couplings probe the short-distance physics and are functions of the masses of new heavy particles and their flavor-violating couplings, including new CP-violating phases:

$$C_i \sim g_{\mathrm{fl.\,chg.}}^2/m_{\mathrm{NP}}^2$$

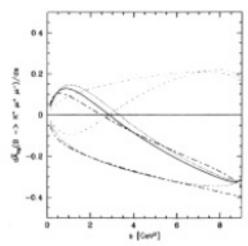

- * in cases where the Standard Model amplitude is strongly suppressed, the New Physics contribution may be relevant even if $m_{\rm NP}\gg m_W$
 - ullet e.g., flavor-changing gluino–squark couplings in SUSY can lead to FCNC transitions b o s ar q q and b o d ar q q via box diagrams for which $g_{\mathrm{fl.\,chg.}}^2 \sim lpha_s$, in which case SUSY masses of several TeV can be probed
 - if SUSY masses were known from LHC, then the new couplings could be measured directly
- ultimate goal is to probe these couplings in a surgical, selective way by analysis
 of a large variety of rare decay processes

- * in cases where the Standard Model amplitude is strongly suppressed, the New Physics contribution may be relevant even if $m_{\rm NP}\gg m_W$
 - ullet e.g., flavor-changing gluino–squark couplings in SUSY can lead to FCNC transitions b o s ar q q and b o d ar q q via box diagrams for which $g_{\mathrm{fl.\,chg.}}^2 \sim lpha_s$, in which case SUSY masses of several TeV can be probed
 - if SUSY masses were known from LHC, then the new couplings could be measured directly
- ultimate goal is to probe these couplings in a surgical, selective way by analysis
 of a large variety of rare decay processes

- several strategies exist for reducing (often eliminating) theoretical uncertainties,
 e.g.:
 - Standard Model prediction known from independent measurements (e.g.: $\sin 2\beta$ from $B \to \phi K_S$)
 - zero effects expected in Standard Model (e.g.: CP asymmetry in $B \to X_s \gamma$; very rare or forbidden decays)
 - heavy-quark expansions (e.g.: rates for inclusive decays $B \to X_s \gamma$, $B \to X_s l^+ l^-$, $B \to X_s \nu \bar{\nu}$; form factor zero in $A_{\rm FB}(B \to K^* l^+ l^-)$; isospin violation in $B \to K^* \gamma$)
- * consider several examples in detail ...

New Physics in $B \to \phi K_S$ decays:

- * this is usually mentioned under "measurement of $\sin 2\beta$ ", but it is really a clean test of New Physics in the penguin decay $b\to s\bar s s$
- * any difference between $\sin 2\beta_{\psi K}$ and $\sin 2\beta_{\phi K}$ would signal New Physics in penguin transitions, even if there were additional New Physics is $B-\bar{B}$ mixing
 - \Rightarrow based on projected precision $\sigma_{\sin 2\beta_{\phi K}} \sim 0.056$ with $10\,\mathrm{ab^{-1}}$, super B-factories can probe a potential CP-violating phase ϕ_{NP} in the $b\to s\bar{s}s$ transition with a precision $\sigma_{\phi_{\mathrm{NP}}} \sim 2^{\circ}!$



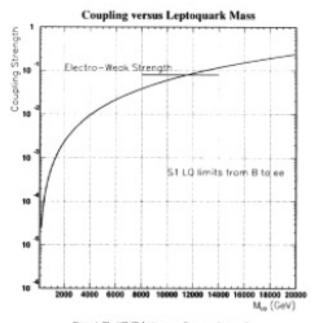
New Physics in Radiative B decays:

- * rich variety of phenomena, including:
 - ullet limits on charged Higgs bosons and SUSY particles from $B o X_s \gamma$ branching ratio
 - probes for New Physics in CP asymmetry measurements in $B \to X_s \gamma$, $B \to K^* \gamma$ (with 1% precision!) and $B \to \rho \gamma$ ($\to C_{7\gamma}, C_{8g}$)
 - probes for New Physics in isospin violation in $B \to K^* \gamma$ ($\to C_6, C_{7\gamma}$) and $B \to \rho \gamma$ ($\to C_{7\gamma}$)
 - high-precision determination of the shape function from a clean measurement of the photon energy spectrum in $B \to X_s \gamma$ down to below 2 GeV, using tagged B decays \Rightarrow impact on $|V_{ub}|$ determination!

New Physics in $B \to X_s l^+ l^-$ decays:

- * sensitive probe of non-Standard Model physics (electromagnetic and Z penguins, and boxes) ($\rightarrow C_{7\gamma}, C_{9V}, C_{10A}$, effective $\bar{s}bZ$ vertex)
- * super B-factories have capabilities similar to hadronic machines, but may have advantages with respect to measuring decay distributions (rather than just branching ratios), especially in the inclusive modes
- * particularly interesting is the prediction of a zero in the forward–backward asymmetry in the exclusive mode B → K*l+l⁻, whose position probes the coupling C_{9V}:

New Physics in $B \to X_s \nu \bar{\nu}$ decays:


- * these are the beautiful analogues of $K \to \pi \nu \bar{\nu}$, which are very sensitive to New Physics in electroweak penguin transitions
- * they can only be measured at super B-factories, with an expected event rate of about 160 per year in the Standard Model

Leptonic decays $B \rightarrow l \nu$:

- * while these have little sensitivity to New Physics, they would allow a direct measurement of the product $|V_{ub}| f_B$, providing a benchmark for lattice calculations and a cross check on other $|V_{ub}|$ determinations
- st while some events may be seen at BaBar and Belle, only super B-factories could make precise measurements
 - ullet with 10 ab $^{-1}$, expect accuracy of 5% on B o au
 u and 8% on B o au
 u

New Physics in $B \rightarrow l^+ l^-$ decays:

- * these purely leptonic modes are extremely rare (or forbidden) in the Standard Model, but could be largely enhanced in New Physics models (e.g., models with lepto-quarks or new gauge bosons, or SUSY with R-parity violation)
- * whereas hadronic B factories are superior in searches for $B \to e^+e^-$, $\mu^+\mu^-$ and $e^\pm\mu^\mp$, super B-factories can pursue searches for $B \to \tau^+\tau^-$ and $B \to \tau^\pm l^\mp$ with $l=e,\mu$, which are extremely difficult in a hadronic environment
- * even with 10 ab⁻¹ no events are expected in the Standard Model, but interesting sensitivity levels can be reached:
 - $ee, \mu\mu, e\mu$: $< 5 \times 10^{-9}$
 - $\tau e, \tau \mu$: $< 5 \times 10^{-7}$
 - $\tau \tau$: < 2 × 10⁻⁶
- * in some models, this corresponds to mass limits for new particles of order 10 TeV

Slepton limits from B to ee

10 2000 4000 6000 8000 10000 12000 14000 16000 16000 200
Slepton Mass (Gev)

Electro-Weak Strength

Figure 1: The MSLCL Insis on coupling versus leptoquark max

Figure 2. The NOS CL limits on coupling various depose more

Coupling versus Slepton Mass

New Physics in $B \rightarrow \gamma \gamma$ decays:

- * these purely radiative modes are very sensitive to New Physics, and can only be explored with super B-factories
- * with 10 ab⁻¹ one expects about 8 events in the Standard Model, but enhancements of up to a factor 100 are possible with New Physics

IV. T and Charm Physics

- * obviously, such a machine would deliver an incredible number of $\tau^+\tau^-$ pairs, and of charm hadrons produced via initial-state radiation
- * $10\,\mathrm{ab^{-1}}$ corresponds to $10^{10}~\tau^+\tau^-$ events
 - \Rightarrow besides conventional τ physics, this will allow uniquely sensitive searches for lepton flavor violation, e.g., the branching ratio for $\tau \to \mu \gamma$ could be measured down to levels of 10^{-8} , which are realistic in some SUSY models
- * for charm physics, the effective e^+e^- luminosity around the charm threshold region would be about $2\times 10^{33}\,{\rm cm}^{-2}\,{\rm s}^{-1}$
- * while au and charm physics can certainly not be used to nail the physics case for a super B-factory, the abundant production rates are nevertheless impressive!

V. Conclusions

- * There is flavor physics beyond the Standard Model, whose origin is most likely linked to the physics that explains electroweak symmetry breaking!
- * The long-term future of B physics will not be precision CKM physics, but a comprehensive analysis of a large set of rare and extremely rare decays (processes with low Standard Model background)!
- * Super B-factories have distinctive advantages over hadronic machines for such an endeavor!
- * $\int \mathcal{L} \, dt = \text{several} \times 10^{36}$ is not a luxury, but needed to fully exhaust the discovery potential of B physics!