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ABSTRACT

The maximum luminosity achievable in a flat beam, e+e- circular col-
lider depends on nonlinear effects that limit particle lifetimes and are
amenable to study only by computer simulation. But, for intemediate cur-
rents the luminosity dependence is governed by beam profile distortion that
is unambiguously described by a linear equation that is exactly solvable
with pencil and paper. This equation describes the “parametric pumping”
of the vertical betatron amplitude of each particle by its own (inexorable)
horizontal amplitude. For given tunes @, and @),, and given beam height
oy0 (due to extraneous but well-understood sources) this parametric oscilla-
tion is either stable or unstable; the beam current at the transition point can
be expressed as a threshold tune shift value &, i1 (Qz, Qy: 7y0). The value
of o0 (in a well-tuned-up ring) is typically small enough that this pumping
phenomenon governs the “specific luminosity” (luminosity/current). Once
the threshold is passed the luminosity may increase, but the specific lumi-
nosity “saturates”.

An initially-only-conjectured dependence of mazrimum luminosity on
“damping decrement” ¢, is, by now, fairly well established empirically. The
present parametric pumping model yields the related, but not equivalent,
dependence of specific luminosity on d,. For typical, but favorably chosen,

tune combinations the model predicts &, ¢y to be proportional to 5;,/ 2,
For unfavorable tunes the exponent in this relation is 1, and there may be
“excellent” tune combinations for which the exponent is 1/3. How much
the luminosity can be increased by increasing beam currents beyond the
saturation value is not addressed.



1. The Beam-Beam Deflection

The dependence of vertical beam-beam deflection Ay’ on vertical displacement ¥ is shown
in Fig. 1.1. The beam-beam tune shift parameter &, is defined to be the tune shift caused
by this force acting on a small amplitude particle. The angular deflection Ay’ and the
tune shift AQ, caused by a quadupole of strength ¢ at a place where the beta function is
By are given by

Byq

Ay = AQ, = ¥ 1.1
y =qy, and AQ, . (1.1)

Eliminating ¢ from these relations, and setting AQ, = ,, yields the formula
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This dependence is labeled “equivalent quadrupole” in the figure.
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Figure 1.1: Dependence of vertical deflection Ay’ on vertical displace-
ment y. The deflection of an “equivalent” quadrupole of strength ¢ =
4m&y /By is also shown.

Consider a “typical particle” for which the vertical phase space components, just before
colliding with the opposing bunch, are y_ = oy, y_ = 0, so its Courant-Snyder invariant is
€y,08 = 05 /By. The graph shows that in passing through the other beam at the intersection
point, the particle’s deflection is almost 4mw&,o,/By; (the defect is 14%.) For this particle



the effect of the beam-beam impulse on the Courant-Snyder invariant is
2 2

€y,05 — ;—Z + By <4;—fy> op = €yCS (1 + (47T€y)2> : (1.3)
A tune shift parameter &, ~ 1/(4m) therefore causes a rough doubling of the Courant-
Snyder invariant of the particle. This formulation makes it all the more impressive when
tune shifts approaching 0.1 are achieved, for example with flat beams at LEP and round
beams at CESR. It seems that the beam-beam tune shift parameter might better have
been defined with an extra factor of 47 since that would yield the mnemonically more
satisfactory value of 1 as the tune shift parameter that causes a rough doubling of the
Courant-Snyder invariant. As & is in fact defined, it is therefore important to keep in

mind that & = 0.1 is a big value.

2. Beam-Beam Observations from Existing Storage Rings

Fig. 2.1 shows beam-beam tune shift data, available in 1983, from PETRA and CESR,
extrapolated in both directions, to encompass both electrons and protons. This analysis
was initially performed during the LEP design phase to predict the luminosities to be ex-
pected, and the projection has proved to be quite accurate for LEP. The maximum tune
shift parameter for VLLC (a post-LEP circular collider) can conservatively be predicted
to be at least " ~ 0.12. On the other hand, the extrapolation to the small damping
decrements relevant for proton colliders has already been contradicted by Tevatron per-
formance. This does not, however, contradict the theory presented in this paper, which
applies only to flat, not round, beams.

Other data from existing colliding rings is shown in Figs. 2.2 and Fig. 2.3. Com-
ments concerning the relevance to the present paper are given in the captions. In an ideal
(perfectly decoupled) ring the beam width is much greater than the beam height. Since
the horizontal motion is “hot” and the vertical “cold” any mechanism that couples these
motions tends to affect the vertical motion a lot, and the horizontal motion hardly at all.

The observed beam-beam phenomenology is that, when colliding with the other beam
the horizontal beam distributions is largely independent of beam current, but, above some
threshold current, the beam height increases proportional to beam current. This causes

the beam-beam tune shift parameter to “saturate” and no longer increase with increasing



DEPENDENCE OF TUNE SHIFT PARAMETER ON RADIATION DAMPING
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Figure 2.1: Dependence of maximum vertical tuneshift parameter &pyay
on damping decrement 1/(2kf7), where k is number of bunches, f is rev-
olution frequency, and 7 is damping time. The line labeled “1983 fit” was
conjectured in 1983 by Keil and Talman (Part. Accel. 14, 109 (1983)) based
on data available at the time; it describes well LEP data that was acquired
subsequently. The curve labeled “simulation” linking the ultralow (proton)
and ultrahigh (electron) regions is due to Peggs (private communication).
The curve labeled “conjecture” is my fit (adjusting a parameter in the Peggs
formula) to the Tevatron point and a (slightly downward adjusted) round
beam CESR point.

beam current. This behavior at LEP is exhibited in Fig. 2.3, copied from D. Brandt et
al. According to the theory in the present paper, this behavior would set in already at
arbitrarily small beam current in a perfect ring but this behavior is masked by any beam
height oy present due to single beam effects, especially coupling. This picture is supported
by observed behavior in which improving the decoupling reduces the threshold current at
which saturation sets in. When running LEP at highest energy, 100 Gev, no saturation

was observed up to the highest possible beam current. This might contradict the model



being presented but the authors note that the coupling coefficent could not be reduced
below k = 0.8%, The present paper contains nothing that could account for the saturation

of &, suggested by Fig. 2.3.
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Figure 2.2: Beam profiles (r.m.s. sizes represented by ellipses) mea-
sured using synchrotron light impinging on video camera during operation
of CESR. The r.m.s. beam heights with beams not in collision were not
greater than 30 ¢ which was the optical resolution of the viewing apparatus.
That the horizontal profiles are unaffected corresponds to the assumption
in the paper that this motion is “inexorable”. The beam height enlarge-
ment is shown in this paper to be due to “parametric pumping” of vertical
oscillations by the horizontal oscillations.

<301

3. “Subharmonic” Parametric Excitation of Vertical Oscillations

We now turn to the analysis of beam-beam distortion. The leading parametric resonance
in mechanical oscillators occurs for drive frequency equal to twice the natural frequency (so
the response is a “subharmonic” of the drive.) This phenomenon is clearly explained by,
for example, Landau and Lifshitz, Mechanics; other than employing difference equations
rather than differential equations, the present treatment mirrors their treatment. The need
for difference equations arises because of the impulsive nature of beam-beam interactions.
For the same reason the phenomenon of “aliasing”, without changing the essence, increases

the number of possible resonances and alters the vocabulary.

From a pedagogical point of view the reader unfamiliar with difference equations might

profit from first reading Appendix A, which uses difference equations to solve for betatron



Beam-Beam Tune Shift Parameters at LEP
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Figure 2.3: Dependence of {, and {, on beam current. Data from LEP
running at 65GeV, D. Brandt et. al., Rep. Prog. Phys. 63 (2000) 939-
100. Similar behavior is observed at CESR, though saturation of &, (with
increasing current) is not observed at CESR. Also, saturation of £, was not
observed for operationally practical beam currents during highest energy
running at LEP.

response to an external shaker. Because that drive is “direct” the analysis is simpler than

this section requires. Higher order parametric resonances are analysed in Appendix C.
The vertical beam-beam deflection, given previously by Eq. (1.2), actually depends also

on the horizontal displacement. Because the beams are ribbon-shaped, and the horizontal

profile is Gaussian the deflection, on turn ¢, is given byﬁt

A€ a? cos? pgt
yi = —2 exp (—% Yt (3.1)

where a, is the horizontal particle amplitude in units of the r.m.s. beam width and ¢, is
now to be interpreted as the value of the tune shift parameter at x = 0. It is appropriate
to Fourier expand the nonlinear exponential function;

Ay, 4;—51! (Z <% + B, cos (2np,$t)>> Yt (3.2)

n=0

t Though ¢ could stand for “time” it more appropriately stands for “turn number” and can only take
integer values.
I “Tunes” and phase advances per turn p = 27 will be interchanged as convenient, and without
Iz g
warning, in this paper, and either may be referred to as a “frequency”.



n Bn(o) Bn(l) Bn(Z) Bn(s) Bn(4) Bn(5)
0 2. 1.58 .932 075 414 .326
1 0. .196 416 422 .308 .299
2 0. 0122 .0999 .199 235 231
3 0. .000509 .0163 .0680 122 151
4 0. .0000159 .00201 .0180 .0519 .0854
) 0. .397e-6 .000200 .00390 .0185 .0420
6 0. .827e-8 |.0000165 | .000710 .00566 0182
7 0. .148e-9 .118e-5 .000112 .00151 |[.00703
8 0. 231e-11 .733e-7 |.0000154 |.000359 |.00245

Table 3.1: Fourier coefficients By,(a;) as given by Eq. (3.3).

The coefficients B,, can be evaluated in terms of (modified) Bessel functions I,, using an

integral from Watson, Bessel Functions, 6.22(4); the result is

2 2
B, = 2exp (_%> I, (—%), n=0,1,2,....

Values of B,, are given in Table 3.1. The first row and first column are shown only for

(3.3)

completeness. By can (and will) be set to zero as far as the mechanism of this paper
is concerned. Because the “effective tune” of the vertical gradient acting on the particle
under study is 2p,, the leading “subharmonic” resonance occurs for p, ~ p, which, in
accelerator jargon, is a “difference resonance”.

What with frequency aliasing it is possible for any of the terms in the sum (3.2) to

“resonate” with a pre-existing vertical betatron oscillation;

Yt = at cos ((py +€n)t) + b sin ((uy +€5) t) = ar cos fiy + by sin fiy (3.4)

where the “pulled” frequency offset €, will be defined shortly. The quantity pu, + &, will
be systematically replaced by fi, throughout this paper, even though this suppresses the
(essential) index n. The coefficients a; and b are “variation of constants” coefficients whose
variation will be arranged later to satisfy the equation of motion. They are assumed to
vary slowly with ¢; that is, their fractional changes per revolution are small compared to

1. If they are treated as depending on a continuous variable ¢, then

Ai+1 ~ Q¢ + dt, and bt:i:l ~ bt + i)t . (35)



Combining Egs. (3.2) and (3.4) yields

Ayl [ee]

t - .
—_— = B 2 t t b t

e, /5, E n €os (2npgt) (ap cos (fiyt) + by sin (fiyt))

n=1

= i % (at cos ((277,;1,; — by — 6(_)> t) — by sin ((2nugf,= — Hy — 5(_)> t))

n=

. i By (at cos ((QWZ, oy + gg“) t) + by sin ((2num + iy + e%”) t)) :

2
(3.6)

[y

[y

n=

()

Any of these terms can potentially cause resonance, with the frequency offset e, ’ quan-
tifying the “distance from resonance”. These phase offsets are defined by the following

relations (for which the overall signs are not significant.)

2npg + py + 857,4—) = - (Ny + 557,_'_)) y OF 851+) = Npy + Hy ,

(-) (-) (-) (87
QnMx_My_gn :+(My+5 ),01‘6 =Ny — My -
Presumably one of these possibilities, say n,—, will dominate over all others. From here on

the index n will be taken to indicate this particular dominant case, and Eq. (3.6) becomes

4 By, - .
Ayp = g—fy B3 (a¢ cos (fiyt) — besin (fiyt)) . (3.8)

The difference equation describing weakly damped betatron motion is derived in Ap-

pendix A. Setting damping decrement 6, temporarily to zero, Eq. (A.4) becomes

Ye+1 — 2Cyys + ye—1 = Sy 2w&y By (ag cos (fiyt) — by sin (fyt)) ; (3.9)

(abbreviations Cy = cos i, and S, = sin p,, are employed here.) In preparation for substi-
tuting Eq. (3.4) into this equation, using Egs. (3.5), we obtain
Y1 = (ap + a¢) (oS fiy cos (fiyt) — sin fi, sin (fiyt))
+ (bt + bt) (sin fiy cos (fiyt) + cos i, sin (fiyt))
Yoot = (g — i) (08 iy 008 (i) +sin iy s () (310
+ (bt — bt) (— sin fiy cos (fiyt) + cos fiy sin (fiyt))
Performing these substitutions, and requiring that the sine and cosine terms vanish
separately, yields the equations
—ay sin fiy, + by cos fiy — Cyby — Sy €y By, (b)) =0

. (3.11)
b sin fiy + at cos fiy — Cyas — Sy w&y By (a;) =0



We seek a solution for which a; and b; exhibit time dependence of the form exp(st);

car — cosﬂy—Cy+Sy7T£anb _0
! sin i, !
cos fiy — Cy — Sy &y By,

SN /iy

(3.12)

CLt—I—Sbt:O

The requirement for such a solution to exist is that the determinant formed from the

coefficients must vanish; this yields

— (cos fiy — Cy)* + (S, 7€, Bn)?
2 (cos ji, — Cy)" + (S, 7€y By) %—8721—{-71'255372,- (3.13)

sin? fly

In the last step it has been assumed that €, << 1. In this form the condition for unstable

motion is that s be positive, which require:ﬂL
—méy By <ep < &y By, . (3.14)

It is customary to call such excluded regions “stop bands”.

By setting d, to zero we have been neglecting damping so far and have found that, even
with no damping, if €,, lies outside this range, the motion will be stable—the horizontal
oscillation will not “pump up” vertical oscillations. But, in an ideal electron storage ring,
if there were no cross-plane coupling or other extraneous source of vertical excitation, &,
would be infinite because the vertical beam height would vanish. (This uses the result
that synchrotron-radiated photons are emitted precisely in the forward direction; since
their typical angle is 1/~ this is an excellent, but not perfect assumption.) In this ideal
limit the stability condition would be violated for any finite beam current. In this limit
the parametric pumping that is being described blows up the beam until condition (3.14)
is satisfied.

In fact there is damping, as represented by d, # 0. The threshold of instability is
therefore determined by the condition that the (positive) growth rate given by Eq. (3.13)

\/—82 + 7282 B2 = 6y, or = /722 B2 — (3.15)

 The stability limits (3.14), though not the growth rate in the interior, could have been determined by
setting a; = by = 0 in Eq. (3.11). The justification is that amplitude neither grows nor shrinks at the ends
of the range.

is equal to dy;
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The band of instability is therefore given by

—\/ T2 B — 0% <en < \[mE] B2 — 02 (3.16)

For 6, > m|¢,B,,| there is no unstable band at all. It is in this role that J, has its greatest
influence on the beam-beam interaction for flat beams. (This can be contrasted with a

case discussed in Appendix B, for which 6, has little influence.)

4. Tune Scan of Stop Bands

To indicate one possible use of these formulas, consider the largest coefficient in Table 3.1,
Bi(ay = 1) = 0.42 and, in particular, the task of choosing tunes to avoid vertical beam
growth from this resonance for a particle with this (highly probable) horizontal amplitude.
Assuming (), is given, and temporarily taking d, to be negligibly small, according to

Eq. (3.14), the lowest order sum resonance establishes an excluded “stop band”
AQy = &Bn = 0.42¢,. (4.1)

Since the available fractional tune range is only AQ, = 0.5 this sets an upper limit on
&y of order 1 (at least with negligible d,.) This (and the corresponding sum resonance)
are probably close to the worst possible cases. Tune ranges excluded for other n values
or for other reasons (nonlinear, synchrobetatron, etc.) have been ignored. Also there are
higher order parametric resonance (analysed in Appendix C) that can cause vertical beam
growth.

By scanning all possible values of (), and @)y, with d, still set to zero, one can identify
favorable and unfavorable tune regions based on their stop band widths. For first order
(meaning soon-to-be-introduced index r has value 1) parametric resonance one can evaluate

all possible values of &, satisfying Eq. (3.14) and from them define

gy (Qa:a Qy) min 2

- nt,az | By, (am)

InQy £ Q, — nearest integer|| , (4.2)

where a, is allowed to range over values having appreciable probability, for example from
1 to 4, and n ranges over positive integers. The result of doing this is shown in Table 4.1.
Table 4.1 indicates strong tune dependence, as one would expect, with many tune

combinations contra-indicated. Many are exactly zero, though this is a binning artifact.
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Qz [.025 |.075 |.125 |.175 |.225 |.275 |.325 |.375 |.425 |.475

Qy

025 | 0. 14 | .38 | 62 | .8 | .96 | O. 98 | 0. .04
075 | 0. 0. A4 (.38 | .19 | 0. 16 | .16 | .38 | .04
125 | 0. .043 | 0. 0. 0. 16 | .85 | 0. 0. .19
A75 | 0. 043 | .14 | 0. 14 1 0. 62 | .16 |.043 | .81

225 | .85 | 0. 043 | 0. 0. 14 1 .38 |.043 | .16 | 1.1
275 | 1.1 | .16 |[.043 | .19 | .14 | 0. 0. .043 | 0. .85
325 | 1.3 | .19 | .16 [.043 | O. 14 | 0. 14 ] .16
37 | 1.6 | 0. 0. 043 | .16 | 0. 0. 0. 14
425 (1.8 | 1.1 | .16 | .16 | O. 043 | .38 | .14 | O.
A75 1 2.0 | 0. 19 | 0. 043 1.043 | 62 | .19 | .14

Table 4.1: éy(Qx,Qy) given by Eq. (4.2) for the lower left quadrant of
fractional tunes. Other quadrants can be obtained by mirroring in integers
or half integers. For the values listed the “stop band width” just overlaps
the assumed £0.01 beam tune spread. Values exactly 0.0 occur where the
table grid matches resonance lines.

Other tunes appear to be very favorable, but a table like this, based as it is on “stop
band widths” is misleading for several reasons. The least essential of these is that far
finer binning would be necessary for the table to be useful. Another is that higher order
resonances (r # 1, in the notation of Appendix C) have not been included. Probably
most important of all is that aliasing is not properly accounted for by Eq. (4.2). The
point is that resonance is caused by equality of cosines of tunes rather than equality of
the tunes themselves. Tune combinations that require large values of n to bring the factor
|nQ,£Q,— nearest integer| in Eq. (4.2) close to zero may give a small difference of cosines
for a much smaller value of n. This is illustrated by resonance diagrams Fig. 5.1 to be
discussed in the next section. Also, any effect of damping decrement has not yet been
included. For these reasons it is not useful to refine this particular table. Rather, just a
few combinations will be considered in the rest of the paper. Still, in spite of all these

reasons, (except neglect of d,) the values given in Table 4.1 constitute upper limits for &,.

These estimates make no allowance as yet for the damping decrement J,. From

Eq. (3.16) one sees non-vanishing d, reduces the resonance band to 2\/(7T§an)2 — 02.

Since typical values of J, are in the range 10~ to 1073 or, at most, 10~2 (for highest
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Ring | Qu/IP | Q,/TP |n |r [10%, | Bumax, | (Bn)~1 6 1D
LEP-46 | 58 | .04 |1 |2 |1.02 | 0.42 0.0077
LEP-65 | 57 | .04 |1 |2 59 | 042 0.018
LEP-46 | 59 | .04 |1 |2 204 | 0.42 0.034
CESR(1) | 52 | 58 |3 [1]049 | 0.24 0.00006
CESR(2) 42 0.052 0.042
PEP-LER | 570 | .642 1.21

PEP-HER | 618 | 638 |4 |2 |1.96 | 0.052 0.086

Table 5.1: Parameters of some circular, flat beam, e+e- colliding rings.

energy operation at LEP), the 55 correction term is negligible for strong resonances, such
as those listed in the first few rows of Table 3.1. Such resonances have to be avoided by
judicious choice of tunes. Let us assume that tunes have been selected which satisfy this

requirement.

5. Single Resonance Dominance

Tune plane/resonance diagrams for important linear resonances are shown in Fig. 5.1.
Tune combinations for a few existing colliding beam facilities are shown in Table 5.1 as
well as in Fig. 5.1. The KEK B-factory is not shown because its large crossing angle
complicates the simple picture of this paper.

The master formula governing exact resonance is Eq. (C.3). Expressed in terms of

tunes it is
2n
=4+ 5.1
Qy 1+7r @u ( )

where n is a positive integer and r is any integer. Here ), and @), are fractional tunes. The
restriction to fractional tunes in Fig. 5.1 is enforced by “periodic boundary conditions”.
When a line terminates on an integer boundary another line with the same slope starts
from the same location on the opposite boundary. To help in identifying lines, only cases
with the plus sign are exhibited in the upper figure and the key gives Eq. (5.1) for each
line. The lower figure contains these lines plus the mirrored lines obtained with the minus

sign in Eq. (5.1).
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Figure 5.1: Linear parametric beam-beam resonances.
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The parametric growth mechanism that has been analysed is very powerful since it
causes the vertical amplitude of single particles to grow exponentially. It is not necessary
for all horizontal amplitudes to be resonant. Again referring to Table 3.1, it is therefore
not possible to exclude whole rows at a time by choice of tunes. Rather, because of the
horizontal tune spread, particular horizontal amplitudes can resonate. This leads to the
realization that the tune ranges to be avoided have to be expanded by the range of hori-
zontal tunes. There is also a spread of vertical tunes, but its effect is more complicated.
This spread increases the probability that some particle will be resonant, but the accom-
panying “detuning” tends to moderate, and may even reverse, the amplitude growth of

that particular particle.

It is almost a cliché that &, and £, are “tune spreads” rather than “tune shifts”. Even
though this is not very precise, let us accept that the horizontal tune spread is &;. Also
part of the lore, and fairly well supported empirically, is that, for optimal performance,
&r =~ &. Accepting these rules of thumb, and recognizing that tune shifts exceeding, say,
0.02 are routine in existing rings, one will accept that the operating point has a spread of
roughly this size. As a result, one is always running under the influence of at least one
of the parametric resonances in Table 3.1 or possibly one of the higher order resonances

analysed in Appendix C.

The model to be adopted therefore assumes that it is impossible to avoid all resonances
and for any given operating conditions it is necessary only to identify and analyse the one
that is dominant. Entries to this effect have been made in Table 5.1. In the case of CESR
there are two possible assignments labeled (1) and (2). It is likely, however, that (2) is the
appropriate assignment, since (), increases more rapidly than ), with increasing beam
current which moves the operating point away from (1). However the presence of such a
damaging resonance so close to the normal operating point suggests an experiment to test
the formulas of this paper—strong growth of the beam height and corresponding reduction

of the specific luminosity is predicted when @), is increased at fixed Q,.

Since it is assumed, no matter what the tunes are, that a particular resonance is

dominant, the onset of beam growth is controlled by 6,. For the lowest order (r = 1)
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resonance, according to Eq. (3.16), the instability sets in at

Oy
B,

g = (5.2)

where the second subscript stands for r = 1. This is a special case of formulas for {ygat.

derived in the appendix which take the form

1 . .
for = - 1/ (=1 /(=1 (5.3)

where T}, , is a trigonometric function of the tunes, whose value is approximately 1. For

B 6;/2 Cy — cos 2[iy
€np = ey 3 . (5.4)

Values obtained from Eq. (5.3) with 7}, , = 1 are included in Table 5.1.

example, from Eq. (C.13)

6. Conclusions and Conjectures

Tune combinations for which r = 1 yield such small values of &, {1, it seems reasonable
to suppose they have always been, and will always be, avoided operationally. This is the
basis of the statement in the abstract that “for unfavorable tunes &, ¢, ~ d,.” For “once-
removed” resonances, 7 = 0 or 7 = 2, &, tny. ~ \/g This is the most prevalent case in
Table 5.1 and it may be “generic” for “good” tune combinations. No assignment has been
made for PEP-LER in Table 5.1 since none of the resonance lines of Fig. 5.1 come close to
that operating point. This is one (feeble) basis for the comment in the abstract that there
may be “excellent” points for which &, ~ {/@

For the straight line fit of Fig. 2.1, the exponent is 3/8. But this particular exponent
was picked on the basis of data available two decades ago and was not determined with
great accuracy even then. The parametric pumping model seems to be in at least semi-
quantitative agreement and gives what is, to me, a persuasive explanation of the prominent
influence of the damping decrement on luminosity.

The absolute &, sat. entries in the last column of Table 5.1 are intended to be only
semi-quantitative. To be regarded as predictions the entries would have to be made more
carefully and correct values of T}, , included. One reason this has not been done is that

the higher order calculation of Appendix C seems to be not entirely self-consistent and
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still higher order calculations have not been attempted. (Since the equations are linear it
should be possible to do this using Maple or Mathematica.) There is no ambiguity about
the exponent in Eq. (5.3), however, once the dominant resonance is identified.

There is one way in which the growth described so far is “too powerful”. It is that the
exponential growth of y amplitude diverges to infinity, which is clearly unphysical. Apart
from this violating the precondition that y << o, an effect that has been left out, which
moderates this behavior, is the nonlinearity as a function of y. (See Fig. 1.1.) As individ-
ual particles come into resonance their amplitudes build, but this growth is accompanied
by detuning, that eventually defeats the resonance. In the process the Courant-Snyder
invariant of the particular particle will have been “heated” T and the particle will be left
in a state that contributes appreciably to the beam height (at least for a time comparable
with the equilibration time.) A detailed dynamical description of this mechanism would
have amplitudes tending to “pile up” a bit at amplitudes near the stability boundary. The
distribution would therefore be non-Gaussian. Another way the resonance can be mod-
erated is that the “vertical heating” is accompanied by “horizontal cooling”. Since these
mechanisms contradict the assumptions of the model and rely on the detailed dynamical
evolution of the beam distributions, they are hard to calculate. This is why the present
model cannot predict mazrimum luminosities.

In contrast with the inherently nonlinear behavior mentioned in the previous paragraph
the model described in this paper is linear, in spite of the (obviously nonlinear) Gaussian
beam profile that figures so prominently. The point here is that the horizontal motion is
robust in spite of the nonlinearity in x and the equation describing y is linear.

Certain other effects, which have been neglected in this paper, may be subject to similar
analysis. Certainly the presence of horizontal dispersion at the interaction point would
cause horizontal motion. All formulas in this paper would still apply (after introducing
the synchrotron tune Qs by the replacement @, — 5.) This effect would be significant if

the transverse motion accomanying this “synchrotron oscillation” is comparable with o,.

T When the resonance curve of an oscillator becomes multiple-valued because of nonlineariy, it is possible
for a large-amplitude (and hence unstable) particle to jump discontinuously to a stable point of different
amplitude. Since this process is emittance nonconserving, it contributes to the growth of vertical beam size.
A dynamical theory that calculates the absolute beam size caused by these two effects (parametric pumping
plus discontinuous jumps in Courant-Snyder invariant) is not available, but computer simulations have born
out the essential features of this model with semi-quantitative accuracy.
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Even with no dispersion there are mechanisms that couple the longitudinal and vertical
motiont and may be subject to similar equations. One of these is the “hourglass effect” —it
would become significant for Byzas. Another is the crossing angle (call it ©) effect—the
usual criterion (Gog > 0,) probably identifies the region of importance of this effect.
Finally a gratuitous comment on a seemingly unrelated topic. There is a school of
thought suggesting that a next-generation, very large hadron collider should use flat beams.
This paper shows this will not be possible because of the extraordinarily small values of

dy under even the most optimistic assumptions.

t Joe Rogers has reminded me.
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Appendices

A. Excitation of Vertical Betatron Motion by an External Shaker

The method of difference equations will be employed. To illustrate this method, before
applying it to the actual problem, it will be used in this section to calculate the vertical
motion induced by the “direct drive” due to an external “shaker”. As well as introducing
the method of analysis, the equations of motion and an example of aliasing, this introduces
the important damping decrement 0, and shows how it influences the motion. It will,
however, turn out that the influence of §, on parametric drive (the main topic of the
paper) is very different from its influence on direct drive (the topic of this section.)

The deflection caused by the external drive on the ¢’th turn is
Ay, = Fg cos ugt. (A.1)

We postulate a small “damping decrement® d,, so that the once-around transfer map in

“Twiss form” is
Y B B Cy + aySy BySy Y
<y/ _ Ay’/2> 1 = exp (—dy) ( —S, Cy — S, y' + Ay'/2 (A.2)
t+ t

and a similar equation can be written for backwards propagation from ¢ to ¢t —1. Note that
y' is evaluated at the middle of the shaker. We are using the notation Cy = cos y, and
Sy = sin p1, and are intentionally using the subscript ¢ as a turn index to be suggestive of
the time measured in units of the revolution period. It will however always be an integer.

For these two maps the top equations are
Yt+1 = €xp (_53/) [(Cy + aySy) Yyt + ﬁysy (y' + Ay'/2)t]
Yt—1 = €xp (—}-5y) [(Cy - aySy) Yt — BySy (yl - Ayl/2)t]

By treating d, as small and by addition of the equations Eq. (A.3) one eliminates y’ and

(A.3)

obtains
Ye+1 — 20y + yi—1 = BySyAy; — 0y (Ye+1 — Ye—1) (A.4)

After solving this for y; it will be possible to obtain y; from the equation

_ Y1 — Y1 — 20y Syys + 0y (Yt+1 + ye—1)

! Ab
Yt 2/BySy ( )



19

which is obtained by subtracting Eqgs. (A.3).

As usual with driven oscillations we expect a response at the drive frequency. i.e.
Yyt = Acosugpt + Bsin upt (A.6)

where any “transient “ (i.e. any solution of the homogeneous equation which is obtained by
setting the drive term of Eq. (A.4) to zero.) has been neglected. In electron accelerators
this neglect is justified by the existence of true damping. Even in proton accelerators where
true damping is negligible, it can be justified by decoherence, or, as it is called, Landau
damping. Substituting into Eq. (A.4) and equating the “in-phase” and the “out-of-phase”
coefficients separately to zero, one obtains

A= BySy(CJ‘*J_Cy)/2 F
(Cp — Cy)* + 6253

AT
_ BySySedy/2 (4.7
(Cp — Cy)* +025%
For near-resonance analysis we define
€= HUE — Hy (A.8)

(Be sure not to misinterpret frequency difference ¢ as an emittance, for which the symbol

is e.) Substituting into Eq. (A.6) and neglecting terms containing ed, we obtain

FgBy/2 .
yr = m [—e cos ppt + 0y sin ppt]

A9
_ BB s ) (4.9)

2,/82%-55

where ¢ = tan™!(d, /), sin ¢ = 6,/ /€2 + 62, and cos ¢ = ¢/, /e? + 2. Taking oy = 0, the

slope is given by

Fg/2 )
e m (8y cos ppt + esin ppt)
Fg (A.10)

—TE in(ugt + ) .
2, /€2 +5§

T Tt is the equality of cosines, rather than the equality of tunes, that causes resonance. To handle this all
tunes can be aliased into fractional tunes in a range from 0 to 0.5. This effectively reduces the resonance-free
fractional tune landscape by a factor of 2.
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These equations should be reminiscent of driven simple harmonic motion though they are
the solution of the difference equations Eq. (A.2). Except nearly on resonance, the “in-
phase” cos pugt term of Eq. (A.9) is dominant, but for small e, the “out-of-phase” sin ugt
dominates. The response always “lags”, with phase angle ¢ varying from zero to —m as
the drive frequency varies from zero to infinity. With ¢ = —7/2 at resonance, the response

changes sign in passing from below to above the resonance. The CS invariant of the motion

18
ByF/4

. All
2+ 02 (A.11)

€y,CS =

For small deflections the averaged change in €, o5 due to the shaker is

(5) \ A, _(PFE
(A, 0g) = (2y1Ay;) = <m

_ ByFgoy/2
e? 55 '

(0y cos ppt + esin ppt) Fgcos pgt)
(A.12)

The averaged fractional change is therefore

Aetd)
(Beycs) _ 26, . (A.13)
€y,CS

This can be compared to the fractional change due to damping

(D)
A€, g _

~26, . A4
P y (A.14)

The fact that these changes are equal but opposite is consistent with the equilibrium.

B. Centroid Response of a Bunch of Particles Having Broad Tune Spread

As given by Eq. (A.9), the response of a single particle depends prominently on d,; very
small d, is associated with very strong response over a very narrow tune band. It is,
however, possible for this dependence to be masked in the coherent response of a bunch of
particles having a broad distribution of tunes.

Suppose a beam bunch consists of N particles whose tunes, rather than being equal,
are spread according to a given probability distribution. When expressed in terms of e

this probability distribution is P.(¢). The response of the entire bunch is

N 00
Y=Y u (e@) - N/_OO P (e) i (¢) de . (B.1)

=1
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If the tunes are distributed uniformly over range Ae this becomes

N F AE/Z d
Y;E = — E/By 6y sin MEt/ 2762
Ae 2 —Ag/2 € + (Sy (BQ)
= NEgh, 1 == gin uEt
Ae dy
In the circumstance that J, << Ae, this becomes
NF

Y; ~ % sin pgt ; (B.3)

in this case the visible response is independent of §,. This example shows that the de-
pendence of oscillatory phenomena on damping decrement is not “universal” and may be

hidden from external view.

C. Appendix: Higher Order Parametric Resonances

Eq. (3.4) was not the most general possibility for parametric resonance. For example,
suppressing the t subscripts to free up a position for Fourier indices, let us seek a solution
of the form T
3 3
Yy =ag+ Z A €Os (Mmflyt) + Z by, sin (mfiyt) , (C.1)
truncated, at least for the time being, at m = 3. Extra terms appear in Eq. (3.6). Sup-

pressing the summation over n,

Ay 2 = 2ag cos (2npuyt) +
4n&y/ By B
3 3
+ Z A €OS (2t — Mflyt) + Z A €OS (2N fty + Mfiyt) (C.2)
m=1 m=1
3 3
- Z by, sin (2np, — mfiy,t) + Z by, sin (2npy + mfiyt)
m=1 m=1

t Ordinarily an ansatz like (C.1) would be made in preparation for finding nonlinear harmonics, intending
to truncate higher Fourier terms. Here, because the drive is parametric, the equations will remain linear.
There will be a certain amount of “leakage” into high order terms that will be neglected in “hand calculation”,
but this is mainly a question of convenience, and there is no possibility of the chaotic motion that characterizes
nonlinear equation. This may be somewhat academic as the exponential growth the equations can exhibit
will inevitably lead to amplitudes for which nonlinearity becomes important and the assumptions of the
model lose their validity.



22

These lead to definitions, like (3.7), that pick out tune combinations for which the per-
turbed frequency matches the fundamental frequency. Recalling that py, + e, = iy,

2npy — Ty = [y, Or 2npy = (1+7) [y (C.3)

where r is another integer. Since this not the only possibility; the notation no longer

identifies the particular offset &, that is being defined. Then Eq. (C.2) becomes

Ayp 2 N
———— =2apcos (L + ) fyt) +
3 3
+ Z am cos (1 4+r —m) fiyt) + Z am cos ((1+ 74+ m) fiyt) (C.4)
m=1 m=1
3
- Z by, sin ((1 4+ r —m) fiyt) + Z by, sin ((1 4 r + m) fiyt).
= m=1

Let us expand Eq. (C.4) for general r;
Ay; 2 N

m B - = 2agcos ((1 + r) fiyt) +

+ a1 cos ((r — 0) fiyt) + az cos ((r — 1) fiyt) + ag cos ((r — 2) fiyt)
s((r+3) fiyt) + az cos ((r + 4) fiyt) (C.5)
(r —1) fiyt) — b sin ((r — 2) fiyt)

+ by sin ((r + 2) fiyt) + ba sin ((r + 3) fiyt) + bz sin ((r + 4) fiyt)

08
+ ay cos ((r + 2) fiyt) + az cos
— by sin ((r — 0) fiyt) — ba sin (

The case r = 1 was previously called “lowest order”. Let us try r = 0, so 2np; = fi,, or

€n = 2Nflg — fiy;

Ay, 2 _ N
——— =a1 + (2a9 + a2) cos (pyt) + (a1 + az) cos (2f,t
e A (200 + a) 05 (fiyt) + (a1 + a) cos (2!

+ by sin (fiyt) 4+ (b1 + b3) sin (2/iyt)

(C.6)

where terms with argument 3/t and 4fi,t have been dropped. Egs. (3.10) now acquire

extra terms and, dropping b3, Egs. (3.11) generalize to multiple equations;
ag — Cyag — Sy &y By, (a1) =0,
— a4 sin fiy, + by cos fiy, — Cyby — Sy €y By, (b2) =0,
by sin fly + a1 cos iy — Cyar — Sy &y Bp (2a0 + a2) =0, (C.7)
— g sin 2, + by cos 2, — Cyby — Sy &y By, (b1) =0,

by sin 2[1y + a2 cos 2fiy — Cyaz — Sy w&y By, (a1) = 0,
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From the first equation we obtain

_ Sym&y Bn

ag = 1—Cy ai. (08)

As mentioned in an earlier footnote, at the stability limits the derivative terms vanish.

Using this and cos fi, ~ C, — Sye;, and cos(2fi,) ~ cos2p, these equations become

bien = — ﬂfy By, by,

aien = — w€y By (2a0 + a2),
(C.9)
by (Cy — cos2fiy) = — Sy &, By, b1,
—ay (Cy — cos 2fiy) = Sy &, By a1,
which yield
—Sym&, B —S,m&, B
gy = —ovmBn oy STy B (C.10)
Cy — cos 2jiy Cy — cos 2jiy
The stability limits are unbalanced;
S, (7€, B’ o 2 1

= =-S B . C.11
enl Cy — cos2f,’ cn2 y (7&y Bn) 1-Cy + Cy — cos 2/i, ( )

This “higher order” resonance, with n = 1,7 = 0, requires the same relation between
Q; and @), as the “lowest order” resonance with n = 2,7 = 1, but the numerical factor
and resonant denominators are different. Compared to the limit given in Eq. (3.14) these
acquire factors of order w&, B;,. Referring to values of B,, given in Table 3.1, and expecting
the factor 7§, to not exceed, say, 0.3, the only values of n likely to be significant will
probably not exceed a few, and only if one of the denominators is small. For this particular
resonance the resonant denominators are the same as would correspond to vertical third
integer (and integer) nonlinear resonances (as well as 2nu ~ p,y).Jr Taking account of the
other resonances of the same order, several of these higher order parametric resonances
are candidates to dominate the growth of the vertical beam size.

To incorporate damping decrement d, one should first solve for the growth rate, as in

Eq. (3.13), from the condition that the determinant of the matrix of coefficients vanishes.

T 1t seems to me to be potentially significant that the effect of the pumping can “pull” the vertical tune
toward a nonlinear resonance, in this case third integer (and integer). This can be seen from the final
denominator in Eq. (C.11). However, this requires two resonance conditions to be approximately satisfied.
Otherwise it is probably always justified to replace fi, by p, in all formulas like Eqgs. (C.10), (C.11), (C.17),
and (C.18).
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This should then be set equal to the ¢, to find the stability limits in the presence of
damping, as in Eq. (3.15). Not wishing to work out the determinant, I conjecture that it
is valid to mimic Eq. (3.16), to obtain

—\/6%1—55 <ep< \/6%2—55, (C.12)

or with €,1 and €,2 reversed, as appropriate. Expressed inversely, these formulas predict

the dependence of £, on ¢, with everything else held constant; for example the first limit

5;/2 Cy — cos 2/
= ) 1
S By, SN /iy (C:13)

For r = 2 we have a different resonance; 2nu, = 3(p, + €,) or €, = (2/3)np, — py.

Ay 2 N

———— — = 2agp cos (3p,t) +
47r£y/6y Bn ( Y )

+ a1 cos (2fiyt) + az cos (fiyt) + az + asq cos (fiyt) + as cos (2fiyt) + ag cos (3fiyt)

yields

+ ay cos (4fiyt) + az cos (5fiyt) + a3 cos (6fiy,t) (C.14)
— by sin (2[1,yt) — be sin (ﬁyt) + by sin (ﬁyt) + b5 sin (2[1,yt) + bg sin (3ﬁyt)

+ by sin (4fiyt) + b2 sin (5fiyt) + bz sin (6iyt)
Egs. (C.7) change to 13 equations in 13 unknowns;
ag — Cyag — Sy &y By, (a3) =0,

— a1 sin fiy + by cos fiy — Cyby — Sy €y By, (—ba + bs) =0,
by sin fiy + a1 cos fiy — Cyar — Sy &y By (a2 + ag) =0,

— agsin 21, + by cos 2, — Cyba — Sy &y By, (—b1 + bs) =0,
by sin 2[1y + ag cos 21y — Cyag — Sy w€y By (a1 + as5) =0,

— a3 sin 3fi, + b3 cos 31, — Cybs — Sy &y By, (bs) = 0,

bs sin 3ty + a3 cos 3fi, — Cyaz — Sy w&y By, (2a9 + as) =0, (C.15)
— ag8indfi, + by cos i, — Cyby — Sy &y By, (b1) =0,

by sin 4fi, + a4 cos 4fi, — Cyag — Sy 7€y By (a1) = 0,

— a5 sin by, + bs cos b, — Cybs — Sy €y By, (b2) = 0,

bs sin 5[ty + a5 cos dfiy — Cyas — Sy &y By, (a2) = 0,

— ag sin 61, + bg cos 6, — Cybs — Sy &y By, (b3) =0,

be sin 61ty + ag cos 6/, — Cyag — Sy &y By, (a3) = 0,
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_ Sym&y By, _ Sym&yBn _ Sym&, By _ Sym&y By
ap0=——~ 03, 4 = — — 01, 05 = ——— 02, G = —— 43,
1-0C, cos 41, — Cy cos Sy — Cy cos 61, — Cy
S, B S, B S, B
by =0, b= Ty oy STy g STy
cos 4, — Cy cos Sy — Cy cos 61, — Cy
(C.16)
leaving 5 equations for a1, ag, as, by, and bs.
Sy (w&yB )2 a2
= 2Ll e, B, 2,
" cos 4fiy — Cy v
(Syﬂ'fan)z
oS 21, — ———" | = Sy &, By a,
( Y cos Sfiy — Cy yosyen
(Sym€y Bn)’
(cos 3y — m = Sy m& By 2ay, (C.17)
2
Sy (7&yBn) ba
— _ZYATAYTR B. 2
" cos 4fi, — Cy ey " by’
) (SymEyBn)’
by (cos 201y — Cy — m = —Sy &y By by.
Both limits are given bny
1 1
€n = —Sy (&, B 2 — + .
" y (7yBu) (COS 4y — Cy  cos 2/1y — Cy — (SyWEan)2 / (cos bty — Cy))

(C.18)

This has the same order of magnitude as the » = 0 case but, of course, the tune ranges
for which it is significant are entirely different. For this particular resonance the resonant

denominators are the same as would correspond to vertical fifth integer (and integer)

nonlinear resonances (as well as (2/3)nu & f1y).

T In the body of the paper it was stated that this calculation seems to not be self-consistent. If the limits
of the stop band are identical there would seem to be no stop band. Clearly the analysis of this, and higher
order, resonances has to be refined.



