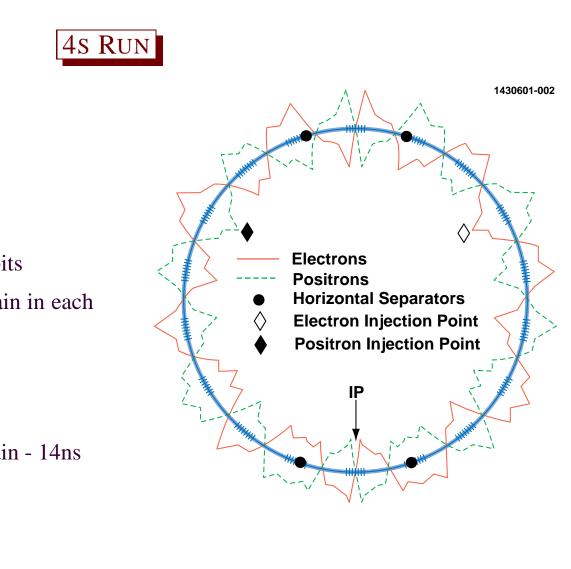


CESR STATUS

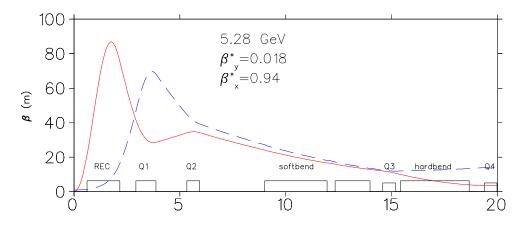
D. RUBIN FOR CESR OPERATIONS GROUP October 15, 2001


• Summary of 4s run

- Machine configuration
- Luminosity limit

• Machine Upgrade

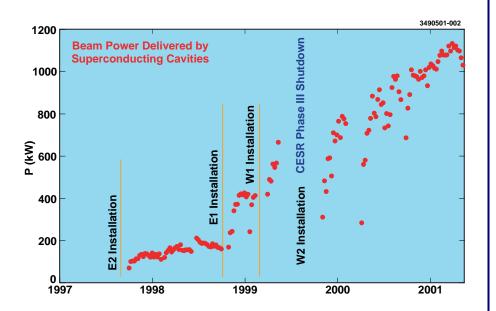
- Positron converter
- Superconducting IR quads
- \circ x-ray beam line
- Commissioning
- Operation at $\sim 1.9 \text{GeV}$
- Resonance run plan

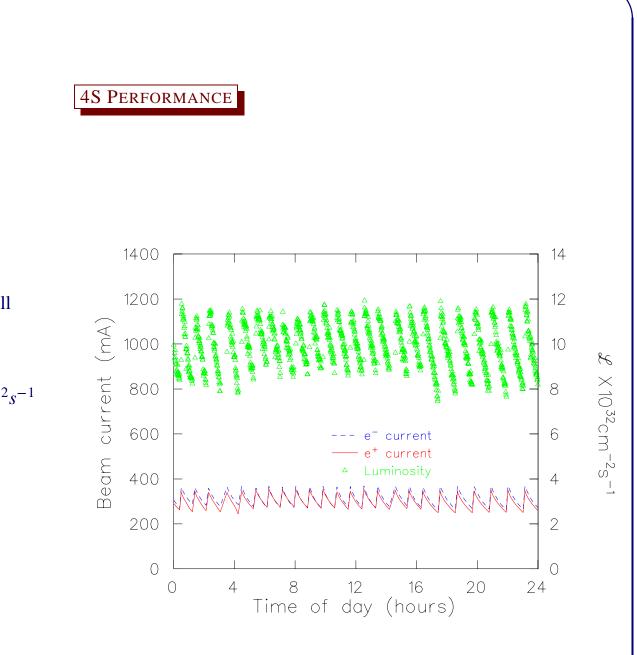

• Machine Configuration

- Electrostatically separated orbits
- Nine trains with 5 bunches/train in each beam
- $\circ \pm 2.5 mrad$ crossing angle
- $\circ 8mA/bunch$
- $\circ\,$ Bunch spacing within each train 14ns

INTERACTION REGION

- 1.5m REC final focus quadrupole
 - $\circ\,$ Solenoid compensation by rotation of IR quads
 - $\circ ~\beta_{\nu}^{*} = 18mm \rightarrow 21mm$
 - $\circ \beta_h^* = 94$ cm
 - $\circ \sigma_l = 18 mm$
- Parasitic crossing 2.1m from IP -
 - Largest vertical tune shift of 89. $\Delta Q_v \sim \frac{I_b \beta_v}{x^2}$

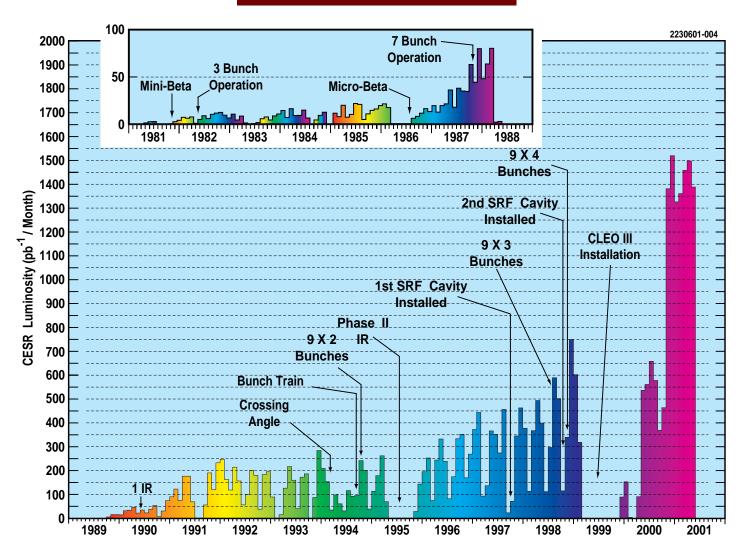




SUPERCONDUCTING RF

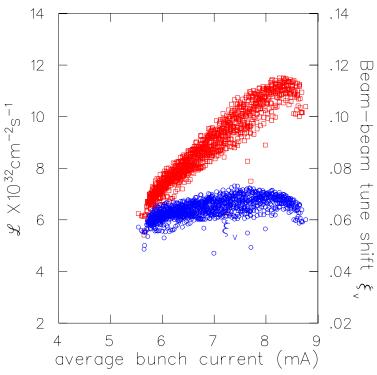
• 4- single cell - 500MHz superconducting RF cavities

Т	4.5K
< G >	6.2MV/m
\hat{V}	7.4MV
I _{total}	750mA
Pbeam	1.1 MW
P _{HOM}	2.75kW/load
P _{max} /cavity	294kW

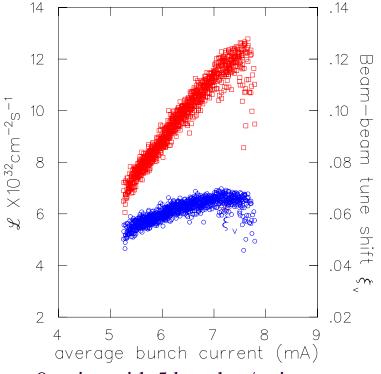


Total beam current	750mA
Non HEP time	\sim 6 minutes/fill
β_{v}^{*}	21mm
ξν	0.07
Peak luminosity	$1.3 \times 10^{33} cm^{-2}$
∫ <i>L</i> /day	73pb ⁻¹
$\int L/\text{month}$	1500pb^{-1}
$11/2000 \rightarrow 6/2001$	11.24fb^{-1}

D. Rubin for CESR Operations Group



LUMINOSITY HISTORY


D. Rubin for CESR Operations Group

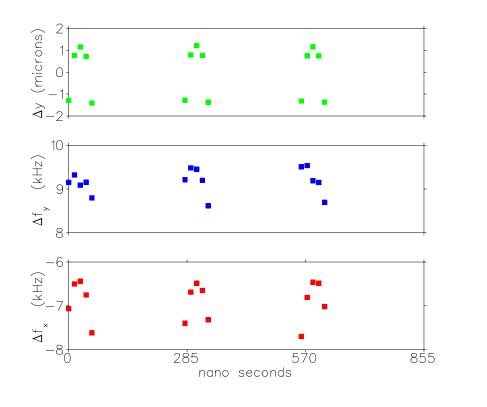
LUMINOSITY LIMITS

- 9 trains with 4 bunches/train
 - $\circ~\xi_{\nu}\sim 0.07$
 - Tune shift saturates at 7.5mA/bunch
 - \circ Beam-beam limited increased bunch current \rightarrow poor lifetime and deteriorating specific luminosity

- 9 trains with 5 bunches/train
 - $\circ~\xi_{\nu}\sim 0.065$
 - $\circ~$ Tune shift saturates at 7mA/bunch
 - Specific luminosity decreases with increasing current

CESR_

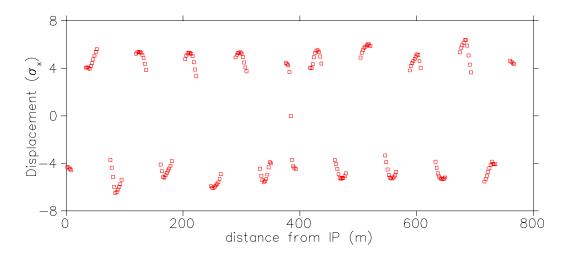
PARASITIC BEAM-BEAM INTERACTION


 \circ Uneven spacing \Rightarrow bunch dependent tune and closed orbit

- $\diamond \text{ Closed orbit } x(s) \sim a \sqrt{\beta_h(s)} \sin(\phi_h(s) \phi_0)$
- ◊ Long range beam-beam tune shift

 $\Delta Q_h \sim \frac{I_b \beta_h}{x^2} = \frac{I_b}{\sin^2(\phi_h(s) - \phi_0)}$

Bunch dependent electron positron orbit difference at IP for first 3 trains with 7.5mA/bunch. $\sigma_y \sim 4\mu$. \rightarrow


Bunch dependent tune shift for first 3 trains with 7.5mA/bunch. \rightarrow

PARASITIC BEAM-BEAM INTERACTION

- Horizontal tails
 - Minimum separation $\sim 7\sigma_x$
 - $\circ\,$ Tails of the bunch approach core of counterrotating bunch \rightarrow large vertical tuneshift and particle losses
- Bunch dependent luminosity
 - Bunches at center of train yield 25% higher luminosity than bunches at ends of the train

Separation at parasitic crossing points in units of horizontal rms beam size

- Compensation of bunch dependent tune and orbit
 - $\circ~$ Orbit correction with fast kicker
 - ♦ Adjust closed orbit independently for each bunch
 - $\diamond \sim 1 \mu m$ capability
 - \diamond Mixed result

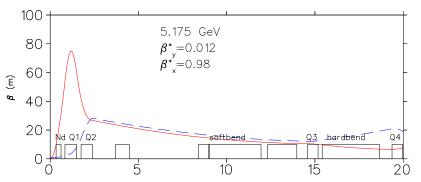
- $\circ\,$ Tune correction with RFQ
 - $\diamond f_{RFQ} = 9 \times f_{ref}$
- More closely space bunches
 - $\circ\,$ Reduce bunch spacing to 6ns and 8ns from 14ns
 - ♦ Sufficient separation near IP?
 - \diamond Simulation indicates tune spread increases more rapidly than total current.

UPGRADE

- Superconducting IR quads
 - \circ Energy reach
- Positron Converter
 - $\circ\,$ Increased positron production rate
- x-ray beam line

SUPERCONDUCTING IR QUADS

- Objectives
 - Extend energy reach
 - $\circ\,$ Reduce β_{ν}^{*} from 18mm to < 1cm and β_{ν} at parasitic crossing nearest IP
 - Electromagnetic vs PM quad ⇒ capability for precise correction of final focus optics and solenoid compensation


• Parameters

- $\circ\,$ V and H focus quad in each cryostat
- Gradient 48.4T/m
- Peak field 6 T
- \circ $I \sim 1225A$
- Length 65cm
- \circ All quads rotated 4.5° (solenoid compensation)
- Superimposed skew quadrupoles (fine tuning of solenoid compensation)
- Superimposed dipole (orbit correction)
- Support and remote positioning of cryostat by eccentric cam bearings

Superconducting quadrupole status

- Installed in IR August-September
- Field quality
 - Skew sextupole moment in Q2 cancelled with resistive corrector located adjacent to cryostat
 - Sextupole moment in Q1 introduces tonality (differential tunes) that is corrected with chromaticity sextupoles

Commissioning

- Alignment of IR quads is critical
- 0.5mm vertical displacement of Q01 \rightarrow 22mm orbit error
- Startup optics
 - $\circ E_{beam}$ =5.3 GeV
 - $\circ~\beta^* \sim 10m$
 - k_{Q1} = -0.1 (5% nominal)
 - Store beam (10/6) -
 - ♦ Low injection efficiency
 - $\diamond~$ Loss of injected particles near IR \Rightarrow high CLEO radiation
 - \diamond Due to high vertical β adjacent to IR low β_h at injection point, coupling
 - Measure and correct orbit
 - ♦ Align IR quads to minimize steerings near IR
 - ♦ Zero all correctors

COMMISSIONING

- Load low β (luminosity optics) at 5.3GeV
 - Measure and correct orbits
 - $\circ\,$ Measure betatron phase and coupling and begin analysis
 - Calibrate: Measure betatron phase and coupling vs magnet strength
 - $\circ I > 240 \text{mA}$
- Load 5.175GeV Υ_{3s} optics 10/15?

- New x-ray beam line
 - $\circ\,$ x-rays from electron beam accessible in already existing facility
 - x-rays from positron beam accessible in newly constructed facility, through new opening in tunnel wall
- <u>Wiggler parameters</u>

Number of poles	50
Period[cm]	12
Peak magnetic field[T]	0.8
Gap[cm]	4
Pole width[cm]	11

Υ Resonance Run Plan

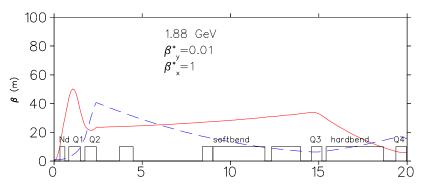
$\Upsilon_{3s}, \Upsilon_{1s}, \Upsilon_{2s}, 11/01 \rightarrow 7/02$						
	Υ_{3S}	Υ_{1S}	Υ_{2S}	Follow up		
Beam Energy[GeV]	5.175	4.7	5.	?		
Luminosity[pb ⁻¹ /day]	33	23	25	?		
Start date	15-Nov-01	1-Feb-02	1-May-02	25-Jun-02		
Total $[fb^{-1}]$	1.2	1.2	0.7	?		

• August 2002 - begin transition to 1.9GeV operation with installation of first of 14 1.3m long, 2.1T wigglers

 $\circ\,$ Installation of 14 wigglers complete June 2003

Machine development - ψ'' (1.89GeV)

• IR


• 20cm permanent magnet quad

$$k = -5.09m^{-2}$$

• Q1 - $k = -1.92m^{-2}$

• Q2 -
$$k = 1.32m^{-2}$$

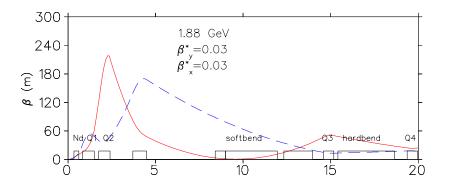
- CLEO solenoid @ 1.0T
- $\circ\,$ All IR quads rotated 4.5° about axis
- skew quad coils superimposed on Q1
 and Q2 permit compensation of coupling
 over wide range
- Radiation damping
 - $\frac{1}{\tau} ∝ E^3 → 1/2$ second
 ε ∝ $\frac{1}{E^2} → (\frac{1.89}{5.3})^2 ε_{5.3} ~ 25nm$
 - \circ Lower emittance \rightarrow reduced long range beam-beam

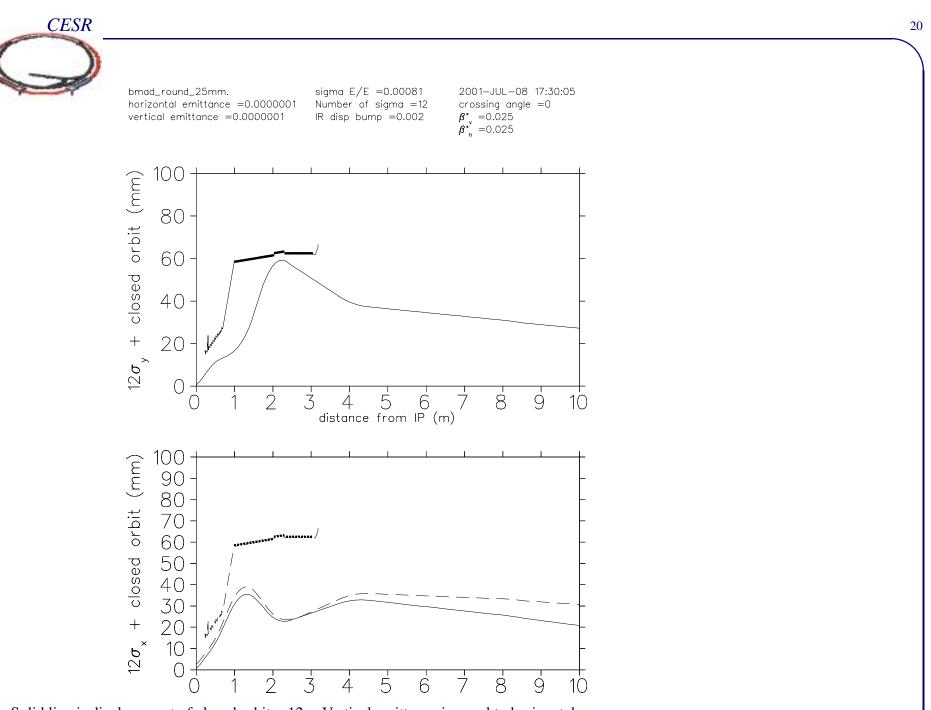
MACHINE DEVELOPMENT - ROUND BEAMS

$$\xi = \frac{Nr_e}{\gamma} \frac{\beta}{4\pi\sigma^2} = \frac{Nr_e}{\gamma} \frac{1}{4\pi\varepsilon}$$
(1)

$$\Rightarrow L = \frac{N\gamma f_c}{r_e \beta} \xi \tag{2}$$

- Emittance limited by IR aperture
- Possible parameters


 $\circ \epsilon = 100 nm$


$$\circ \xi = 0.1$$

 $\circ \ \beta^*{=}30mm$

• E=1.88GeV

\Rightarrow

Solid line is displacement of closed orbit + 12σ . Vertical emittance is equal to horizontal.

CESR-C RUN PLAN

- August September 2002
 - Install full size wiggler prototype
 - $\circ\,$ Remove one pair of arc dipoles to make space for wigglers
 - Install CLEO vertex detector
- October December 2002
 - Beam tests with wiggler
 - \circ Explore operation at J/ψ
 - Run CESR at 5.3GeV for x-ray physics
- January-February 2003
 - Install 6 additional wigglers
 - Complete installation of cryo-distribution
- March April 2003
 - Beam tests with wiggler
 - Explore operation at J/ψ , small energy spread
- May June 2003
 - Install 7 remaining wigglers

- July 2003 June 2004
 - $\circ~\psi^{\prime\prime}~(3.78GeV)$ 2.55 fb $^{-1}$:255days
 - 5.3GeV/beam for x-ray physics :110days
- July 2004 June 2005
 - $\circ~\psi^{\prime\prime}~(3.78GeV)$ 0.5 fb $^{-1}$:50days
 - $\circ~Above~\psi^{\prime\prime}~(4.11GeV)$ 2 fb $^{-1}$:205days
 - 5.3GeV/beam for x-ray physics :110days
- July 2005 June 2006
 - ∘ Above ψ'' (4.11GeV) 1 fb⁻¹ :100days
 - $\circ J/\psi$ (3.1GeV) 1 fb⁻¹ :155days
 - \circ 5.3GeV/beam for x-ray physics :110days
- June 2006 November 2006
 - \circ Follow up